( Mecanique des fluides )

Dimension: px
Commencer à balayer dès la page:

Download "( Mecanique des fluides )"

Transcription

1 INSTITUT NTION GRONOMIUE ERTEMENT U GENIE RUR SECTION YRUIUE GRICOE YRUIUE GENERE ( Mecanique des fluides ) TRONC COMMUN ème NNEE atie : Statique des Fluides ( ydostatique ) atie : ynamique des Fluides ( ydodynamique ) a : Sellam Fouad

2 N U COURS I.- INTROUCTION I..- e Système d Unités SI I..- es opiétés des Fluides I...- es ensités a.- ensité de masse ou Masse olumique : b.- oids Spécifique : c.- ensité Relative : I...- es iscosités a.- a iscosité ynamique b.- a iscosité Cinématique II.- STTIUE ES FUIES : YROSTTIUE II..- Notion de ession II..- oi de ascal II..- Equation Fondamentale de l ydostatique II..- ispositifs de mesue de la pession II.5.- Foces de ession des Fluides su les Sufaces II...- Cas des Foces de ession execées pa les Fluides su des Sufaces lanes a.- Expession énéale de la Foce de ession b.- osition du point d application de la Foce de ession : c.- Cas d une suface veticale iaamme des pessions : II...- Cas des Foces de ession execées pa les Fluides su des Sufaces Coubes a.- Expession énéale de la Foce de ession b.- osition du point d application de la Foce de ession : III.- YNMIUE ES FUIES : ECOUEMENT NS ES CONUITES EN CRGE III..- es incipes de Base III...- incipe de Consevation de Masse ou Equation de Continuité III...- Equation Généale d Ecoulement ou Equation de Benoulli a.- Cas des Fluides afaits ( non visqueux ) b.- Cas des Fluides éels ( visqueux ) III...- es Réimes d Ecoulement : e Nombe de Reynolds III..- es etes de Cae III...- es etes de Cae inéaies ou Répaties a.- Notion de Ruosité des Conduites b.- ete de cae en éime laminaie : c.- ete de cae en éime tubulent : c..- Fomule de Colebook Wite : c..- Fomule de Blasius ( 9 ) : c..- iaamme de Moody : c..- Fomule de Cézy : III...- es etes de Cae ocales ou Sinulièes a.- Expession Généale d une ete de Cae Sinulièe b.- Cas d un élaissement busque de la section d écoulement : c.- Cas d un étécissement busque de la section d écoulement : d.- utes petes de cae sinulièes :

3 III..- pplications aticulièes de l Equation Généale d Ecoulement III...- Cas d un Ecoulement à taves un Oifice : Fomule de Toicelli III...- Cas d un Ecoulement à taves un tube de entui III..- Bancements de Conduites III...- Conduite à Section Constante ( Conduite simple ) a.- Sotie à l ai libe b.- Sotie immeée : III...- Conduites à Section vaiable ( Conduites multiples ) a.- Bancement en Séie b- Bancement en aallèle : c.- Conduite assuant un sevice de oute : d.- Bancement Mixte ( Séie et aallèle ) : 5

4 I.- INTROUCTION I..- e Système d Unités SI En mécanique des fluides, le système d unités SI ( Système Intenational ) compote unités pimaies à pati desquelles toutes les autes quantités peuvent ête décites : Gandeu de Base Nom de Unité Symbole imension onueu Mète m Masse iloamme k M Temps Seconde s T e tableau suivant ésume les unités SI des difféentes caactéistiques utilisées en mécanique des fluides : Caactéistique Unité SI imension itesse m/s, m.s - T - ccéléation m/s, m.s - T - Foce.m/s, N (Newton), k.m.s - MT - Eneie.m./s, N.m, J (Joule), k.m.s - M T - uissance.m /s, N.m/s, W (Watt), k.m.s - M T - ession /m/s, N/m, a (ascal), k.m -.s - M - T - Masse Spécifique /m, k.m - M - oids Spécifique /m /s, N/m, k.m -.s - M - T - iscosité /m/s, N.s/m, k.m -.s - M - T - I..- es opiétés des Fluides I...- es ensités a ensité d une substance est la quantité de matièe contenue dans une unité de volume de cette substance. Elle peut ête expimée de difféentes manièes : M a.- ensité de masse ou Masse olumique : Unités : k/m imensions : M - aleus aticulièes : Eau : ρ w = 000 k/m Mecue : ρ = 56 k/m W M b.- oids Spécifique : Unités : N/m imensions : M - T - aleus aticulièes : Eau : w = 98 N/m c.- ensité Relative : Mecue : = 9 N/m Elle epésente la masse spécifique d une substance expimée pa appot à celle d une substance de éféence : eau : Unité : dimensionnel ( sans unité ) aleus aticulièes : Eau : w = Mecue : =,6 I...- es iscosités a viscosité µ est une popiété d un fluide due à la coésion et à l inteaction ente les molécules qui pésentent une ésistance aux défomations. Tous les fluides sont visqueux et obéissent à la loi de viscosité établie pa Newton : du avec : Containte de défomation tanentielle dy 6

5 du : Gadient de vitesse d écoulement dy : iscosité dynamique Ils sont donc appelés Fluides Newtoniens a.- a iscosité ynamique du dy du dy Foce Suface itesse is tan ce FocexTemps Suface N. s. m k. m. s Remaque : est énéalement expimée en oise (o) : 0 o = k.m -.s - aleus aticulièes : Eau : =, x 0 - k.m -.s - Mecue : =,55 k.m -.s - b.- a iscosité Cinématique Elle epésente le appot ente la viscosité dynamique et la masse spécifique d un fluide : Unité : m /s imension : T - Remaque : est énéalement expimée en Stokes (St) : 0 St = m.s - aleus aticulièes : Eau : =, x 0-6 m.s - Mecue : =,5 x 0 - m.s - a viscosité des fluides dépend en ande patie de sa tempéatue. e tableau suivant donne quelques valeus des viscosités cinématiques de l eau en fonction de la tempéatue : Tempéatue, C iscosité cinématique, m /s ( x 0-6 ) 0,790 5,50 0,0 5,0 0,00 5 0, ,80 5 0,7 0 0, , , ,96 II.- STTIUE ES FUIES : YROSTTIUE 7

6 II..- Notion de ession a pession est définie comme la foce execée pa un fluide pa unité de suface : F Unité : N/m ou k.m -.s - imension : M - T - S Remaque : a pession peut aussi s expime en : ascal ( a ) : a = N/m Ba ( Ba ) : Ba = 0 5 N/m II..- oi de ascal Considéons un élément d un fluide BCEF ( pisme tianulaie ) et soient x, y et s les pessions dans les diections x, y et s. Etablissons la elation ente x, y et s : - Selon la diection x : Foce due à x : F.( BFE) dydz Foce due à y : F 0 xx x x. yx dy Composante due à s : Fsx s.( BC.sin ) s. dsdz ds ca donc : Fsx s. dydz et puisque le fluide est en équilibe : F F F 0 d où : x.dydz - s. dydz 0 x s - Selon la diection y : Foce due à y : F.( CFE) dxdz Foce due à x : F 0 xx yx sx yy y y. xy dx Composante due à s : Fsy s.( BC.cos ) s. dsdz ca ds donc : Fsy s. dxdz et puisque le fluide est en équilibe : Fyy Fxy Fsy 0 d où : y.dxdz - s.dxdz 0 y s et finalement : x y s dy sin ds dx cos ds Conclusion oi de ascal : a pession d un fluide en un point est la même dans toutes les diections 8

7 II..- Equation Fondamentale de l ydostatique Soit un élément de fluide de masse spécifique ρ epésentant une colonne veticale de section tansvesale constante. Considéons sections situées à des distances et pa appot à un plan de éféence OO. Soient et les pessions dans ces sections. - Expimons la vaiation de pession - : e fluide étant en équilibe, la somme des foces dans la diection veticale est donc éale à éo : Foce due à : F. Foce due à : F. Foce due au poids de la colonne du liquide : W m ( ) avec = olume de l élément considéé = ρ..( - ) Si l on considèe le sens positif ves le aut, la condition d équilibe s écit donc : F F W 0 ( ) 0 et donc : Remaques :.- oi de la statique des fluides ( ) et donc : C ste : oi de la statique des fluides.- En posant - = et = 0, On aua : 0 Et si 0 = 0 : Conclusion a pession aumente donc linéaiement en fonction de la pofondeu.- Ealité des pessions su un même plan oizontal : 9

8 Si l on considèe la diection oizontale, on aua : 0 0 ( ca la composante du poids W selon l oizontale est nulle ) Conclusion : Su un même plan oizontal, toutes les pessions sont éales (essions Isobaes).- ession effective et ession absolue : u point M, la pession est éale à : M o la suface libe du fluide, la pession est énéalement epésentée pa la pession atmospéique atm, d où : M : ession bsolue atm Et si l on nélie l influence de la pession atmospéique ( atm = 0 ) : M : ession Effective 5.- Cae piézométique, auteu piézométique : On a vu que : ste C avec : : auteu de position ou côte éométique : auteu piézométique : auteu ou cae totale 6.- Notion de auteu du vide : ans cetains cas, la pession absolue est inféieue à la pession atmospéique : M atm atm Il se cée alos une dépession dont la auteu coespondante, appelée auteu du ide, est éale à : 0

9 vide atm abs 7.- Sinification éneétique de l équation de la statique des fluides : ste On a vu que : C E p Si l on multiplie les temes de cette équation pa le poids élémentaie m, on aua : m m me p avec : Nm m : Eneie potentielle de position m Nm : Eneie potentielle de pession me p Nm : Eneie potentielle totale II..- ispositifs de mesue de la pession e dispositif utilisé dépend de l impotance des pessions à mesue. Il existe types de dispositifs de mesue des pessions : es tubes manométiques : utilisés pou la mesue de pessions elativement faibles ( en laboatoies ) es manomètes mécaniques : utilisés pou la mesue de pessions elativement plus élevées ( à /cm ) Mesue des pessions pa les tubes manométiques :

10 .- e tube manométique simple ou piézomète : B Remaque : et B sont appelées essions Manométiques et sont appelées auteus Manométiques C est un dispositif utilisé uniquement pou la mesue des pessions des iquides et non les az b.- e tube manométique en fome de : Il s ait d un dispositif utilisé pou la mesue des pessions dans les liquides et les az. On a : B = C atie Gauce : B atie oite : C m atm m uisque l on mesue une pession manométique, on soustait donc atm : C m et comme B C m m Remaque : - Si le fluide de densité ρ est un az, sa densité est nélieable devant celle du liquide manométique : m m.- Mesue de la difféence de pession pa un manomète en U :

11 oblème : Calcul de la difféence de pession B : On sait que : C = Bance de Gauce : C Bance de oite : ( ) B B m et comme C B ( ) ( ) ( ) B m B B m et si le fluide est un az ( ρ m >> ρ ) : B m.- Manomète à Eau et manomète à Mecue : es manomètes à eau sont utilisés pou mesue des pessions elativement faibles ca leu utilisation pou les fotes pessions conduiait à l élaboation de tubes de dimensions top exaéées. C est pou cela, et compte tenu de sa densité élevée, que l on péfèe utilise du Mecue comme liquide manométique. Illustation : uelle seait la auteu manométique donnée pou mesue une pession = 0 N/m : a.- ans le cas d un manomète à eau b.- ans le cas d un manomète à Mecue * Cas de l Eau : w w 0.0 9,8.0,m! * Cas du Mecue : 0.0 9,8.56 0,9m! II.5.- Foces de ession des Fluides su les Sufaces

12 II...- Cas des Foces de ession execées pa les Fluides su des Sufaces lanes a.- Expession énéale de la Foce de ession Soit une suface plane B inclinée d un anle α pa appot à l oizontale et immeée dans un fluide de densité massique ρ et C son cente de avité. Etablissons l expession de la foce Résultante F des foces execées pa le fluide su la suface B ( voi diaamme des foces execées ) : Considéons pou cela la foce élémentaie df s exeçant su une suface élémentaie d : df d ( atm ) d atm d d a foce ésultante F est éale à l intéale de df su toute la suface B : F d d d o, F atm ysin d ou : atm y sin d atm sin yd e teme yd epésente le Moment Statique de la suface B pa appot à Ox : yd yc avec y c : Odonnée du cente de avité de la suface B. expession de F devient : et comme F y c c F atm sin y sin : ofondeu du cente de avité de la suface B : atm c En énéal, la pession atm est néliée et donc l expession finale de F devient : c F Remaque : En ydostatique, ρ = ρ w ( Eau ) : F c w c b.- osition du point d application de la Foce de ession : éteminons, la pofondeu du point d application de la foce ésultante F : ou cela, utilisons le pincipe des moments : o F B i

13 avec : F F. o y et i ydf y. y sin d y sin d sin B B B B B le teme B Ox = I ox y d On aua donc : epésente le Moment d Inetie de la suface B pa appot à l axe sin y sin I Et donc : ox y Remaque : Utilisation du téoème de uyens : Ce téoème nous pemet d écie que : I ox I cc yc avec : I cc : Moment d inetie de la suface B pa appot à un axe passant pa son cente de avité C. ans ce cas, la fomule pécédente devient : y y I cc oo c ou bien c ' y c c avec : - : ojection veticale de la suface B - I oo : Moment d inetie de la suface pa appot à l axe passant pa son cente de avité. Conclusion : e point d application de la ésultante F se touve toujous plus bas que le cente de avité d une distance éale à : e tableau suivant ésume les moments d inetie de quelques sufaces paticulièes : I c I oo ' I y c y ox d c.- Cas d une suface veticale iaamme des pessions : 5

14 Soit une plaque B plane veticale etenant une auteu d eau. e scéma epésente le diaamme des pessions execées su la suface B. Expimons la ésultante F des foces de pessions su la suface B de façons difféentes :.- apès le diaamme des pessions : e diaamme des pessions est epésenté pa un tianle dont la suface est éale à la ésultante des foces de pessions : F. et F passe pa le cente de avité du tianle, d où :.- apès les fomules de l ydostatique : F c.ml et : Ioo. c c 6. II...- Cas des Foces de ession execées pa les Fluides su des Sufaces Coubes a.- Expession énéale de la Foce de ession 6

15 Soit une paoi coube B etenant un fluide de densité massique ρ. Soit un élément d de la suface B situé à une pofondeu et su lequel s exece une foce élémentaie df qui se décompose en foces : - Une foce df x, aissant su la suface d z pojection de d su l axe z. - Une foce df z, aissant su la suface d x pojection de d su l axe x. On sait que : df d d où : df x df. sin d sin d z ca d sin d z df z df. cos d cos d ca dcos d x x d où : df x F d z c z z avec : z : ojection veticale de la suface coube B. c z F CONCUSION : e calcul de la composante oizontale F est amené au calcul d une foce de pession su une suface plane veticale. e même : df z W F d dw W v x x W F v vec W : olume délimité pa : a suface coube B a suface libe du fluide es veticales menées des extémités et B de la suface. CONCUSION : e calcul de la composante oizontale F se ésume donc au calcul du oids du fluide epésenté pa le volume déplacé pa la suface B. e calcul des composantes F et F pemet ensuite de détemine la ésultante F pa l expession suivante : F F F Remaque : Selon que la suface B en contact avec l eau est concave ou convexe, on aua : 7

16 b.- osition du point d application de la Foce de ession : e point d application de la ésultante F est obtenu si l on connaît les composantes F et F. ans le cas énéal, il fauda établi l équation de la coube B et celle du sement epésentant la foce F ( équation d une doite ) en tenant compte que l anle d inclinaison de la foce ésultante F pa appot à l oizontale est obtenu pa la fomule suivante : act F F v Fin de la atie Statique des Fluides ydostatique 8

17 III.- YNMIUE ES FUIES : YROYNMIUE III..- es incipes de Base III...- incipe de Consevation de Masse ou Equation de Continuité e pincipe de continuité expime la consevation de masse, ce qui sinifie qu aucun fluide ne peut ête céé ni dispaaîte dans un volume donné : Notion de débit d écoulement : e débit d écoulement s expime pa les elations suivantes : : ébit volumique ( volume pa unité de temps ), Unité SI = m/s : ébit massique, Unité SI = /s m Etant donné que le débit d écoulement este constant ( mouvement pemanent ), équation de continuité ste s écit donc : C III...- Equation Généale d Ecoulement ou Equation de Benoulli a.- Cas des Fluides afaits ( non visqueux ) équation de Benoulli expime que, tout le lon d un filet liquide en mouvement pemanent, l éneie totale pa unité de poids du liquide este constante ( d/dx = 0 ). apès le scéma, on peut donc écie que : 9

18 v v C ste Cette équation s écit donc dans le cas énéal : v ste C : Equation de Benoulli pou un Fluide afait b.- Cas des Fluides éels ( visqueux ) Contaiement au fluide pafait non visqueux, la cae pou un fluide éel visqueux diminue dans la diection de l écoulement ( d/dx < 0 ). Ceci est du à la natue visqueuse dy fluide qui dissipe une patie de l éneie: cette pete d éneie est appelée ete de cae. a epésentation apique en cas de fluide éel est donc monté pa le scéma suivant : équation de Benoulli, pou un liquide éel, devient donc ( voi scéma ) : v v w : Equation de Benoulli pou un Fluide Réel avec : w : ete de cae totale ente les sections et. Selon l oiine des petes de cae, on distinue : a pete de cae pimaie ou épatie, noté, qui est la conséquence de la viscosité du fluide et de la uosité des paois de la section d écoulement a pete de cae secondaie ou locale ou sinulièe, noté s, qui est la conséquence d une modification busque dans la natue pysique de la section d écoulement ( élaissement, étécissement, canement de diection, etc ). a pete de cae totale est donc la somme des petes de cae épatie et sinulièe : w s 0

19 III...- es Réimes d Ecoulement : e Nombe de Reynolds es écoulements sont classés en éimes pincipaux : aminaie et Tubulent sépaés pa une pase tansitoie appelée éime citique ou caactéise ces éimes d écoulement, on intoduit un nombe adimensionnel, appelée Nombe de Reynolds, noté R e et calculé pa la fomule : R e avec : = itesse moyenne d écoulement = / = iamète de la section d écoulement ( ciculaie ) ν = iscosité cinématique du fluide = µ/ρ µ = viscosité dynamique du fluide En intoduisant l expession du débit et de la section d écoulement ( ciculaie ), le nombe de Reynolds s écit : R e es limites du Nombe de Reynolds définissant les difféents éimes d écoulement peuvent ête ésumées comme suit : R 000 : e éime est MINIRE e 000 R 000 : e éime est CRITIUE ou TRNSITOIRE e R 000 : e éime est TURBUENT e III..- es etes de Cae III...- es etes de Cae inéaies ou Répaties a.- Notion de Ruosité des Conduites Contaiement à une suface lisse, une suface uueuse implique un état de suface dont les iéulaités ont une action diecte su les foces de fottements. Une suface uueuse peut ête considéée comme étant constituée pa une séie de potubéances élémentaies caactéisées pa une auteu, notée k, et appelée Ruosité : fin de compae la uosité pa appot au diamète de la conduite, on intoduit le appot : k : Ruosité Relative Expession de la pete de cae due aux fottements : a pete de cae linéaie est calculée pa la fomule de acy Weisbac ( 857 ) : : Fomule de acy Weisbac ( 857 )

20 vec : - = iamète de la section d écoulement ( m ) - = onueu de la conduite ( m ) - = itesse d écoulement ( m/s ) - = Coefficient de fottement ( sans unité ) lusieus fomules sont poposées pou le calcul de et dépendent du éime d écoulement : b.- ete de cae en éime laminaie : R e < R e c.- ete de cae en éime tubulent : R e > 000 lusieus fomules de calcul du coefficient λ sont poposés pa difféents auteus : c..- Fomule de Colebook Wite : Cette fomule monte que λ peut ête influencée pa :.- a Ruosité de la conduite à taves le teme k/ : ans ce cas [ λ = f ( k/) ], on palea d un Ecoulement ydauliquement Ruueux et la fomule de Colebook Wite devient :.- a iscosité du fluide à taves le teme R e : ans ce cas [ λ = f (R e ) ], on palea d un Ecoulement ydauliquement isse et la fomule de Colebook Wite devient :.- a Ruosité de la conduite et la iscosité du fluide en même temps : Il s ait dans ce cas d un éime de tansition ou l on a : λ = f (R e ;k/ ) ou l on utilise la fomule complète de Colebook-Wite pou le calcul de λ.

21 c..- Fomule de Blasius ( 9 ) : 0,6 Cette une fomule poposée pou : Re < 0 5 : 0, 5 R e c..- iaamme de Moody : es tavaux de Nikuadse su les petes de cae dans les conduites ont pemis d élaboe un apique ( iaamme de Moody ) pemettant de détemine le coefficient λ en fonction de R e pou les difféents types d écoulement et des uosités elatives k/ allant de /0 à /0 : e diaamme pemet d obseve et d identifie plusieus éions :.- one à Ecoulement aminaie : R e < 000 λ = f(r e ).- one de tansition : 000 < Re < one de Tubulence isse : λ = f(r e ).- one de Tubulence Tansitoie : λ = f(r e ;k/) 5.- one de Tubulence Ruueuse : λ = f(k/) c..- Fomule de Cézy : a fomule de Cézy est inspiée de celle de acy-weisbac : En intoduisant la notion de Rayon ydaulique R éal au appot ente la suface et le péimète d écoulement : R R R 8 a fomule de la pete de cae devient : R et comme : J : ente ydaulique J 8 R 8 RJ RJ 8 En posant : C : Coefficient de Cézy, on obtient finalement : C RJ 8 ou bien, en intoduisant le ébit : C RJ e plus, Cézy popose la fomule empiique suivante pou le calcul de C :

22 R / k 6 C avec : k = uosité de la conduite ce qui donne : R k / 6 R / J / k R / J / et comme = π / / et R = / : J k / 8 / / 8 / J 5 / 5 / / k k / en posant : k 8/ 5 / : Module de ébit ( /S ) on obtient : et donc : Remaque : - ou teni compte des petes sinulièes, on majoe en énéal de 0 % - ou teni des vaiations de vitesse,on intoduit le coefficient de vitesse donné pa des tables : β=f() Et la fomule énéale s écit donc :, w III...- es etes de Cae ocales ou Sinulièes a.- Expession Généale d une ete de Cae Sinulièe En plus de petes de cae linéaies, la pete de cae sinulièe se poduit localement au niveau d une modification busque de la natue pysique de la section d écoulement. Elle se calcule pa la fomule énéale suivante : s s vec : ξ s = Coefficient qui dépend de la natue de la défomation a.- Cas d un élaissement busque de la section d écoulement : ans ce cas : seb seb

23 Remaque : Cas paticulie d une sotie ves un ésevoi : ans ce cas, le teme conduite, et la fomule pécédente devient : tend ves zéo du fait que la section du ésevoi est tès ande devant celle de la so so b.- Cas d un étécissement busque de la section d écoulement : a fomule de calcul s écit : sb b vec : ξ b = Coefficient due au étécissement busque donné pa le tableau suivant : / 0, 0,5 0,7 ξ b 0, 0, 0, Remaque : Cas paticulie d une sotie à pati d un ésevoi : Fomule de calcul : sen en vec : ξ en = 0,5 5

24 c.- utes petes de cae sinulièes : autes types de petes de cae peuvent avoi lieu dans les conduites : Coudes annes Cépine, etc Exemple : Cas d un coude : III..- pplications aticulièes de l Equation Généale d Ecoulement III...- Cas d un Ecoulement à taves un Oifice : Fomule de Toicelli pplication de l équation de Benoulli ente les sections - et - pa appot à l axe de éféence O-O : - Section - : * = * = atm * = 0 - Section - : * = 0 * = atm * = On aua donc : atm atm 0 0 w Si nous nélieons les petes de cae : w = 0, l équation devient : et donc : : Fomule de Toicelli Si nous passons au débit d écoulement à taves l oifice : ' avec = Section contactée de l écoulement ' En posant = m avec m = / = Coefficient de contaction de l écoulement ' m avec : - m 0,597 ou fomule empiique : m 0,59 6,5 R e

25 7 III...- Cas d un Ecoulement à taves un tube de entui e débitmète de entui est un appaeil qui utilise l équation de Benoulli pou mesue le débit dans les conduites, et ce à l aide d une simple mesue des pessions et : a appot à OO, l équation de Benoulli appliquée ente les sections et donne : - Section : * * * - Section : * * * On aua donc : w Si nous nélieons les petes de cae : w = 0 : Comme l équation de continuité nous pemet d écie que : onc : Et finalement : Et comme = : Remaque : ans la plupat des cas, le débitmète de entui est placé oizontalement ce qui fait que = et donc : = 0 et la fomule pécédente se simplifie :

26 8 et si on intoduisait les diamètes d et d des sections : d : d d d III..- Bancements de Conduites III...- Conduite à Section Constante ( Conduite simple ) a.- Sotie à l ai libe On se popose d établi l expession du débit d écoulement du système : pplication de l équation de Benoulli ente les sections et pa appot à OO : - Section : * * = atm * = 0 ( niveau constant ) - Section : * * = atm * = w w atm atm 0 en en w et donc : en et comme le débit : : en

27 b.- Sotie immeée : On se popose d établi l expession du débit d écoulement du système : pplication de l équation de Benoulli ente les sections et pa appot à OO : - Section : * = * = atm * = 0 ( niveau constant ) - Section : * = 0 * = atm * = 0 ( niveau constant ) atm w 0 atm 0 en w so w en so et donc : en et comme le débit : : so en so 9

28 0 III...- Conduites à Section vaiable ( Conduites multiples ) a.- Bancement en Séie Equation de Benoulli ente les sections et pa appot à OO : - Section : * * = atm * = 0 ( niveau constant ) - Section : * * = atm * = 0 ( niveau constant ) w w atm atm 0 0 so eb en so eb en w O, so eb en so eb en et donc : so eb en

29 et le débit coespondant : so eb en Remaque : Simplification des Calculs : Utilisation de la fomule de Cézy : On a vu que la fomule de Cézy s écit : w, ppliquée au système du scéma pécédent, elle donne ( en considéant β =,0 et en nélieant les petes sinulièes ) : w et comme = = : et donc : Conclusion : Cas de n conduites placées en séie : - es petes de cae s ajoutent : w = + + n - es débits sont éaux : = = = = n Et la fomule énéale de calcul s écit : n i i b- Bancement en aallèle : Equation de Benoulli ente les sections et pa appot à OO : - Section : * = * = atm * = 0 ( niveau constant ) - Section : * = 0

30 * = atm * = 0 ( niveau constant ) ans ce cas, on a vu que l équation de Benoulli donne : w ans le cas d un bancement en paallèle : - es petes de caes sont éales : = = w - es débits s ajoutent : = + O, la fomule de Cézy nous pemet d écie que : et d où : et comme : = = w = ( Equation de Benoulli ) : et d une manièe énéale : n i i c.- Conduite assuant un sevice de oute : e scéma epésente une conduite de lonueu sevant à la fois à Tansite un débit et distibuant unifomément tout le lon un débit de Route q ( m/s/m ). Ce système peut ête assimilé au cas d une conduite équivalente de même onueu et dans laquelle passea un ébit calculé pa la fomule : t 55 0, et la pete de cae coespondante est calculée en fonction de ce débit pa la fomule : t w 0,55 Remaque : Cas d un débit d alimentation complètement consommé en sevice de oute : ans ce cas, cela veut die qu il n y aua pas de débit de tansit en fin de conduite et donc t = 0 et pa conséquent la fomule pécédente devient : w 0,55

31 d.- Bancement Mixte ( Séie et aallèle ) : ou ce système on peut écie les équations suivantes : - = w ( Equation de Benoulli ) - = = + = - = ( Conduites en paallèle ) Expimons les petes de cae à l aide de la fomule de Cézy : ; ; ; Comme on a : = = et et comme : = + : ce qui donne : et finalement, puisque : = w = + + : et donc :

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0. 7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test

Plus en détail

Chapitre I. Description des milieux continus

Chapitre I. Description des milieux continus Chapite I Desciption des milieu continus OBJET Ce chapite est consacé à la desciption des milieu continus. On intoduia les notions fondamentales de desciption du mouvement au sens de Lagange et d Eule,

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2004-2005 Devoi n 6 CONVERSION DE PUISSANCE Une alimentation de d odinateu de bueau est assez paticulièe, elle doit founi des tensions de +5, +12, 5 et 12 volts avec une puissance moyenne de quelques

Plus en détail

Modélisation des actions mécaniques Statique des solides indéformables Puissance et rendement

Modélisation des actions mécaniques Statique des solides indéformables Puissance et rendement Modélisation des actions mécaniques, statique des solides indéfomables, puissance et endement Les actions mécaniques. Définition On appelle action mécanique toute cause susceptible de : 4modifie le mouvement

Plus en détail

11.5 Le moment de force τ (tau) : Production d une accélération angulaire

11.5 Le moment de force τ (tau) : Production d une accélération angulaire 11.5 Le moment de foce τ (tau) : Poduction d une accéléation angulaie La tige suivante est soumise à deux foces égales et en sens contaie: elle est en équilibe N La tige suivante est soumise à deux foces

Plus en détail

TRAVAUX DIRIGÉS DE M 6

TRAVAUX DIRIGÉS DE M 6 D M 6 Coection PCSI 1 013 014 RVUX DIRIGÉS DE M 6 Execice 1 : Pemie vol habité (pa un homme) Le 1 avil 1961, le commandant soviétique Y Gagaine fut le pemie cosmonaute, le vaisseau spatial satellisé était

Plus en détail

M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d

M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d Chapite 2: But: connaîte les lois auxquelles doit obéi un cops solide en équilibe. Ceci pemet de décie la station debout ainsi que les conditions nécessaies pou teni une tasse dans la main, souleve une

Plus en détail

Chapitre 6: Moment cinétique

Chapitre 6: Moment cinétique Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae

Plus en détail

INITIATION A LA MESURE ----

INITIATION A LA MESURE ---- INITIATION A LA MSUR ---- Le but de ce TP est : - de mesue la foce électomotice et la ésistance intene d'une pile, - d'évalue, en tenant compte des incetitudes de mesue et des caactéistiques de l'appaeil

Plus en détail

Système d ouverture de porte de TGV

Système d ouverture de porte de TGV Le sujet se compose de : TD MP-PSI REVISION CINEMATIQUE Système d ouvetue de pote de TGV 6 pages dactylogaphiées ; 2 pages d annexe ; 2 pages de document éponse Objet de l étude Le tanspot feoviaie, concuencé

Plus en détail

CONSTANTES DIELECTRIQUES

CONSTANTES DIELECTRIQUES 9 E7 CONTANTE DIELECTRIQUE I. INTRODUCTION Dans cette expéience, nous étuieons es conensateus et nous éiveons les popiétés e iélectiques tels que l'ai et le plexiglas. II. THEORIE A) Conensateus et iélectiques

Plus en détail

CHAPITRE VI : Le potentiel électrique

CHAPITRE VI : Le potentiel électrique CHPITRE VI : Le potentiel électiue VI. 1 u chapite III, nous avons vu ue losu'une foce est consevative, il est possible de lui associe une énegie potentielle ui conduit à une loi de consevation de l'énegie.

Plus en détail

FINANCE Mathématiques Financières

FINANCE Mathématiques Financières INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.retronaut.com/2013/01/rotor-rides/

Voyez la réponse à cette question dans ce chapitre. www.retronaut.com/2013/01/rotor-rides/ Dans un manège tel que celui monté su la figue, quelle est la péiode de otation maximale que doit aoi le manège pou que les pesonnes ne glissent pas es le bas de la paoi si le coefficient de fiction ente

Plus en détail

Roulements à billes et à rouleaux

Roulements à billes et à rouleaux Fo New Technology Netwok R copoation Roulements à billes et à ouleaux CAT. NO. 222-VIII/F Manuel technique A- Roulements à billes à goges pofondes B- Roulements miniatues B- 1 Roulements à billes à contact

Plus en détail

CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM.

CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM. Rabat, le 02 juillet 2004 CIRCULIRE N 02/04 RELTIVE UX CONDITIONS D ÉVLUTION DES VLEURS PPORTÉES À UN ORGNISME DE PLCEMENT COLLECTIF EN VLEURS MOBILIÈRES OU DÉTENUES PR LUI La pésente ciculaie vient en

Plus en détail

Informations Techniques A7 A141. Roulements à Billes à Gorge Profonde. Roulements à Billes à Contact Oblique. Roulements à Billes Auto-Aligneurs

Informations Techniques A7 A141. Roulements à Billes à Gorge Profonde. Roulements à Billes à Contact Oblique. Roulements à Billes Auto-Aligneurs ROULEMENTS Pages Infomations Techniques A7 A141 Infos Tech. Roulements à Billes à Goge Pofonde B4 B45 Roulements à Billes à Contact Oblique Roulements à Billes Auto-Aligneus Roulements à Rouleaux Cylindiques

Plus en détail

Mécanique du point : forces Newtoniennes (PCSI)

Mécanique du point : forces Newtoniennes (PCSI) écanique du oint : foces Newtoniennes (PCSI Question de cous On admet que, losqu'il est soumis à une foce Newtonienne F K u, la tajectoie d'un cos est lane et décite a mc K +e cosθ où C θ est une constante

Plus en détail

Validation CFD axisymétrique de modèle zonal des écoulements gazeux de chambre de combustion de moteur Diesel

Validation CFD axisymétrique de modèle zonal des écoulements gazeux de chambre de combustion de moteur Diesel CONSERVATOIRE NATIONAL DES ARTS ET METIERS Cente d enseignement de Genoble Mémoie Mécanique des stuctues et des systèmes Validation CFD axisymétique de modèle zonal des écoulements gazeux de Auditeu: Jean-Michel

Plus en détail

Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques.

Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques. Cée un obsevatoie de la concuence poblématique I Quelle est l'étendue d'un maché? Quelle pat du maché, une entepise peut-elle espée pende? Quels sont les atouts des entepises pésentes su le maché? ntéêt

Plus en détail

AVERTISSEMENT. Contact SCD INPL: mailto:scdinpl@inpl-nancy.fr LIENS

AVERTISSEMENT. Contact SCD INPL: mailto:scdinpl@inpl-nancy.fr LIENS AVERTISSEMENT Ce document est le fuit d un long tavail appouvé pa le juy de soutenance et mis à disposition de l ensemble de la communauté univesitaie élagie. Il est soumis à la popiété intellectuelle

Plus en détail

Analyse et Conception d une Nouvelle Structure de Coupleur Squared-Coax-to-Microstrip pour des Applications Hautes Puissances en Télécommunications

Analyse et Conception d une Nouvelle Structure de Coupleur Squared-Coax-to-Microstrip pour des Applications Hautes Puissances en Télécommunications Communication Science & technologie N 9. Janvie 2011 COST Analyse et Conception d une Nouvelle Stuctue de Coupleu Squaed-Coax-to-Micostip pou des Applications Hautes Puissances en Télécommunications Naseddine

Plus en détail

VALORISATION D INVESTISSEMENTS ET D ACTIONS PAR OPTIONS REELLES

VALORISATION D INVESTISSEMENTS ET D ACTIONS PAR OPTIONS REELLES CLUB FINANCE ALORISATION D INESTISSEMENTS ET D ACTIONS PAR OPTIONS REELLES LES ETUDES DU CLUB N 98 DECEMBRE 03 ALORISATION D INESTISSEMENTS ET D ACTIONS PAR OPTIONS REELLES LES ETUDES DU CLUB N 98 DECEMBRE

Plus en détail

CARACTERISTIQUES DES SECTIONS PLANES

CARACTERISTIQUES DES SECTIONS PLANES CRCTERITIQUE DE ECTION PLNE OENT TTIQUE D UNE ECTION PLNE oient une aie pane et une doite Le moment statiue de a section pa appot à m est défini pa intégae : m ( ) ( ) δ d (doénavant, on note e moment

Plus en détail

Gérard Debionne dimanche 20 mai 2012. Quasar 95. La Mesure de G. Présentation : 18 mai 2012

Gérard Debionne dimanche 20 mai 2012. Quasar 95. La Mesure de G. Présentation : 18 mai 2012 Géad Debionne dimanche 0 mai 01 Quasa 95 La Mesue de G Pésentation : 18 mai 01 La mécanique céleste pemet de calcule les mouvements des planètes autou d une étoile en unités elatives. Pou avoi des valeus

Plus en détail

A la mémoire de ma grande mère A mes parents A Mon épouse A Mes tantes et sœurs A Mes beaux parents A Toute ma famille A Mes amis A Rihab, Lina et

A la mémoire de ma grande mère A mes parents A Mon épouse A Mes tantes et sœurs A Mes beaux parents A Toute ma famille A Mes amis A Rihab, Lina et Remeciements e tavail a été effectué au sein du laboatoie optoélectonique et composants de l univesité Fehat Abbas (Sétif, Algéie) en collaboation avec le goupe MALTA consolido du Dépatement du Physique

Plus en détail

Gestion dynamique de contexte pour l informatique diffuse * Dynamic context management for pervasive computing

Gestion dynamique de contexte pour l informatique diffuse * Dynamic context management for pervasive computing Gestion dynamique de pou l infomatique diffuse * Dynamic context management fo pevasive computing Jéôme Euzenat 1 Jéôme Pieson 2 Fano Rampaany 2 1 INRIA Rhône-Alpes 2 Fance Telecom R&D Jeome.Euzenat@inialpes.f,

Plus en détail

ARBRES BINAIRES DE RECHERCHE

ARBRES BINAIRES DE RECHERCHE ARBRES BINAIRES DE RECHERCHE Table de smbole Recheche : opéation fondamentale données : éléments avec clés Tpe abstait d une table de smboles (smbol table) ou dictionnaie Objets : ensembles d objets avec

Plus en détail

Serveur vidéo IP. caméras analogiques PC serveur. PC Client 1. Serveur de stockage ( optionnel )

Serveur vidéo IP. caméras analogiques PC serveur. PC Client 1. Serveur de stockage ( optionnel ) Sony RealShot Manage V3 Info Poduit Mas 2005 RealShot Manage V3.0 Logiciel de gestion des caméas IP MJPEG, MPEG-4, Audio, il sait tout enegiste! Une nouvelle vesion du logiciel RealShot Manage de Sony

Plus en détail

ARBRES BINAIRES DE RECHERCHE

ARBRES BINAIRES DE RECHERCHE ARBRES BINAIRES DE RECHERCHE Table de smboles Recheche : opéation fondamentale données : éléments avec clés Tpe abstait d une table de smboles (smbol table) ou dictionnaie Objets : ensembles d objets avec

Plus en détail

Sébastien Charnoz & Adrian Daerr Université Paris 7 Denis Diderot CEA Saclay

Sébastien Charnoz & Adrian Daerr Université Paris 7 Denis Diderot CEA Saclay Algoithmes de minimisation Sébastien Chanoz & Adian Dae Univesité Pais 7 Denis Dideot CEA Saclay De nombeux poblèmes nécessitent de minimise une onction : -Minimise la distance (HI ente des points de mesues

Plus en détail

PHYSIQUE DES SEMI-CONDUCTEURS

PHYSIQUE DES SEMI-CONDUCTEURS Dépatement Mico-électonique et télécommunications Pemièe année 004/005 PHYSIQUE DES SEMI-CONDUCTEURS Rouge Violet Infa-Rouge Visible Ulta-Violet Cd x Hg 1-x Te InSb Ge Si GaAs CdSe AlAs CdS GaP SiC GaN

Plus en détail

Quelques éléments d écologie utiles au forestier

Quelques éléments d écologie utiles au forestier BTSA Gestion Foestièe Module D41 V.1.1. Avil 1997 Quelques éléments d écologie utiles au foestie Paysage vosgien : un exemple d écocomplexe divesifié. Sylvain Gaudin CFPPA/CFAA de Châteaufaine E 10 ue

Plus en détail

Le fabricant qui rend la piscine accessible à tous. ans. d ec en n a. is e. a n. i n e. piscines

Le fabricant qui rend la piscine accessible à tous. ans. d ec en n a. is e. a n. i n e. piscines Le fabicant qui end la piscine accessible à tous. ga antie 10 ans e d ec en n a l f fab ication a ç is e u di ect s i n e piscines w w w. p i s c i n e s - o p l u s. c o m DES PRODUITS INNOVANTS piscines

Plus en détail

Microfondements du canal étroit du crédit bancaire : le motif de précaution

Microfondements du canal étroit du crédit bancaire : le motif de précaution Micofondements du canal étoit du cédit bancaie : le motif de pécaution Modèle de compotement d une banque confontée à un isque de liquidité et à une offe de financement extene impafaitement élastique Julio

Plus en détail

tudes & documents ÉCONOMIE ET ÉVALUATION L assurance habitation dans les départements d Outre Mer n 24 Juin 2010

tudes & documents ÉCONOMIE ET ÉVALUATION L assurance habitation dans les départements d Outre Mer n 24 Juin 2010 COMMISSARIAT GÉNÉRAL AU DÉVELOPPEMENT DURABLE n 24 Juin 2010 É tudes & documents L assuance habitation dans les dépatements d Oute Me RISQUES ÉCONOMIE ET ÉVALUATION Sevice de l économie, de l évaluation

Plus en détail

Moments partiels crédibilistes et application à l évaluation de la performance de fonds spéculatifs

Moments partiels crédibilistes et application à l évaluation de la performance de fonds spéculatifs Moments patiels cédibilistes et application à l évaluation de la pefomance de fonds spéculatifs Alfed MBAIRADJIM M. 1 & Jules SADEFO K. 2 & Michel TERRAZA 3 1 LAMETA- Univesité Montpellie 1 et moussa alf@yahoo.f

Plus en détail

SOMMAIRE F.1 SERVICES EXTERIEURS... 2 F.1.1 CATEGORIES DE SERVICES VISES... 2 F.2 FORMATION... 4 F.2.1 NATURE DES FORMATIONS... 4

SOMMAIRE F.1 SERVICES EXTERIEURS... 2 F.1.1 CATEGORIES DE SERVICES VISES... 2 F.2 FORMATION... 4 F.2.1 NATURE DES FORMATIONS... 4 F MODULE F PRESTATIONS ET MISSIONS SOMMAIRE F MODULE F PRESTATIONS ET MISSIONS... 1 F.1 SERVICES EXTERIEURS... 2 F.1.1 CATEGORIES DE SERVICES VISES... 2 F.1.2 SERVICES PERMANENTS... 2 F.1.3 SERVICES PONCTUELS...

Plus en détail

Permis de feu. Travail par point chaud. r Soudage r Brasage. r Découpage r Tronçonnage. r Meulage r Autres. r Poste à souder r Tronçonneuse

Permis de feu. Travail par point chaud. r Soudage r Brasage. r Découpage r Tronçonnage. r Meulage r Autres. r Poste à souder r Tronçonneuse Pemis de feu Tavail pa point chaud Patage vote engagement Ce document doit ête établi avant tout tavail pa point chaud (soudage, découpage, meulage, ) afin de péveni les isques d incendie et d explosion

Plus en détail

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides

Plus en détail

DiaDent Group International

DiaDent Group International www.diagun.co.k DiaDent Goup Intenational Dispositif de compactage sans fil à chaleu intégée Copyight 2010 DiaDent Goup Intenational www.diadent.com Dispositif de compactage sans fil à chaleu intégée w

Plus en détail

Pour obtenir le grade de. Arrêté ministériel : 7 août 2006

Pour obtenir le grade de. Arrêté ministériel : 7 août 2006 THÈSE Pou obteni le gade de DOCTEUR DE L UNIVERSITÉ DE GRENOBLE Spécialité : Infomatique Aêté ministéiel : 7 août 2006 Pésentée pa Luc Michel Thèse diigée pa Fédéic Pétot et encadée pa Nicolas Founel pépaée

Plus en détail

Po ur d o nne r un é lan à vo tre re traite

Po ur d o nne r un é lan à vo tre re traite Po u d o nne un é lan à vo te e taite ez a p é P aite t e e vot joud'hui dès au E N EN T TR RE E N NOOUUSS,, CC EESSTT FFAA CC I I LL EE DD EE SS EE O M M PP RR EE NN DDRRE E CC O Toutes les gaanties de

Plus en détail

Les pertes de charge dans les installations. Le dimensionnement des mitigeurs. octobre 2005

Les pertes de charge dans les installations. Le dimensionnement des mitigeurs. octobre 2005 octobe 005 REUE PÉRIODIQUE D INFORMATIONS TECHNIQUES ET INDUSTRIELLES DES THERMICIENS Les petes de chage dans les installations Le dimensionnement des mitigeus octobe 005 Sommaie Le petes de chage dans

Plus en détail

Roulements à rotule sur deux rangées de rouleaux en deux parties

Roulements à rotule sur deux rangées de rouleaux en deux parties Roulements à otule su deux angées de ouleaux en deux paties Réduction des coûts gâce au changement apide du oulement difficilement accessible Contenu Changement apide du oulement 2 Réduction des coûts

Plus en détail

DEUXIEME ANNEE TRONC COMMUN TECHNOLOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS ONDES

DEUXIEME ANNEE TRONC COMMUN TECHNOLOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS ONDES UNIVERSITE DES SCIENCES ET DE A TECHNOOGIE HOUARI BOUMEDIENNE INSTITUT DE PHYSIQUE DEPARTEMENT DES ENSEIGNEMENTS DE PHYSIQUE DE BASE DEUXIEME ANNEE TRONC COMMUN TECHNOOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS

Plus en détail

Évaluation de l'incertitude de mesure par une méthode statistique ("méthode de type A") Voir cours d'instrumentation

Évaluation de l'incertitude de mesure par une méthode statistique (méthode de type A) Voir cours d'instrumentation G. Pinson - Physique ppliquée Mesues - 16 / 1 16 - Instuments de mesues Eeu et incetitude su la mesue d'une gandeu Ce qui suit découle des pesciptions du IPM (ueau Intenational des Poids et Mesues, Fance),

Plus en détail

LA CONVERSION DE DONNÉES HISTORIQUES SELON UN NOUVEAU SYSTÈME DE CLASSIFICATION POUR L ENQUÊTE MENSUELLE SUR LE COMMERCE DE GROS ET DE DÉTAIL

LA CONVERSION DE DONNÉES HISTORIQUES SELON UN NOUVEAU SYSTÈME DE CLASSIFICATION POUR L ENQUÊTE MENSUELLE SUR LE COMMERCE DE GROS ET DE DÉTAIL Assemblée annuelle de la SSC, juin 2003 Recueil de la Section des méthodes d enquête LA CONVERSION DE DONNÉES HISTORIQUES SELON UN NOUVEAU SYSTÈME DE CLASSIFICATION POUR L ENQUÊTE MENSUELLE SUR LE COMMERCE

Plus en détail

E G A E E M. e v i t e. i t. Guide méthodologique à destination des chefs cuisiniers, des intendants, des acheteurs, de toute personne ayant un projet

E G A E E M. e v i t e. i t. Guide méthodologique à destination des chefs cuisiniers, des intendants, des acheteurs, de toute personne ayant un projet E G A L L I P S A E G R I e l A e T i N u E M Red I e v i t AL collec e n e n o i t a stau Guide méthodologique à destination des chefs cuisinies des intendants des acheteus de toute pesonne ayant un pojet

Plus en détail

SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables

SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables ATRACOM-Centafique Manuel de Pocédues Administatives Financies et Comptables G MODULE G GESTION DE LA TRESORERIE SOMMAIRE G MODULE G GESTION DE LA TRESORERIE... 1 G.1 COMPOSANTES DE LA TRESORERIE... 2

Plus en détail

UNIVERSITÉE KASDI MERBAH OUARGLA

UNIVERSITÉE KASDI MERBAH OUARGLA UNIVERSITÉE KASDI MERBAH OUARGLA FACULTE DES SCIENCES APPLIQUÉES Département de Génie des Procédés Phénomènes de transferts Travaux pratiques de mécanique des fluides CHAOUCH Noura et SAIFI Nadia 2013

Plus en détail

S. BEN RAMDANE, T. DAMAY, F. HAUVILLE, F. DENISET, J.-A. ASTOLFI

S. BEN RAMDANE, T. DAMAY, F. HAUVILLE, F. DENISET, J.-A. ASTOLFI 1 èmes JOURNÉES E L HYROYNAMIQUE Nantes, 7, 8 et 9 mas 5 ETUE E L ECOULEMENT SUR UN HYROFOIL EN MOUVEMENTS FORCES : APPLICATION A LA PROPULSION CYCLOIALE STUY OF FLOW ON HYROFOIL UNERGOING UNSTEAY FORCE

Plus en détail

Mouvement d'une particule chargée dans un champ magnétique indépendant du temps

Mouvement d'une particule chargée dans un champ magnétique indépendant du temps Moueent d'une patiule hagée dans un hap agnétique indépendant du teps iblio: Pee elat Gaing Magnétise Into expéientale: Dispositif: On obsee une déiation du faseau d'életons losqu'il aie ae une itesse

Plus en détail

Système d ouverture de TGV

Système d ouverture de TGV Centale MP 2008 Coigé du sujet de SII souce UPSTI Systèe d ouvetue de TGV Pésentation du systèe Q Diagae FAST Peette l accès à la voitue et ne as ette le assage en dange Taite les infoations et élaboe

Plus en détail

est proportionnel à B, lui même proportionnel au courant i. On a donc

est proportionnel à B, lui même proportionnel au courant i. On a donc INDUCTION ÉLCTROMGNÉTIQU DNS UN CIRCUIT FIX INDUCTION ÉLCTROMGNÉTIQU DNS UN CIRCUIT FIX : CS D NUMNN I Descipion des cicuis dans le cade de l RQS 1 ) Inducances popes e inducances muuelles de cicuis filifomes

Plus en détail

Association Presse Purée - 58 rue Castetnau - 64 000 Pau pressepuree64@orange.fr / www.pressepuree64.fr 05 59 30 90 30 / 06 83 51 66 92

Association Presse Purée - 58 rue Castetnau - 64 000 Pau pressepuree64@orange.fr / www.pressepuree64.fr 05 59 30 90 30 / 06 83 51 66 92 Dossie d insciption Association Pesse Puée - 58 ue Castetnau - 64 000 Pau pessepuee64@oange.f / www.pessepuee64.f 05 59 30 90 30 / 06 83 51 66 92 Identification de la stuctue exposante SOUSCRIPTEUR Etes-vous

Plus en détail

Guide de l acheteur de logiciel de Paie

Guide de l acheteur de logiciel de Paie Note pespicacité Pivilégie les essouces humaines Guide de l acheteu de logiciel de Paie Table des matièes Intoduction Tendances écentes de Paie L automation de Paie avec libe-sevice pou employés Analyse

Plus en détail

Dimensionnement optimal de machines synchrones pour des applications de véhicules hybrides

Dimensionnement optimal de machines synchrones pour des applications de véhicules hybrides Dimensionnement optimal de machines synchones pou des applications de véhicules hybides Sulivan Küttle o cite this vesion: Sulivan Küttle. Dimensionnement optimal de machines synchones pou des applications

Plus en détail

Mémoire de DEA. Modélisation opérationnelle des domaines de référence

Mémoire de DEA. Modélisation opérationnelle des domaines de référence Mémoie e DEA Ecole octoale IAEM Loaine / DEA Infomatique e Loaine Univesité Heni Poincaé, Nancy 1 LORIA Moélisation opéationnelle es omaines e éféence soutenu le Mai 22 juin 2004 pa Alexane Denis membes

Plus en détail

SYSTÈME D ALARME ET PRODUITS TRANSMETTEURS

SYSTÈME D ALARME ET PRODUITS TRANSMETTEURS SYSTÈME D ALARME ET PRODUITS TRANSMETTEURS NOTICE D UTILISATION Vous venez d acquéi un système de sécuité DAITEM adapté à vos besoins de potection et nous vous en emecions. Quelques pécautions L'installation

Plus en détail

MISSION INSTRUCTIONS : LIVRAISON DEMANDÉE LE A H SPECIMEN. Reproduction Interdite

MISSION INSTRUCTIONS : LIVRAISON DEMANDÉE LE A H SPECIMEN. Reproduction Interdite Valide en cochant la case intéessée A défaut de convention écite ente les paties au contat de tanspot ou de déclaation de valeu spécifiée pa le donneu d ode, la esponsabilité du tanspoteu, en cas de pete

Plus en détail

Principes du traitement pharmacologique Dix-sept considérations dans le choix du traitement pharmacologique du TDAH 209

Principes du traitement pharmacologique Dix-sept considérations dans le choix du traitement pharmacologique du TDAH 209 Chapite 7: TRAITEMENT PHARMACOLOGIQUE DU TDAH Pincipes du taitement phamacologique Dix-sept considéations dans le choix du taitement phamacologique du TDAH 209 1. Âge et vaiations individuelles 2. Duée

Plus en détail

Année scolaire 2012-2013

Année scolaire 2012-2013 Année scolaie 2012-2013 Pogammes des études (Fomation sous statut étudiant) ommaie Pogamme de 1 e année (L3) 3 Pogamme de 2 e année (M1) 4 Pogamme de 3 e année (M2) 5 Domaines d appofondissement - Éco-Activités

Plus en détail

CONDUCTEURS EN EQUILIBRE ELECTROSTATIQUE

CONDUCTEURS EN EQUILIBRE ELECTROSTATIQUE Chapit II CONDUCTEURS EN EQUILIRE ELECTROSTTIQUE En élcticité, un conductu st un miliu matéil dans lqul ctains chags élctiqus, dits «chags libs», sont suscptibls d s déplac sous l action d un champ élctiqu.

Plus en détail

FLUIDES EN ÉCOULEMENT Méthodes et modèles

FLUIDES EN ÉCOULEMENT Méthodes et modèles FLUIDES EN ÉCOULEMENT Méthodes et modèles Jacques PADET Professeur Émérite à l Université de Reims Seconde édition revue et augmentée TABLE DES MATIÈRES PRÉSENTATION Préface de la 1 ère édition Prologue

Plus en détail

Guide du système. Logiciel Navios tetra. Réf. 774541AA (Septembre 2009) Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835

Guide du système. Logiciel Navios tetra. Réf. 774541AA (Septembre 2009) Beckman Coulter, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835 CLEAR WATER Logiciel Navios teta Guide du système CAROUSEL CLEANING: PREPARE A SOLUTION OF 11 PART HOUSHOLD BLEACH (5% SOLUTIONOF SODIUM HYPOCHLORITE) AND 99 PARTS WATER, RINSE CAROUSEL WITH SOLUTION,

Plus en détail

CLOUD CX263 MÉLANGEUR

CLOUD CX263 MÉLANGEUR COUD CX6 MÉANGEU Clealy bette soun ZONE ZONE MUSIC SOUCE MUSIC SOUCE MUSIC SOUCE MUSIC EVE MUSIC EVE MUSIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE 6 6 6 5 5 5 MICOPHONE CX6 4 4 4 F HF F HF

Plus en détail

SOMMAIRE B.1 CADRE REGLEMENTAIRE... 2 B.1.1 RAPPEL DES TEXTES DE REFERENCE... 2

SOMMAIRE B.1 CADRE REGLEMENTAIRE... 2 B.1.1 RAPPEL DES TEXTES DE REFERENCE... 2 B MODULE B GESTION DU PERSONNEL SOMMAIRE B MODULE B GESTION DU PERSONNEL... 1 B.1 CADRE REGLEMENTAIRE... 2 B.1.1 RAPPEL DES TEXTES DE REFERENCE... 2 B.1.2 ORGANISMES SOCIAUX... 2 B.1.3 ORGANISMES DE CONTROLE...

Plus en détail

SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables

SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables E MODULE E GESTION DES BIENS SOMMAIRE E MODULE E GESTION DES BIENS... 1 E.1 DEFINITIONS... 2 E.2 PRINCIPES DE GESTION... 3 E.2.1 OBJECTIFS POURSUIVIS... 3 E.2.2 DESTINATION FINALE DES BIENS MIS A DISPOSITION...

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

BoxInternet :choisir le bon forfait

BoxInternet :choisir le bon forfait Au-delà En Tout Chez En D Aute Ce BoxIntenet :choisi le bon fofait Lesoffes «tiple play se» démocatisent gâce aux boîties d opéateus délivant l accès à Intenet dans tout le foye avec des communications

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Chapitre 7: Dynamique des fluides

Chapitre 7: Dynamique des fluides Chapitre 7: Dynamique des fluides But du chapitre: comprendre les principes qui permettent de décrire la circulation sanguine. Ceci revient à étudier la manière dont les fluides circulent dans les tuyaux.

Plus en détail

Les déterminants de la diffusion d Internet en Afrique

Les déterminants de la diffusion d Internet en Afrique Les déteminants de la diffusion d Intenet en Afique pa Benad Conte Maîte de Conféences, Cente d économie du développement Univesité Montesquieu-Bodeaux IV - Fance 6µWYQµ Les pogès apides des technologies

Plus en détail

Méthodes de catégorisation : Réseaux bayesiens naïfs. Olivier Aycard E-Motion group. Université Joseph Fourier. http://emotion.inrialpes.

Méthodes de catégorisation : Réseaux bayesiens naïfs. Olivier Aycard E-Motion group. Université Joseph Fourier. http://emotion.inrialpes. Méthodes de atégosaton : éseau aesens naïfs le Aad E-Moton goup Unesté Joseph Foue http://emoton.nalpes.f/aad le.aad@mag.f lan du ous Intéêts éseau aesens naïfs Appentssage de éseau aesens naïfs ésentaton

Plus en détail

Chapitre 10 : Mécanique des fluides

Chapitre 10 : Mécanique des fluides Chapitre 10 : Mécanique des fluides 1. Pression hydrostatique Les fluides regroupent gaz et liquides. En général, on considère des fluides incompressibles. Ce n est plus le cas en thermodynamique. Un objet

Plus en détail

Considérations sur les contraintes liées à la gestion des données thermodynamiques en vue de la création de la base de données THERMODDEM

Considérations sur les contraintes liées à la gestion des données thermodynamiques en vue de la création de la base de données THERMODDEM Cnsidéatins su les cntaintes liées à la gestin des dnnées themdynamiques en vue de la céatin de la base de dnnées THERMODDEM Rappt final BRGM/RP-55118- FR Décembe 2006 Gnsidéatins su les cntaintes liées

Plus en détail

LE LOGEMENT AU NUNAVIK

LE LOGEMENT AU NUNAVIK SOCIÉTÉ D HABITATION DU QUÉBEC LE LOGEMENT AU NUNAVIK DOCUMENT D INFORMATION WWW.HABITATION.GOUV.QC.CA Coodination du contenu et édaction Diection des affaies integouvenementales et autochtones Coodination

Plus en détail

RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY

RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce

Plus en détail

Calcul des pertes de pression et dimensionnement des conduits de ventilation

Calcul des pertes de pression et dimensionnement des conduits de ventilation Calcul des pertes de pression et dimensionnement des conduits de ventilation Applications résidentielles Christophe Delmotte, ir Laboratoire Qualité de l Air et Ventilation CSTC - Centre Scientifique et

Plus en détail

Annexe II. Les trois lois de Kepler

Annexe II. Les trois lois de Kepler Annexe II es tois lois de Keple écnique & 4 èe - Annexe II es tois lois de Keple Johnnes Keple (57-6), pulie en 596 son peie ouge, ysteiu Cosogphicu Teize nnées plus td, en 69, il pulie Astonoi No, dns

Plus en détail

Prise en main du logiciel

Prise en main du logiciel Pse en man u logcel Au émaage le logcel génèe un pofl e émonstaton (pou entaînement). Vous pouvez éfn vote pope pofl : pa lectue un fche exstant (fche texte) (Fche/Ouv fche ponts) avec possblté e sauvegae

Plus en détail

Magister en : Electrotechnique

Magister en : Electrotechnique انج س ت انجضائش ت انذ مشاط ت انشعب ت République Algéienne Démocatique et Populaie صاسة انتعه ى انعان انبحث انعه Minitèe de l Eneignement Supéieu et de la Recheche Scientifique Univeité Mohamed Khide Bika

Plus en détail

( Codes : voir verso du feuillet 3 ) SPECIMEN

( Codes : voir verso du feuillet 3 ) SPECIMEN Aide demandeu d emploi Pojet pesonnalisé d accès à l emploi Pesciption de Pô emploi RFPE AREF CRP - CTP ou d un patenaie de Pô emploi Pécisez : N d AIS Concene de naissance Pénom Né(e) Inscit(e) depuis

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

2. De la Grâce à l action de Grâces Ph 1.3-7

2. De la Grâce à l action de Grâces Ph 1.3-7 De la Gâce à l action de Gâces Philippiens 1.3-7 2. De la Gâce à l action de Gâces Ph 1.3-7 Intoduction Cette semaine, j ai eu l occasion de emecie Dieu pou avoi pu appécie sa gâce en action. En fait,

Plus en détail

ANNALES SCIENTIFIQUES DE L É.N.S.

ANNALES SCIENTIFIQUES DE L É.N.S. ANNALES SCIENTIFIQUES DE L É.N.S. HERVÉ ACQUET Su un ésultat de Waldspuge Annales scientifiques de l É.N.S. 4 e séie, tome 19, n o 2 (1986), p. 185-229.

Plus en détail

Préface. Le programme d électricité du S2 se compose de deux grandes parties :

Préface. Le programme d électricité du S2 se compose de deux grandes parties : Péface. Ce cus d électicité a été édigé à l intentin des étudiants qui pépaent, dans le cade de la éfme L.M.D 1, une licence dans les dmaines des Sciences de la Matièe et des Sciences et Technlgies. Il

Plus en détail

Chapitre 1.5a Le champ électrique généré par plusieurs particules

Chapitre 1.5a Le champ électrique généré par plusieurs particules hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel

Plus en détail

Univ. Béjaia, Faculté de la Technologie, Département d électronique

Univ. Béjaia, Faculté de la Technologie, Département d électronique Univ. Béjaia, Faculté de la Technologie, Dépatement d électonique L INTELLIGENCE ARTIFICIELLE APPLIQUEE AUX TELECOMMUNICATIONS Thème : Intelligence économique et télécommunication Poposé pa : D A/. KHIREDDINE

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Cours de. Point et système de points matériels

Cours de. Point et système de points matériels Abdellah BENYOUSSEF Amal BERRADA Pofesseus à la Faculté des Scences Unvesté Mohammed V Rabat Cous de Pont et système de ponts matéels A L USAGE DES ETUDIANTS DU 1 ER CYCLE UNIVERSITAIRE FACULTES DES SCIENCES,

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

1) Explications (Expert) :

1) Explications (Expert) : 1) Explications (Expert) : Mesures expérimentales : Dans nos conditions d expérience, nous avons obtenu les résultats suivants : Les dimensions des récipients sont : 1) bocal vide : épaisseur de verre

Plus en détail

D'CLICS CONSO. ayez les bons réflexes! Logement, téléphonie, mobilité, budget : soyez acteur de votre consommation! www.crij.org.

D'CLICS CONSO. ayez les bons réflexes! Logement, téléphonie, mobilité, budget : soyez acteur de votre consommation! www.crij.org. n 26 2013/2014 Jounal du Cente Régional d Infomation Jeunesse Midi-Pyénées D'CLICS CONSO ayez les bons éflexes! d o s s i e Logement, téléphonie, mobilité, budget : soyez acteu de vote consommation! www.cij.og

Plus en détail

UNITÉ DE PROGRAMME : S9UP1 Modélisation de la turbulence

UNITÉ DE PROGRAMME : S9UP1 Modélisation de la turbulence UNITÉ DE PROGRAMME : S9UP1 Modélisation de la turbulence Modélisation de la turbulence Auteur : Yann MARCHESSE Département : Mécanique et Énergétique Édition : Année universitaire 2009-2010 ÉCOLE CATHOLIQUE

Plus en détail

Premier principe de la thermodynamique - conservation de l énergie

Premier principe de la thermodynamique - conservation de l énergie Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse

Plus en détail

Equations aux dérivées partielles

Equations aux dérivées partielles Chapite 3 Equations aux déivées patiees 3.1 Qu est-ce qu une EDP? Soit u = u(x, y,... une fonction de pusieus vaiabes indépendantes en nombe fini. Une EDP pou a fonction u est une eation qui ie : es vaiabes

Plus en détail

Flux Réseau et Sécurité

Flux Réseau et Sécurité Flux Réseau et Sécuité v1.01 Yann BERTHIER Spécialiste Sécuité Systèmes et Réseaux yb@bashibuzuk.net Nicolas FISCHBACH Senio Manage, Netwok Engineeing Secuity, COLT Telecom nico@secuite.og - http://www.secuite.og/nico/

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction élctomagnétiqu Intoduction : pésntation qualitativ du phénomèn d induction élctomagnétiqu A - Cas d un cicuit fix dans un champ magnétiqu dépndant du tmps Cas d Numann : I Ciculation du champ

Plus en détail