11 OSMOLARITÉ, MULTIPLES SOURCES DE VARIATION

Dimension: px
Commencer à balayer dès la page:

Download "11 OSMOLARITÉ, MULTIPLES SOURCES DE VARIATION"

Transcription

1 11 OSMOLARITÉ, MULTIPLES SOURCES DE VARIATION Dans cette étude de cas nous nous retrouvons face à des données dont la variabilité court terme est très différente de celle à long terme. Les cartes de contrôle classiques privilégient l utilisation de la variabilité court terme qui ne correspond pas en théorie à celle recherchée mais qui en est certes très proche lorsque court et long terme ne sont pas trop distincts. Nous expliquons en quoi l utilisation des cartes classiques pose un problème dans la Section Contexte Dans cette étude de cas, issue de la fabrication de produits médicaux, le paramètre mis sous contrôle est l osmolarité qui représente en biologie et en chimie, une mesure du nombre d osmoles de soluté par litre de solution. Il ne faut pas confondre aveclamolaritéquiestunemesuredunombredemolesdesolutéparlitrede solution (1 mole correspondant à 2, particules). Si le solvant est de l eau, les mesures d osmolarité et de molarité sont équivalentes, pour des solutions diluées, carlamassevolumiquedel eauestde1kg/l.l osmolaritéreprésentelenombrede moles de particules osmotiquement actives dans une solution idéale ; par exemple une mole de glucose est une osmole, alors qu une mole de chlorure de sodium vaut deux osmoles (dissociation dans l eau du Chlorure de sodium en une mole de sodiumetunemoledechlored oùdeuxosmoles). Cette entreprise met en place progressivement des cartes de contrôle sur les principaux paramètres de fabrication. Un logiciel de MSP commercial est en place dans l entreprise et les cartes de contrôle sont pour le moment suivies par l engineering. Nous traitons dans cette étude de cas la mise en place d une nouvelle carte de contrôle sur un paramètre directement lié au produit, l osmolarité. Deux points de mesure (sous échantillons) sont mesurés par solution, ce qui va permettre de réaliser une carte X (ou Xbar). Mais l utilisation de cette dernière va poser des problèmes. Notre étude de cas traite ici un problème rencontré fréquemment sur des cartes X quand la variation inter groupe (soit entre échantillons) est beaucoup plus importante que la variation intra groupe (c est-à-dire au sein des échantillons). Pour comprendre le problème qui apparaît alors, il nous faut revenir à la théorie des cartes de contrôle. Les cartes X correspondent à un test sur la moyenne, comme nous l avons vu dans la Partie 1 «Principes de la MSP». On teste pour chaque 101

2 échantillon k l hypothèse {μ X = m 0 },oùμ X est la moyenne de la caractéristique et m 0 est la référence, avec un risque de première espèce α usuellement égal à 0,27 %. La statistique de test est alors X k, la moyenne du kème échantillon qui suit une loi normale N (μ, σ 2 X ). On a donc les limites de contrôle, LC = μ X ± 3σ X,qui définissent un intervalle de confiance au seuil α, et la question est d estimer l écart type des moyennes σ X dont l estimation usuelle est σ X = K k=1 ( X k X) 2 K 1 avec K le nombre total d échantillons, X k la moyenne du kème échantillon et X la moyenne des moyennes. Lescartesdecontrôle X estiment σ X par l intermédiaire de celui de X avec : σ X = σ X / n et l estimation de l écart typedelacaractéristiquex,notéσ X, se fait classiquement par S/c 4 ou R/d 2 qui correspond à la variabilité court terme. Or, il n y a pas de justification théorique à utiliser la variabilité instantanée plutôt que celle à long terme ; elle est certainement plus d ordre pratique, pour privilégier le fait de ne pas rater des points hors contrôle au détriment d un plus grand nombre de fausses alarmes, la variabilité court terme étant toujours plus petite ou égale à celle du long terme. Dans le cas d un procédé avec de multiples, par exemple quand les pièces sont fabriquées par lot et que la variation à l intérieur d un lot est faible relativement à la variation d un lot à l autre, on peut se retrouver avec une variation court terme faible et une à long terme importante toutes deux différentes de la variabilité des moyennes. La Figure 11.1 illustre ce point. Certes toutes ces variations sont reliées (cf. équation classique des sommes des carrés utilisée par exemple dans l analyse de la variance et que nous utilisons dans l Application 8, dernière question). Nous avons en effet SCT = SC inter + SC intra avec SCT la somme totale des carrés, reliée à la variation globale et donc long terme, et SC inter la somme des carrés intra échantillons, reliée à la variabilité court terme. La dernière somme, SC inter, correspond à celle des carrés inter groupes. Dans le cas où SC inter est proche de 0, c est à dire pour les «M» autres que la machine sous contrôle, on aura le choix comme estimateur de la variabilité de la caractéristique de X,la variabilité long terme comme court terme et le choix des cartes classiques est tout à fait justifié. Cela ne l est plus dans le cas de source de variations multiples. Voilà ci-dessous la solution que nous proposons afin de réellement estimer la variabilité des moyennes. Comme nous l avons dit précédemment, nous voyons dans la Figure 11.2 que le calcul usuel des limites de contrôle, dans le cas où la variabilité court terme est très 102

3 E bar E LT E bar Echantillons E G Echantillons Figure 11.1 Osmolarité : Les deux schémas ci-dessus permettent de distinguer les différentes variabilités, court et long terme. Dans le schéma du haut il y a une nette différence entre variabilité court terme et long terme représentées respectivement par l étendue globale E G et l étendue court terme E bar = Ē, moyenne des étendues des échantillons. Dans celui du bas, l étendue globale est quasiment identique à l étendue court terme. 103

4 Moyen d osmolarité Échantillons UCL= Avg= LCL= Figure 11.2 Osmolarité : Les limites de contrôle calculées avec l étendue (range) des échantillons sont beaucoup trop serrées. De nombreuses alarmes intempestives apparaissent. différente de celle du long terme, va donner des limites clairement trop serrées et qui ne sont pas adéquates au problème. Nous laissons donc de côté les cartes X et nous effectuerons un calcul préalable desmoyennesdel osmolarité,icisurdeséchantillonsdetaillen = 2, et nous réaliserons une carte individuelle I sur ces moyennes (voir Figure 11.3) avec des limites de contrôle dans l esprit de Shewhart et Deming : un point hors contrôle signale une cause spéciale, avec une faible probabilité d erreur. Dans les cartes I, les points notés sur la carte correspondent aux valeurs individuelles qui sont en fait ici une moyenne et la variabilité pour le calcul des limites est estimée par l écart type de toutes les valeurs de la carte, autrement dit l écart type des moyennes ce qui correspond exactement à ce que nous recherchons. Moyen d osmolarité Échantillons UCL= Avg= LCL= Figure 11.3 Osmolarité : I-chart avec limites calculées sur les données individuelles «moyennes d échantillons». Non seulement cela semble beaucoup plus réaliste, mais aucun point n est hors contrôle, le processus de fabrication n est pas arrêté de manière erronée. 104

5 11.3 énéfices, risques et perspectives 11.3 énéfices, risques et perspectives Le principal risque rencontré a été celui du calcul des limites de contrôle dans le cas classique sans prendre de recul par rapport aux données. Dans ce type de fabrication, la variation de lot à lot est beaucoup plus forte que la variation intra lot, ce qui pose un problème de calcul en utilisant la formule usuelle (à l aide de l étendue intra lot) pour calculer les limites sur la moyenne. Un tel calcul va conduire à des limites beaucoup trop serrées et donc à un SPC inefficace donnant lieu à un trop grand nombre de fausses alarmes. Ce risque étant écarté en utilisant la méthode proposée, les bénéfices de la mise en œuvre des cartes de contrôles commencent à se sentir dans cette entreprise, il y a moins de lots de produits qui se retrouvent hors distribution à tord et un procédé où la sur réaction est évitée. Les perspectives consistent à étendre le SPC à toutes les étapes de fabrication, sur des paramètres parfois complètement différents, afin notamment de réduire l écart entre variabilité court et long terme en relation avec les «M» autres que la machine. Lamiseenplacedel étudedeschutesdecapabilité(cf. Chapitre 4) peut également permettre de mettre en évidence ce genre de problème lié à de multiples sources de variation. L utilisation des données issues de cartes de contrôle pour les relier à d autres paramètres produits doit aussi permettre d optimiser cette fabrication complexe. Nous recommandons donc de bien étudier les chutes de capabilité d une part et de ne pas oublier d étudier pleinement les données avant d effectuer les cartes de contrôle (graphiquement ou bien test d un effet échantillon). Dans ces cas de figure, où un décalage important entre court et moyen terme est observé, nous conseillons de calculer d abord l indice à mettre sous contrôle, la moyenne par lot par exemple, et d appliquer une carte I avec des limites à ±3σ sur ces moyennes. Ainsi le problème des multiples disparaît et les limites sont correctes. 105

Cartes de contrôle aux mesures

Cartes de contrôle aux mesures Cartes de contrôle aux mesures 1 Une introduction à la maîtrise statistique des processus Deux objets ne sont jamais rigoureusement identiques. Quelles que soient les techniques utilisées pour fabriquer

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Document d orientation sur les allégations issues d essais de non-infériorité

Document d orientation sur les allégations issues d essais de non-infériorité Document d orientation sur les allégations issues d essais de non-infériorité Février 2013 1 Liste de contrôle des essais de non-infériorité N o Liste de contrôle (les clients peuvent se servir de cette

Plus en détail

ANALYSE de CAPACITÉ : processus fabrication

ANALYSE de CAPACITÉ : processus fabrication ANALYSE de CAPACITÉ : processus fabrication aptitude d'un processus à satisfaire des exigences / spécifications Définition Limites "naturelles" de variabilité Distinction entre 3 sortes de limites Étapes

Plus en détail

Leçon N 4 : Statistiques à deux variables

Leçon N 4 : Statistiques à deux variables Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Le suivi de la qualité. Méthode MSP : généralités

Le suivi de la qualité. Méthode MSP : généralités Le suivi de la qualité La politique qualité d une entreprise impose que celle maîtrise sa fabrication. Pour cela, elle doit être capable d évaluer la «qualité» de son processus de production et ceci parfois

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Population étudiante en médecine vétérinaire : projections

Population étudiante en médecine vétérinaire : projections Population étudiante en médecine vétérinaire : projections Assemblée Générale des étudiants de Louvain 17 juin 2015 1 Avant-propos Depuis quelques semaines, la question de la surpopulation dans les filières

Plus en détail

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Jean Gaudart Laboratoire d Enseignement et de Recherche sur le Traitement de l Information Médicale jean.gaudart@univmed.fr

Plus en détail

UNE ESTIMATION DU PARC AUTOMOBILE À L AIDE DES DURÉES DE VIE DES VÉHICULES

UNE ESTIMATION DU PARC AUTOMOBILE À L AIDE DES DURÉES DE VIE DES VÉHICULES UNE ESTIMATION DU PARC AUTOMOBILE À L AIDE DES DURÉES DE VIE DES VÉHICULES François JEGER Le parc de véhicules automobiles en service vieillit de trois mois par an depuis 1993 : la durée de vie médiane

Plus en détail

Unity Real Time 2.0 Service Pack 2 update

Unity Real Time 2.0 Service Pack 2 update Unity Real Time 2.0 Service Pack 2 update Configuration des Objectifs Analytiques La nouvelle version permet, en un écran, de configurer un lot, un panel ou un instrument. Le menu est accessible au moyen

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL)

LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL) 1GM Sciences et Techniques Industrielles Page 1 sur 5 Productique - Cours Génie Mécanique Première LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL) Née aux USA, la méthode S. P. C. est traduite le plus

Plus en détail

La gestion des doublons

La gestion des doublons fims.informatique@skynet.be 01.10 10.02 N 3 La gestion des doublons Dans la plupart des bases de données, les doublons sont souvent inévitables. Il est parfois complexe de les gérer car les informations

Plus en détail

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 I1 Connaissances préalables : Buts spécifiques : Outils nécessaires: Consignes générales : Test t de comparaison de moyennes pour

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation 4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température

Plus en détail

SIMDI - Simulateur de tournage

SIMDI - Simulateur de tournage SIMDI - Simulateur de tournage «Les élèves pilotent un processus de fabrication dans le temps réduit d une formation» Objectifs du simulateur «Appliquer la Maîtrise Statistique des procédés (MSP/SPC)»

Plus en détail

CAC, DAX ou DJ : lequel choisir?

CAC, DAX ou DJ : lequel choisir? CAC, DAX ou DJ : lequel choisir? 1. Pourquoi cette question Tout trader «travaillant 1» sur les indices s est, à un moment ou un autre, posé cette question : «je sais que la tendance est bien haussière

Plus en détail

Méthodes du contrôle (maîtrise) statistique de la qualité

Méthodes du contrôle (maîtrise) statistique de la qualité MTH 231 Méthodes statistiques maîtrise statistique des processus : SPC Méthodes du contrôle (maîtrise) statistique de la qualité SPC 1 Méthodes statistiques de la qualité : Statistical Quality Control

Plus en détail

GÉDIA AUDIT & SURVEILLANCE DES COÛTS D ENTRÉE DES ARTICLES FABRIQUÉS

GÉDIA AUDIT & SURVEILLANCE DES COÛTS D ENTRÉE DES ARTICLES FABRIQUÉS GÉDIA AUDIT & SURVEILLANCE DES COÛTS D ENTRÉE DES ARTICLES FABRIQUÉS 1. Pourquoi il est indispensable de surveiller les coûts d entrées des articles fabriqués 1.1. La règle de base de valorisation du stock

Plus en détail

Maîtrise Statistique des Procédés (MSP) Statistical Process Control (SPC)

Maîtrise Statistique des Procédés (MSP) Statistical Process Control (SPC) Maîtrise Statistique des Procédés (MSP) Statistical Process Control (SPC) Plan Qu est-ce que la qualité? Qu est-ce que la MSP/le SPC? Variabilité Loi Normale Cartes de contrôle Capabilités Application

Plus en détail

Cartes de contrôle. Partage d expériences, Evolutions dans le domaine de l accréditation, échanges d auditeurs internes. Programme

Cartes de contrôle. Partage d expériences, Evolutions dans le domaine de l accréditation, échanges d auditeurs internes. Programme Les petits déjeuner du Réunion n 7 du Club de Laboratoires Accrédités Cartes de contrôle Partage d expériences, Evolutions dans le domaine de l accréditation, échanges d auditeurs internes Vendredi 21

Plus en détail

Utilisation du logiciel Excel pour des analyses simples de bases données

Utilisation du logiciel Excel pour des analyses simples de bases données Utilisation du logiciel Excel pour des analyses simples de bases données Catherine Raux (interne Santé Publique) et Benoît Lepage (AHU), Service d Epidémiologie du CHU de Toulouse Version 1.1 Avril 2012

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

CRÉER UN COURS EN LIGNE

CRÉER UN COURS EN LIGNE Anne DELABY CRÉER UN COURS EN LIGNE Deuxième édition, 2006, 2008 ISBN : 978-2-212-54153-3 2 Que recouvre le concept d interactivité? Dans une perspective de cours en ligne, une activité interactive est

Plus en détail

Baccalauréat STMG Polynésie 17 juin 2014

Baccalauréat STMG Polynésie 17 juin 2014 Baccalauréat STMG Polynésie 17 juin 2014 Durée : 3 heures EXERCICE 1 Cet exercice est un Q.C.M. 4 points Pour chaque question posée, quatre réponses sont proposées parmi lesquelles une seule est correcte.

Plus en détail

Fiche n 7. Les comptes 102 et 13 et l imputation comptable des financements et dotations

Fiche n 7. Les comptes 102 et 13 et l imputation comptable des financements et dotations Fiche n 7 Les comptes 102 et 13 et l imputation comptable des financements et dotations Direction générale de l offre de soins Direction générale des fi nances publiques Les comptes 102 et 13 et l imputation

Plus en détail

CI n 1 La démarche qualité

CI n 1 La démarche qualité TGM Sciences et Techniques Industrielles Pédagogique page 1 sur 4 Productique Secteur Production Génie Mécanique Terminale Ph10 a dresser b percer CI n 1 La démarche qualité COMPÉTENCES TERMINALES ATTENDUES

Plus en détail

Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place

Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place SPC 1 Plan II-1. Généralités II-1-1. Définitions et principes II-1-2. Mise en place II-2-1. Définitions II-1-2. Capabilité machine et capabilité procédé II-2-3. Ppm 2 II-1. GénéralitG ralités Définitions

Plus en détail

Analyse financière. + de 20 fiches de cours + de 160 QCM commentés + de 40 exercices corrigés. L essentiel. 2 e ÉDITION LES INDISPENSABLES VUIBERT

Analyse financière. + de 20 fiches de cours + de 160 QCM commentés + de 40 exercices corrigés. L essentiel. 2 e ÉDITION LES INDISPENSABLES VUIBERT LES INDISPENSABLES VUIBERT Analyse financière 2 e ÉDITION Emmanuelle Plot-Vicard Madeleine Deck-Michon L essentiel + de 20 fiches de cours + de 160 QCM commentés + de 40 exercices corrigés Sommaire Mode

Plus en détail

Article sur Minitab Statistical Software : Cinq façons de rendre vos cartes de contrôle plus efficaces

Article sur Minitab Statistical Software : Cinq façons de rendre vos cartes de contrôle plus efficaces Article sur Minitab Statistical Software : Cinq façons de rendre vos cartes de contrôle plus efficaces Dans cet article, Bruno Scibilia, Formateur Minitab, propose quelques façons simples de rendre la

Plus en détail

Les effets d une contrainte de crédit sur la convergence économique : Le cas des pays de l UEMOA

Les effets d une contrainte de crédit sur la convergence économique : Le cas des pays de l UEMOA Les effets d une contrainte de crédit sur la convergence économique : Le cas des pays de l UEMOA Auteurs : Abdoulaye DIAGNE et Abdou-Aziz NIANG Introduction Ceci devrait contribuer à réduire l écart entre

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Leçon N 1 : Taux d évolution et indices

Leçon N 1 : Taux d évolution et indices Leçon N : Taux d évolution et indices En premier un peu de calcul : Si nous cherchons t [0 ;+ [ tel que x 2 = 0,25, nous trouvons une solution unique x = 0, 25 = 0,5. Nous allons utiliser cette année une

Plus en détail

Examen de Statistique Appliquée I

Examen de Statistique Appliquée I Université de Strasbourg Master Éthologie-Écophysiologie 1ère année Examen de Statistique Appliquée I ************************************************************** Le cours, les exercices de travaux dirigés,

Plus en détail

5. Validité de la méta-analyse

5. Validité de la méta-analyse 5. Validité de la méta-analyse 5.1. Poids de la preuve d une méta-analyse Le poids de la preuve d un résultat scientifique quantifie le degré avec lequel ce résultat s approche de la réalité. Il ne s agit

Plus en détail

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction Baccalauréat SMTG Pondichéry 8 avril 0 Sciences et technologies du management et de la gestion correction EXERCICE points Les deux parties de cet exercice peuvent être traitées de manière indépendante.

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Conventions communes aux profils UML

Conventions communes aux profils UML Conventions communes aux profils UML Auteur : Projet ACCORD (Assemblage de composants par contrats en environnement ouvert et réparti)* Référence : Livrable 2.1 Date : Juin 2002 * : Les partenaires du

Plus en détail

TECHNICIEN SUPERIEUR TERRITORIAL. CONCOURS INTERNE ET DE 3 ème VOIE SESSION 2008

TECHNICIEN SUPERIEUR TERRITORIAL. CONCOURS INTERNE ET DE 3 ème VOIE SESSION 2008 TECHNICIEN SUPERIEUR TERRITORIAL CONCOURS INTERNE ET DE 3 ème VOIE SESSION 2008 Vérification des connaissances mathématiques des candidats, au moyen de tableaux ou graphiques à constituer ou compléter,

Plus en détail

Logiciel Comptacoop VERSION EXCEL :

Logiciel Comptacoop VERSION EXCEL : Logiciel Comptacoop VERSION EXCEL : 1 Télécharger le logiciel version excel 2 À chaque ouverture de la feuille, il faut ACTIVER LES MACROS. Cliquer ici! A défaut, vous ne pourrez pas enregistrer vos écritures

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat Objectifs du TP : Savoir utiliser Excel et Rstat pour calculer des moyennes pondérées, des variances pondérées et savoir faire des approximations

Plus en détail

Statistiques industrielles Management de la production et de la qualité

Statistiques industrielles Management de la production et de la qualité Statistiques industrielles Management de la production et de la qualité Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 12 novembre 2015 Francois.Kauffmann@unicaen.fr UCBN MSP 12 novembre

Plus en détail

La revalorisation des droits à la retraite avant leur liquidation différences entre les régimes de base et les régimes complémentaires

La revalorisation des droits à la retraite avant leur liquidation différences entre les régimes de base et les régimes complémentaires CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 11 février 2015 à 9 h 30 «La revalorisation des pensions et des droits à la retraite : problématique et résultats de projection» Document N 5 Document

Plus en détail

β-galactosidase A.2.1) à 37 C, en tampon phosphate de sodium 0,1 mol/l ph 7 plus 2-mercaptoéthanol 1 mmol/l et MgCl 2 1 mmol/l (tampon P)

β-galactosidase A.2.1) à 37 C, en tampon phosphate de sodium 0,1 mol/l ph 7 plus 2-mercaptoéthanol 1 mmol/l et MgCl 2 1 mmol/l (tampon P) bioch/enzymo/tp-betagal-initiation-michaelis.odt JF Perrin maj sept 2008-sept 2012 page 1/6 Etude de la β-galactosidase de E. Coli : mise en évidence d'un comportement Michaélien lors de l'hydrolyse du

Plus en détail

PROGRAMME DE TECHNIQUE DE COMPTABILITÉ ET DE GESTION 410.BA

PROGRAMME DE TECHNIQUE DE COMPTABILITÉ ET DE GESTION 410.BA SESSION Automne 2009 PROGRAMME DE TECHNIQUE DE COMPTABILITÉ ET DE GESTION 410.BA PLAN DE COURS Titre du cours: Coût de revient No du cours: 410-502-BA Préalable: 410-301-BA Comptabilité intermédiaire Pondération:

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

!-.!#- $'( 1&) &) (,' &*- %,!

!-.!#- $'( 1&) &) (,' &*- %,! 0 $'( 1&) +&&/ ( &+&& &+&))&( -.#- 2& -.#- &) (,' %&,))& &)+&&) &- $ 3.#( %, (&&/ 0 ' Il existe plusieurs types de simulation de flux Statique ou dynamique Stochastique ou déterministe A événements discrets

Plus en détail

Comment imprimer des images en les adaptant à des formats de papier particuliers.

Comment imprimer des images en les adaptant à des formats de papier particuliers. Impression Format d'impression Demande Comment imprimer des images en les adaptant à des formats de papier particuliers. Réponse Vous pouvez aisément imprimer des images à l aide de la fonction d impression

Plus en détail

Erreurs les plus classiques en Bourse. TradMaker.com - 2013 Tous droits réservés Tel: 01 79 97 46 16 - CS@TRADMAKER.COM

Erreurs les plus classiques en Bourse. TradMaker.com - 2013 Tous droits réservés Tel: 01 79 97 46 16 - CS@TRADMAKER.COM 20 Erreurs les plus classiques en Bourse TradMaker.com - 2013 Tous droits réservés Tel: 01 79 97 46 16 - CS@TRADMAKER.COM De ne jours, la Bourse est à la portée de tous, le volume d échange et le nombre

Plus en détail

Shadow Manager Simulateur de gestion globale d entreprise. Introduction

Shadow Manager Simulateur de gestion globale d entreprise. Introduction Shadow Manager Simulateur de gestion globale d entreprise Introduction Le logiciel de simulation d entreprise Shadow Manager représente le nec plus ultra des outils pédagogiques de simulation de gestion

Plus en détail

140. Modélisation des données Historisation

140. Modélisation des données Historisation Modélisation de logiciels de gestion 140. Modélisation des données Historisation 1 Préambule Dans les chapitres précédents, nous avons appris à concevoir des modèles de données relativement élaborés en

Plus en détail

NOTICE D UTILISATION DE GESTOENO

NOTICE D UTILISATION DE GESTOENO NOTICE D UTILISATION DE GESTOENO GESTION DES STOCKS SOMMAIRE 1. PRÉSENTATION RAPIDE... 3 2. MISE À JOUR DU STOCK PHYSIQUE INITIAL... 4 ETAPE 1 : CREATION DE VOS ARTICLES...4 ETAPE 1.B : LES ARTICLES COMPOSES...6

Plus en détail

Livre blanc. Cartographie de débit de dose. Utilisez-vous la bonne méthode d interpolation?

Livre blanc. Cartographie de débit de dose. Utilisez-vous la bonne méthode d interpolation? Livre blanc Cartographie de débit de dose Utilisez-vous la bonne méthode d interpolation? Cartographie de débit de dose Utilisez-vous la bonne méthode d interpolation? Mettez en œuvre la méthode d interpolation

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Savoir Faire Excel Niveau 2. 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr

Savoir Faire Excel Niveau 2. 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr Savoir Faire Excel Niveau 2 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr Ce qu on sait faire Entrer et recopier des données numériques Les fonctions de base (somme, moyenne, nb, si) Faire

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

Leçon n 1 : définition et champ d application de la comptabilité analytique

Leçon n 1 : définition et champ d application de la comptabilité analytique AUNEGE Campus Numérique en Economie Gestion Licence 2 Comptabilité analytique Leçon 1 Leçon n 1 : définition et champ d application de la comptabilité analytique 1 RÔLES DE LA COMPTABILITÉ DE GESTION INFORMER

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Prévision de la demande

Prévision de la demande But : Pour prendre des décisions relatives à la structure et au fonctionnement opérationnel de tout système logistique; il faut s appuyer sur un système de prévision fiable. Concerne le long, moyen et

Plus en détail

COURS 470 Série 04. Comptabilité Générale

COURS 470 Série 04. Comptabilité Générale COURS 470 Série 04 Comptabilité Générale Administration générale de l'enseignement et de la Recherche scientifique Direction de l'enseignement à distance REPRODUCTION INTERDITE Communauté française de

Plus en détail

Méthode de calcul. Fonctionnement de l Ecocomparateur

Méthode de calcul. Fonctionnement de l Ecocomparateur Fonctionnement de l Eco-comparateur ColiPoste Méthode de calcul Fonctionnement de l Ecocomparateur Coliposte Juillet 2012 INTRODUCTION LE E-COMMERCE PRÉSENTE UN AVANTAGE ENVIRONNEMENTAL PAR RAPPORT AU

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

Test de Poisson à 1 échantillon et à 2 échantillons

Test de Poisson à 1 échantillon et à 2 échantillons Test de Poisson à 1 échantillon et à 2 échantillons Sous-menus de Minitab 15 : Stat>Statistiques élémentaires>test de Poisson à 1 échantillon Stat>Statistiques élémentaires>test de Poisson à 2 échantillons

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Réactions d oxydoréduction

Réactions d oxydoréduction Réactions d oxydoréduction Ce document a pour objectif de présenter de manière synthétique quelques bases concernant les réactions d oxydoréduction et leurs principales applications que sont les piles

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Durée heures. Calculatrice autorisée. Exercice 1 : Une entreprise italienne de fabrication de scooters veut optimiser les bénéfices de

Plus en détail

CONTRÔLE DE LA QUALITE ANALYTIQUE AU LABO. Août 2009 Hilde De Boeck

CONTRÔLE DE LA QUALITE ANALYTIQUE AU LABO. Août 2009 Hilde De Boeck CONTRÔLE DE LA QUALITE ANALYTIQUE AU LABO Août 2009 Hilde De Boeck SOMMAIRE 1. Introduction 2. Mise en œuvre d un CQI 3. Préparation d un échantillon CQI 4. Calcule des valeurs cibles 5. Réalisation du

Plus en détail

SÉQUENCE PROGRAMMÉE. Objectifs ÉTAPE 3

SÉQUENCE PROGRAMMÉE. Objectifs ÉTAPE 3 ÉTAPE 3 LES RUBRIQUES COMPTABLES ET ÉCONOMIQUES DU BILAN SÉQUENCE PROGRAMMÉE Objectifs 1. Classer les différents postes du bilan en rubriques comptables. 2. Connaître la signification des différentes rubriques.

Plus en détail

L analyse de variance à deux critère de classification

L analyse de variance à deux critère de classification L analyse de variance à deux critère de classification Objectif : comparer l influence de chaque facteur sur la moyenne de plusieurs (k) groupes indépendants d observations La méthode détaillée ci-dessous

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision Dans ce tableau, si le chercheur ne s intéresse pas aux notes item par item mais simplement à la note globale, alors il conservera seulement les première et dernière colonnes et calculera des statistiques

Plus en détail

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE Forum HH 05.02.2013 Ghislaine Gagnon Unité HPCI Qualitatif ou quantitatif? Les 2 méthodes peuvent être utilisées séparément ou en conjonction - le qualitatif

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/200 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 6 : PRIMITIVES ET INTEGRATION - COURS + ENONCE EXERCICE - 39 . Tableau

Plus en détail

L enseignement de l algorithmique au Lycée

L enseignement de l algorithmique au Lycée L enseignement de l algorithmique au Lycée Sisteron 12 novembre 2009 Fernand Didier didier@irem.univ-mrs.fr Approche naïve C est une méthode, une façon systématique de procéder, pour faire quelque chose

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Étude de validation du Bluestar Forensic

Étude de validation du Bluestar Forensic Étude de validation du Bluestar Forensic I. Matériels et matières utilisés II. des tests 2.1. Détermination du seuil de sensibilité du kit Bluestar 2.2. Détermination de taches en fonction de leur volume

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

CODATU XI. Congrès Mondial de Bucarest 22-24 Avril 2004

CODATU XI. Congrès Mondial de Bucarest 22-24 Avril 2004 CODATU XI Congrès Mondial de Bucarest 22-24 Avril 2004 MODELE DE SIMULATION DE FLUX DE VOYAGEURS POUR L ETUDE ET L EXPLOITATION DES STATIONS DE TRAMWAY ET DE BUS ET DE LEURS EQUIPEMENTS COMPORTEMENT DES

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

GÉRER LES ATTRIBUTS GRAPHIQUES DANS LES MURS

GÉRER LES ATTRIBUTS GRAPHIQUES DANS LES MURS GÉRER LES ATTRIBUTS GRAPHIQUES DANS LES MURS ASTUCE DU MOIS Introduction Vous avez sûrement été confronté(e) à la question suivante : comment dois-je m y prendre pour associer des attributs graphiques

Plus en détail

LE FINANCEMENT D UN INVESTISSEMENT IMMOBILIER

LE FINANCEMENT D UN INVESTISSEMENT IMMOBILIER LE FINANCEMENT D UN INVESTISSEMENT IMMOBILIER Dans le cadre de l optimisation du financement d une acquisition immobilière, il est souvent difficile de faire le point de toutes les propositions et d optimiser

Plus en détail