On définit la loxodromie comme étant la courbe à la surface terrestre qui coupe les méridiens à angle constant.

Dimension: px
Commencer à balayer dès la page:

Download "On définit la loxodromie comme étant la courbe à la surface terrestre qui coupe les méridiens à angle constant."

Transcription

1 LA LOXODROMIE

2 On définit la loxodromie comme étant la courbe à la surface terrestre qui coupe les méridiens à angle constant. Cette courbe présente la particularité d être une droite sur une carte marine. Le gros avantage est la simplicité à tracer une route vraie sur ce type de carte contrairement à l orthodromie où l angle formé entre la route et le méridien varie tout le temps à l exception d une route sur le méridien ou sur l équateur. Sur les petites distances la route loxodromique fait à peu près la même longueur que l orthodromie en revanche sur les grandes, l écart peut devenir significatif comme on le verra plus tard. Dans cet article nous allons chercher à calculer le cap de la route loxodromique et la distance en miles à partir des coordonnées latitude (φ) et longitude (ϴ) du point de départ et du point d arrivée.

3 Il existe plusieurs méthodes pour y arriver. Nous utiliserons une approche graphique pour commencer: On fera une première simplification en considérant la terre comme une sphère parfaite de rayon R=1. M Rv N P Soient M et N, points rapprochés sur la route Rv qui relie le point A au point B. M se trouve à la latitude φ et N se trouve à la latitude φ + dφ. dθ est l écart de longitude entre M et N. O φ M φ + dφ Δθ P On a: OM = OM cosφ (1) Δϴ / M P = R / OM d où M P = Δϴ OM / R Avec (1) M P = MP = Δϴ OM cosφ / R Or OM = R = 1 Donc MP = Δϴ cosφ ()

4 On constate donc que l écart de longitude entre les points M et P varie en fonction du cosinus de la latitude ce qu on pouvait intuiter en regardant la figure. Donc MP = Δϴ cosφ et NP = dφ Or MP / NP = tg Rv donc Δϴ cosφ / dφ = tg Rv d où Δϴ = dφ / cosφ tg Rv Il nous reste à sommer de A à B θ B θ A = B dφ cosφ A tg Rv (3) Un grand moment de solitude! Heureusement nous avons le livre «Formules et Tables de Mathématiques» de la série Schaum qui nous enseigne la chose suivante page 58 / 14.15: du cos u = ln ( 1 cos u + tg u) = ln tg (u + π 4 ) (4) Rappelons par ailleurs que af u du = a f u du avec a comme constante. Donc d après (4) notre relation (3) devient θ B θ A = tg Rv ( ln tg ( φ B + π 4 ) - ln tg (φ A + π 4 ) ) D où tg Rv = θ B θ A ln tg ( φ B + π 4 ) ln tg (φ A + π 4 )

5 Quant à la distance on a: Rv Rv B Δφ A AB = D = Δφ / cos Rv En synthèse la loxodromie s exprime par: D = R x Δφ / cos Rv (5) pour la distance entre points de coordonnées φ A θ A et φ B θ B et pour une sphère de rayon R. Connaissant les coordonnées des points (départ et arrivée) la route s exprime par: Rv = Arctg [ θ B θ A ln tg ( φ B + π ) ln tg 4 (φ A + π ) ] (6) 4

6 Quelques singularités des équations (5) et (6): 1) Lorsque ϴ B = ϴ A c est-à-dire lorsqu on chemine le long d un méridien Rv = 0 par conséquent on ne connait pas le sens, il faut donc y introduire un test sur la latitude. Si φ A > φ B alors Rv = 180 et 0 dans le cas contraire. ) Le dénominateur peut prendre la valeur 0 dans le cas où φ A = φ B ce qui est fort gênant pour notre équation, il faut donc y introduire un test sur la longitude. Si ϴ A > ϴ B alors Rv = 90 et 70 dans le cas contraire. 3) L équation de distance fait apparaitre un cosinus au dénominateur par conséquent l équation est indéfinie pour Rv = Pi/ (90 degrés) ou Rv = Pi x 3/ (70 degrés) c est-à-dire quand on chemine le long d un parallèle. Il suffit alors de calculer l arc compris entre ϴ A et ϴ B sur le parallèle.

7 Comparaison de l orthodromie et de la loxodromie Sur les faibles distances Prenons points A (lat 47 9 N / long 3 4 W) et B ( lat 47 5 N / long 36 W) La distance orthodromique est de 19,4 miles. La distance loxodromique calculée est de 19,4 miles et la route vraie est 10. Dans les mêmes conditions MaxSea donne une distance de 19,4 miles et une route de 10 La distance orthodromique est donc égale à la distance loxodromique, ce qui n a rien d étonnant compte tenu que sur une distance aussi faible, la surface terrestre est assimilable à un plan, l effet sphérique de la terre ne se fait pas sentir. Sur les grands distances Prenons nouveaux points A (lat N / long 48 W) et B (lat N / long W) Dans ce cas la distance orthodromique est de 3478,3 miles La distance loxodromique est de 353 miles et le cap est 36. Soit un écart par rapport à l ortho de 44,7 miles ou 1,3 %. On voit donc que l écart sur un trajet France Antilles, est assez faible sachant que dans la réalité c est ni l ortho qui sera suivie ni la loxo mais plutôt la route où le vent veut bien nous emmener.

REPRESENTER LA TERRE Cartographie et navigation

REPRESENTER LA TERRE Cartographie et navigation REPRESENTER LA TERRE Seconde Page 1 TRAVAUX DIRIGES REPRESENTER LA TERRE Cartographie et navigation Casterman TINTIN "Le trésor de Rackham Le Rouge" 1 TRIGONOMETRIE : Calcul du chemin le plus court. 1)

Plus en détail

3 ème Cours : géométrie dans l espace

3 ème Cours : géométrie dans l espace I. La sphère : a) Définition : La sphère de centre et de rayon R est l ensemble de tous les points qui sont situés à la distance R du point. L intérieur de la sphère (l ensemble des points dont la distance

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de

Plus en détail

La hauteur du Soleil et la durée d une journée

La hauteur du Soleil et la durée d une journée La hauteur du Soleil et la durée d une journée On dit que le Soleil se lève à l Est pour se coucher à l Ouest ou encore que le Soleil est au zénith à midi. Cela n est pas vrai ou plus exactement pas toujours

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

Géométrie en trois dimensions

Géométrie en trois dimensions 1 Géométrie en trois dimensions Il s agit de visualiser des objets en trois dimensions sur un plan, pour nous l écran de l ordinateur. Pour ce faire, nous allons simplifier les choses au maximum. Nous

Plus en détail

CONSTRUCTION DES PROJECTIONS TYPES DE PROJECTION. Projection => distorsions. Orientations des projections

CONSTRUCTION DES PROJECTIONS TYPES DE PROJECTION. Projection => distorsions. Orientations des projections A.Charbonnel SYNTHÈSE SUR LES PROJECTIONS CARTOGRAPHIQUES SIMPLES 1/6 TYPES DE PROJECTION Pour passer de la représentation en 3D de la terre (globe terrestre) à une représentation en 2D (la carte), on

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

PHY 2711 Automne 2015

PHY 2711 Automne 2015 PHY 2711 Automne 2015 Optique géométrique: formation d image avec éléments sphériques cgigault@uottawa.ca Notes partielles accompagnant le cours. Réfraction par une interface sphérique Surfaces asphériques

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

et si on l'écrase? ou des tentatives pour aplatir une sphère.

et si on l'écrase? ou des tentatives pour aplatir une sphère. page 231 et si on l'écrase? ou des tentatives pour aplatir une sphère. par Wafa Sekita, Frédéric Tribeau, Emilie Lang, Ngau Uy Kheang, Michel Meireles, Audrey Bensaid, Atelier de pratique scientifique

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

LE JOUR ET LA NUIT SUR LA TERRE LES ECLIPSES Réaliser des simulations simples pour mieux comprendre et schématiser

LE JOUR ET LA NUIT SUR LA TERRE LES ECLIPSES Réaliser des simulations simples pour mieux comprendre et schématiser E JU ET NUIT U TEE E ECIPE éaliser des simulations simples pour mieux comprendre et schématiser vec quel matériel? Une boule de polystyrène placée au soleil est éclairée pour moitié, exactement comme n

Plus en détail

Calcul de la distance de la Lune par parallaxe

Calcul de la distance de la Lune par parallaxe Calcul de la distance de la Lune par parallaxe La Lune au 5 ème jour Sommaire Feuille de route p.3 I) Introduction 1) La Lune dans l Histoire p.4 2) Parallaxe de la Lune p.4 II) Expérience 1) Mise en situation

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Rapport de stage Mise à plat d'un polygone

Rapport de stage Mise à plat d'un polygone Rapport de stage Mise à plat d'un polygone Stagiaire : Sejjil Olfa Tuteurs de stage: Luc BIARD et Bernard LACOLLE Laboratoire: Jean Kuntzmann (LJK) Equipe: Modélisation Géométrique & Multirésolution pour

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Navigation version 1.1

Navigation version 1.1 Lycée Jean Dupuy - Tarbes 2nde SIA Navigation version 1.1 Le pilote doit être capable de se rendre d un aérodrome à un autre en sachant se diriger et se localiser afin d éviter des zones ou de contacter

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

DEVOIR SURVEILLE N 1

DEVOIR SURVEILLE N 1 Année 2011/2012 - PCSI-2 DS 01 : Optique 1 DEVOIR SURVEILLE N 1 Samedi 24 Septembre 2011 Durée 3h00 Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Plus en détail

«S IG concepts et méthodes» «Projections cartographiques» - 1

«S IG concepts et méthodes» «Projections cartographiques» - 1 Projections cartographiques «Projections cartographiques» - 1 Points de référence En cartographie, il est impératif de tenir compte de la forme sphérique de la terre. Avec la géodésie, il est possible

Plus en détail

CHAPITRE I TRIGONOMETRIE

CHAPITRE I TRIGONOMETRIE CHAPITRE I TRIGONOMETRIE ) Le cercle trigonométrique Un cercle trigonométrique est un cercle C de rayon qui est orienté, ce qui veut dire qu on a choisi un sens positif (celui des ronds-points) et un sens

Plus en détail

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE 3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE Administration Générale de l Enseignement et de la Recherche Scientifique Service général des Affaires

Plus en détail

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique ELECTROTATIQUE - 2 1. Rappels 2. Outils mathématiques 2.1. ystèmes classiques de coordonnées 2.2. Volume élémentaire dans chaque système de coordonnées 2.3. Intégrales des fonctions de points 2.4. Circulation

Plus en détail

Equations de droites. Coefficient directeur

Equations de droites. Coefficient directeur Equations de droites. Coefficient directeur I) Caractérisation analytique d une droite m, p et c désignent des nombres réels. 1) Propriété : Dans un repère l ensemble des points M de coordonnées ( ; )

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

«Sextant» expérimental papier (mais c est plutôt un «quadrant»!) principes de mise en œuvre de la navigation astro.

«Sextant» expérimental papier (mais c est plutôt un «quadrant»!) principes de mise en œuvre de la navigation astro. «Sextant» expérimental papier (mais c est plutôt un «quadrant»!) principes de mise en œuvre de la navigation astro. Traçage 1 Matériel nécessaire : un réglet gradué en mm un crayon à mine très fine (0.5

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures U 315 J. 5008 SESSION 2003 Filière MP PHYSIQUE ENS de Paris Durée : 6 heures L usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d accompagnement,

Plus en détail

Chapitre 8 - Trigonométrie

Chapitre 8 - Trigonométrie Chapitre 8 - Trigonométrie A) Rappels et compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le cercle de centre O et de rayon dans un repère orthonormal (O, I, J),

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques Brevet blanc de mathématiques avril 2011 L'usage de la calculatrice est autorisé. I Activités numériques 12 points II Activités géométriques 12 points III Problème 12 points Qualité de rédaction et présentation

Plus en détail

Feuille d'exercices : optique géométrique

Feuille d'exercices : optique géométrique Feuille d'exercices : optique géométrique P Colin 2015/2016 Formulaire : Rappel des relations de conjugaison pour une lentille mince L de centre O, de foyer objet F, de foyer image F et de distance focale

Plus en détail

La sphère Terrestre. Circonférence de la sphère terrestre = 40 000 Km

La sphère Terrestre. Circonférence de la sphère terrestre = 40 000 Km Navigation La sphère Terrestre Circonférence de la sphère terrestre = 40 000 Km Notion de grand cercle et de petit cercle Petit cercle Grand cercle Méridiens et Longitude Le méridien d origine est le méridien

Plus en détail

SYSTÈMES CENTRÉS DANS LES CONDITIONS

SYSTÈMES CENTRÉS DANS LES CONDITIONS YTÈME ENTRÉ DAN LE ONDITION DE GAU Table des matières 1 ystèmes centrés focaux 2 1.1 oyer image Plan focal image................................ 2 1.2 oyer objet Plan focal objet.................................

Plus en détail

Le jeu de l interactivité conduit souvent à introduire ou à approfondir un tantinet certaines notions.

Le jeu de l interactivité conduit souvent à introduire ou à approfondir un tantinet certaines notions. Comme le précédent intitulé Bonne Année, ce document entend n être qu un exemple de l emploi des œuvres artistiques pour initier les auditeurs à certains contenus de l univers des mathématiques. Le jeu

Plus en détail

BREVET BLANC *** MATHEMATIQUES *** Année 2015

BREVET BLANC *** MATHEMATIQUES *** Année 2015 BREVET BLANC *** MATHEMATIQUES *** Année 2015 L orthographe, le soin, la qualité, la clarté et la précision des raisonnements seront pris en compte à hauteur de 4 points sur 40 dans l appréciation de la

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

La Mesure du Temps. et Temps Solaire Moyen H m.

La Mesure du Temps. et Temps Solaire Moyen H m. La Mesure du Temps Unité de temps du Système International. C est la seconde, de symbole s. Sa définition actuelle a été établie en 1967 par la 13 ème Conférence des Poids et Mesures : la seconde est la

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

EXERCICES SUR LE COURS 1

EXERCICES SUR LE COURS 1 Mises au point en navigation - Rappels mathématiques Page 14 SUR LE COURS 1 Année 2010 Exercice 1.1 Effectuez les calculs suivants: 1,3+13,1+(-12,7) 1,4+(-6,2)-(-4,1) 1,5*(-2) (-3,14)*(-1,25) [3,2-(-1,5)]*(-2)

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Etude de fonctions dérivées logarithmes et exponentielles continuité Plan du cours 1. Intégrales 2. Primitives 1. Intégrales A. Aire sous la courbe Méthode des rectangles : Pour

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

Phare de Contis (Landes, France) et les lentilles de Fresnel

Phare de Contis (Landes, France) et les lentilles de Fresnel ACCUEIL Phare de Contis (Landes, France) et les lentilles de Fresnel Frédéric Elie, août 1996, mars 2006 La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans

Plus en détail

MATHEMATIQUES. Premier Cycle TROISIEME

MATHEMATIQUES. Premier Cycle TROISIEME MATHEMATIQUES Premier Cycle TROISIEME 79 INTRODUCTION Le programme de la classe de troisième, dernier niveau de l enseignement moyen, vise à doter l élève de savoirs faire pratiques par une intégration

Plus en détail

Exercices résolus de mathématiques. TRI 0 EXTRI000 EXTRI009. http://www.matheux.be.tf. Jacques Collot. 30 juillet 03. www.matheux.be.

Exercices résolus de mathématiques. TRI 0 EXTRI000 EXTRI009. http://www.matheux.be.tf. Jacques Collot. 30 juillet 03. www.matheux.be. xercices résolus de mathématiques. TRI 0 XTRI000 XTRI009 http://www.matheux.be.tf Jacques ollot 30 juillet 03 www.matheux.be.tf - TRI 0 - - XTRI00 Liège, septembre 000. éterminer la distance entre les

Plus en détail

TRIGONOMETRIE - EXERCICES CORRIGES

TRIGONOMETRIE - EXERCICES CORRIGES Cours et eercices de mathématiques TRIGONOMETRIE - EXERCICES CORRIGES Trigonométrie rectangle Eercice n. Compléter les égalités en respectant bien les notations de l énoncé cos ABC = sin ABC = tan ABC

Plus en détail

Triangles. I - Définition du triangle. II - Somme des angles d un triangle

Triangles. I - Définition du triangle. II - Somme des angles d un triangle Triangles Un chapitre complet sur les triangles. Ne pensez pas que puisqu il n y a qu un mot dans le titre, il sera court, au contraire. Beaucoup de nouvelles notions vont être énoncées dans ce cours sur

Plus en détail

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes

Plus en détail

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 )

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 ) Faisceau gaussien 1 Introduction La forme du faisceau lumineux émis par un laser est particulière, et correspond à un faisceau gaussien, ainsi nommé car l intensité décroît suivant une loi gaussienne lorsqu

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Logiciel de calcul des paramètres astronomiques à l usage des installations solaires

Logiciel de calcul des paramètres astronomiques à l usage des installations solaires Revue des Energies Renouvelables ICRESD-07 Tlemcen (2007) 343 348 Logiciel de calcul des paramètres astronomiques à l usage des installations solaires R. Yaiche * Centre de Développement des Energies renouvelables

Plus en détail

M13/5/MATME/SP2/FRE/TZ0/XX. Mathématiques niveau MOYEN épreuve 2. Numéro de session du candidat 0 0. Vendredi 10 mai 2013 (matin)

M13/5/MATME/SP2/FRE/TZ0/XX. Mathématiques niveau MOYEN épreuve 2. Numéro de session du candidat 0 0. Vendredi 10 mai 2013 (matin) 137308 Mathématiques niveau MOYEN épreuve Vendredi 10 mai 013 (matin) 1 heure 30 minutes Numéro de session du candidat 0 0 Code de l examen 1 3 7 3 0 8 Instructions destinées aux candidats Écrivez votre

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE

PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE PROGRAMME DE MATHEMATIQUE 6 ème SCIENTIFIQUE & TECHNIQUE INDUSTRIELLE Chaque fois que c est nécessaire, il sera fait usage des moyens modernes de calcul. I. ALGEBRE-ANALYSE OBJECTIFS SPECIFIQUES CONTENUS/MATIERES

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres?

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres? Problèmes et équations. Pour chacun des problèmes ci-dessous, on essaiera de donner une solution algébrique ( à l aide d une équation, d un système d équations, d une inéquation ) mais aussi, à chaque

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur

Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur Fabien DONIUS, Nicolas GRILL, Chérine KAMEL, Selim MILED - Ing1 Gr4 ANALYSE MATHEMATIQUE GOLAY (24,12,8) Les codes correcteurs d erreur 2 I. Génération des matrices : Le code de Golay, comme le code de

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

I. La projection stéréographique

I. La projection stéréographique I. La projection stéréographique Considérons une sphère (S) et un point N de cette sphère (que nous pouvons assimiler à son "pôle nord"). La projection stéréographique est la projection centrale de la

Plus en détail

BREVET BLANC SESSION MAI 2013 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE: 2 H 00

BREVET BLANC SESSION MAI 2013 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE: 2 H 00 BREVET BLANC SESSION MAI 2013 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE: 2 H 00 Le candidat répondra uniquement sur une copie. Le sujet ne sera pas ramassé. Ce sujet comporte 8 exercices.

Plus en détail

COURS : GÉOMÉTRIE DANS L ESPACE

COURS : GÉOMÉTRIE DANS L ESPACE CHAPITE 6 COUS : GÉOMÉTIE DANS L ESPACE Extrait du programme de la classe de 3 ème : Sphère CONTENU COMPÉTENCES EXIGIBLES COMMENTAIES - Savoir que la section d une sphère par un plan est un cercle. - Savoir

Plus en détail

Géoréférencement et RGF93

Géoréférencement et RGF93 Géoréférencement et RGF93 Théorie et concepts - Fiche T3 Les projections coniques conformes 9 zones T3 Décembre 2008 2008/54 Historique Ces projections ont été définies par l'ign, suite à une recommandation

Plus en détail

Corrections preparation BB 2012

Corrections preparation BB 2012 Corrections preparation BB 2012 Brevet 2007 - Solution Activités numériques 1 Les explications ne sont pas demandées mais nous vous les fournissons tout de même. 1) la bonne réponse est 9x 2 + 30x + 25

Plus en détail

1- Ce que pensent beaucoup d adultes

1- Ce que pensent beaucoup d adultes LE MOUVEMENT APPARENT DU SOLEIL SOUS NOS LATITUDES ET SES CONSEQUENCES 1- Ce que pensent beaucoup d adultes Avec un tel modèle on ne peut avoir la durée du jour deux fois plus longue le 21 juin que le

Plus en détail

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105 U N I V E R S I T E de C A E N Institut de Biologie Fondamentale et Appliquée M A T H E M A T I Q U E S pour SV 05 0 - Présentation - Bibliographie. - Trigonométrie - Fonctions réciproques - Nombres complees

Plus en détail

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope.

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Le microscope simplifié TP : Le microscope Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Description : Un microscope est constitué entre autres de

Plus en détail

en utilisant un point-virgule.

en utilisant un point-virgule. 6 Chapitre Chapitre 6. Géométrie analytique Ce chapitre présente les possibilités de votre calculatrice dans le domaine de la géométrie analytique, tout particulièrement pour les problèmes liés aux espaces

Plus en détail

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible.

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible. L orthographe, le soin, la qualité et la précision de la rédaction seront pris en compte à hauteur de 4 points sur 40 dans l évaluation de la copie. L utilisation de la calculatrice est autorisée. Les

Plus en détail

Cours de physique appliqué Terminale STI électronique epix@fr.st. L optique (Chap 3)

Cours de physique appliqué Terminale STI électronique epix@fr.st. L optique (Chap 3) L optique (Chap 3)! Révisé et compris! Chapitre à retravaillé! Chapitre incompris 1. La lumière : La lumière est une onde électromagnétique, caractérisé par sa fréquence f. Les ondes électromagnétiques

Plus en détail

2 Le champ électrostatique E

2 Le champ électrostatique E Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier : Outil Physique et Géophysique 2 Le champ électrostatique E k Daniel.Brito@ujf-grenoble.fr E MAISON DES GÉOSCIENCES

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Cours de mathématiques (Terminale S) II. Chapitre 00 : La trigonométrie. Les angles orientés A. Les radians DÉFINITION Le radian est une unité de mesure angulaire, notée rad définie par : REMARQUE A partir

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien La fonction exponentielle est continue strictement croissante sur R à valeurs dans ]0; + [. Elle définit donc une bijection de R sur ]0; + [, c est-à-dire que quel que soit

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Navigation Générale ATPL 3 ème Série Version 2

Navigation Générale ATPL 3 ème Série Version 2 Navigation Générae TPL 3 ème Série ersion CORRIGÉ I - LES TRJECTOIRES a) Loxodromie QUESTION 1 REPONSE Cacu de a route vraie g 46 N tg g c g 10 c c 10 cos 45 44 N 10 tg cos 45 0,707 10 0 00 E 35 Rv 360-360

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

Mécanique des solides déformables

Mécanique des solides déformables Mécanique des solides déformables Auteur Michel MAYA 1 Descriptions 2 Représentations graphiques Ce cours est mis à disposition selon les termes de la licence Creative Commons Paternité + Pas d utilisation

Plus en détail

Responsables. Etude analytique : Renard Julien (3A) Partie graphique : Campion Bernard (3A) Maquette : Scottini Jonathan (3A)

Responsables. Etude analytique : Renard Julien (3A) Partie graphique : Campion Bernard (3A) Maquette : Scottini Jonathan (3A) Responsables Etude analytique : Renard Julien (3A) Partie graphique : Campion Bernard (3A) Maquette : Scottini Jonathan (3A) 1 Introduction Dans le cadre de ce projet de géométrie BAC 1, il nous était

Plus en détail

Trigonométrie dans le cercle

Trigonométrie dans le cercle DERNIÈRE IMPRESSIN LE 8 août 0 à :5 Trigonométrie dans le cercle Table des matières Angles dans un cercle. Cercle trigonométrique........................... Le radian...................................

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

Analyse coût-effacité : Aide au dimensionnement d un service lit-porte ou d un pool d infirmières

Analyse coût-effacité : Aide au dimensionnement d un service lit-porte ou d un pool d infirmières efficience Analyse coût-effacité : Aide au dimensionnement d un service lit-porte ou d un pool d infirmières L activité hospitalière présente la particularité d être à la fois non stockable et de répondre

Plus en détail

Observatoire astronomique de la Pointe du diable

Observatoire astronomique de la Pointe du diable Observatoire astronomique de la Pointe du diable 3. Pointage et suivi automatiques Les instruments sont portés par une monture équatoriale dite à l allemande dont chacun des deux axes est solidaire d une

Plus en détail

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011 Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 010-011 novembre 010 I Définition d une conique en terme d équation cartésienne On se place dans le repère orthonormé direct (0, i, j ).

Plus en détail