Modèle de pointage et correction des dérives

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Modèle de pointage et correction des dérives"

Transcription

1 Ges de la Lue Observatoire astroomique de Plougastel Tél : Modèle de poitage et correctio des dérives 1. Présetatio du problème Le poitage d u astre par u télescope moté sur ue table équatoriale se fait e idiquat l agle horaire et la décliaiso δ que ous supposeros corrigés de la précessio. Das le cas d ue moture allemade, il existe deux positios duales du télescope correspodat à la même directio visée et il faut doc, e outre, préciser si le télescope est sur so zéith Est (positio «ormale») ou sur so zéith Ouest (positio «retourée»). Plusieurs causes sot à l origie d u mauvais poitage et ous allos étudier les plus importates d etre elles. Tout d abord, la moture équatoriale du télescope peut e pas être bie positioée. Idéalemet l axe polaire est das le pla du méridie poitat vers le Nord céleste à ue hauteur égale à la latitude du lieu. Nous oteros et l erreur d azimut et, respectivemet, l erreur de hauteur de l axe horaire de la moture. (cf. figure 1) La moture elle-même présete u léger défaut d orthogoalité etre l axe horaire et l axe de décliaiso. Nous oteros β le défaut d aligemet de l axe de décliaiso, compté positivemet lorsque l axe de décliaiso est iclié vers l Est, le télescope poitat vers l équateur au méridie ( = 0 et δ = 0). L axe optique du télescope peut e pas être parfaitemet orthogoal à l axe de décliaiso. Nous oteros χ le défaut d aligemet de l axe optique du télescope, compté positivemet lorsque l axe optique est iclié vers l Est, le télescope poitat vers l équateur au méridie. Efi, la réfractio atmosphérique iduit ue erreur de poitage, l astre apparet se trouvat toujours e ue positio relevée par rapport à l astre réel. Nous étudios les coséqueces de ces défauts das le but de corriger le poitage de l istrumet avec l espoir 4 d atteidre la précisio de la miute d arc, soit 3 10 radia. Les réus de calcul pourrot être égligés s ils sot très petits par rapport à , ce qui reviet à dire que, le plus souvet, ous pourros ous coteter de développemets limités au premier ordre, pourvu que les défauts soiet iférieurs à 10 radia ce qui correspod à l ordre de gradeur du demi degré.

2 Zéith xe horaire De la moture Directio du pôle ord latitude du lieu + hauteur de l'axe horaire orizo ord Trace horizotale de l axe horaire. Erreur de positioemet e azimut Figure 1 Soit ue étoile de coordoées horaires vraies {, δ }. Ses coordoées horizotales {, } h sot doées par les relatios suivates : si h = si si δ + cos cos δ cos cos h si = cos δ si cos h cos = cos si δ + si cos δ cos Das le système de coordoées horizotales de la moture, l azimut apparet de l étoile deviet = tadis que la hauteur h est ichagée. La hauteur du pôle apparet état égalemet ichagée., +, δ + δ sot doées par les formules Les coordoées horaires apparetes { δ } que l o otera { } de coversio iverses :

3 si δ = si si h cos cos h cos cos δ si = cos h si Le développemet limité au premier ordre coduit aux relatios suivates : ou ecore cos δ δ = cos h cos si si δ si δ + cos δ cos = cos h cos δ = si cos cos δ = ( si δcos cos cos δsi ) Remarque : la trasformatio + π et δ π δ coduit à ( ) si cos ( ) ( ta cos cos si ) π δ = δ + π δ = Le retouremet du télescope sur ue moture allemade laisse ivariate la directio visée. 3. Erreur de hauteur du pôle La hauteur du pôle apparet deveat = +, le développemet limité au premier ordre coduit aux relatios suivates : cos δ δ = ( si h cos + cos h si cos ) si δ si δ + cos δ cos = 0 ou ecore δ = cos cos δ = si δ si Remarque : la trasformatio + π et δ π δ coduit à ( ) ( ) π δ cos = δ + π ta δ si = Le retouremet du télescope sur ue moture allemade laisse ivariate la directio visée. 4. Défaut d orthogoalité de l axe de décliaiso et de l axe horaire Notos β le défaut d orthogoalité etre l axe horaire et l axe de décliaiso, défii comme sur la figure. Les relatios suivates sot alors satisfaites : ( ) si = ta β ta δ si δ cos β = si δ cos δ = cos δ cos( ) Ce qui ous doe ue erreur e décliaiso ulle au premier ordre et ue erreur e agle horaire ulle à l équateur et très importate au voisiage du pôle : 1 ta δ β 0 δβ cos δ β si δ β Remarque : la trasformatio + π et δ π δ coduit à 1 ta β 0 ( π δ β ) δ β δ ( β + π) ta δ β = β Le retouremet du télescope sur ue moture allemade double l erreur e agle horaire et itroduit pas d erreur e décliaiso.

4 E Pôle Nord P β B Q xe horaire xe optique méridie visé faux méridie parallèle de l étoile δ δ M M xe de décliaiso β vrai méridie de l étoile méridie du lieu figure : défaut d orthogoalité des axes R χ Pôle Nord P méridie visé faux méridie δ χ δ E C xe optique xe horaire trajectoire de l axe optique parallèle de l étoile M N xe de décliaiso χ vrai méridie de l étoile méridie du lieu figure 3 : défaut de collimatio

5 5. Défaut d orthogoalité de l axe optique et de l axe de décliaiso O dit aussi bie défaut de collimatio du télescope. Notos χ le défaut d orthogoalité etre l axe optique et l axe de décliaiso, défii comme sur la figure 3. si δ cos χ = si δ Les relatios suivates sot alors satisfaites : si ( ) cos δ = si χ cos δ cos χ = cos( ) cos δ Ce qui ous doe ici ecore ue erreur e décliaiso ulle au premier ordre et ue erreur e agle horaire ulle à l équateur et très importate au voisiage du pôle : δχ cos δ χ χ 1 ta δ χ 0 Remarque : la trasformatio + π et δ π δ coduit à 1 ta χ 0 ( π δ χ ) δ χ δ χ ( χ + π ) = χ cos δ Le retouremet du télescope sur ue moture allemade double l erreur e agle horaire et itroduit pas d erreur e décliaiso. 6. Réfractio atmosphérique La réfractio atmosphérique e modifie pas l azimut d u astre mais relève cet astre d u agle h, toujours positif, dot la valeur est d autat plus grade que l o s approche de l horizo. E excellete approximatio, pour des hauteurs d astre supérieures à 5, le relèvemet dû à la réfractio est proportioel à l écart etre l idice de l air et l idice du vide et a pour expressio : pour p p0 1, 00 bar p T0 h avec = 1 = 0 où ta h p T 0 0 =,93 10 p0 = 1 bar T0 = 73 K = = (pressio atmosphérique ormale) et 88 K ( 15C) 4 T =, ous predros 4 =,8 10. Nous observos aisi ue réfractio de l ordre de gradeur de ue miute d arc pour ue hauteur de 45 et de oze miutes d arc pour ue hauteur de 5. E différetiat les relatios liat les coordoées horizotales aux coordoées horaires, o trouve après quelques calculs : si cos δ cos si δ cos δ = si si δ + cos cos δ cos cos si cos δ = si si δ + cos cos δ cos Remarque : la trasformatio + π et δ π δ coduit à si cos δ cos si δ cos ( π δ ) = δ si si δ + cos cos δ cos cos si ( + π) = cos δ( si si δ + cos cos δ cos ) Le retouremet du télescope sur ue moture allemade laisse ivariate la directio visée.

6 7. Correctio des vitesses La variatio de la réfractio avec le mouvemet horaire iduit ue variatio du mouvemet horaire apparet et itroduit u mouvemet ifime e décliaiso. Les correctios de vitesses correspodates s appellet correctios de Kig. vec = 1 0,0009 d δ si cos si = Ω dt ( si si δ + cos cos δ cos ) d cos si si δ cos + cos cos δ = Ω dt cos δ ( si si δ + cos cos δ cos ) Les courbes suivates représetet les correctios de vitesse de Kig e foctio de l agle horaire et pour différetes décliaisos e u lieu de latitude 48. Les courbes sot limitées pour des hauteurs d astre supérieures à 0. Remarque : Il s agit des vitesses sur le fod du ciel et il e faut pas oublier que la dérive e agle horaire est à diviser par cos δ et pred doc des valeurs importate au voisiage du pôle. Les vitesses sot exprimées e fractio de vitesse érale. Notos que 1 millième de vitesse érale correspod à 0,9 secode d arc par miute de temps. Pour la moture que ous utilisos à Plougastel, la vitesse érale correspod à 6 417,5 µpas par miute et u millième de cette valeur correspod doc à 6,4 µpas par miute, ce qui peut être pris e compte. La vitesse de Kig e delta est tout à fait du même ordre de gradeur. Toutefois, il e saurait être questio de predre e compte cette correctio si le rattrapage de jeu e delta est pas correctemet réalisé. 1 d cos δ Ω dt Ω 1 d δ dt δ = 90 δ = 90 δ < 0 δ > 0 δ > 0 δ < 0 δ = 0 δ = 0 Remarque : le défaut d orthogoalité des axes delta et alpha aisi que le défaut d orthogoalité de l axe optique et de l axe delta ot des coséqueces idépedates de et impliquet doc aucue dérive.

7 Les erreurs de positioemet de la moture iduiset égalemet des erreurs de vitesse : d δ d δ = Ω cos cos dt = Ω si dt et d d = Ω ta δ cos si = Ω ta δ cos dt dt u total, les vitesses de dérive ot pour expressio : d δ si cos si =Ω Ω cos cos Ω si dt ( si si δ + cos cos δ cos ) d cos cos cos δ + si si δ cos = Ω Ω ta δcos si + Ω ta δ cos dt cos δ ( si si δ + cos cos δ cos ) Les courbes suivates correspodet aux correctios souhaitées pour la moture de Plougastel, das so réglage actuel ( = 1, ' et = 0,7' ). Nous coaissos ces valeurs par l observatio des dérives, mais il ous est impossible de les réduire davatage. 1 d cos δ Ω dt Ω 1 d δ dt δ = 90 δ = 90 δ < 0 δ > 0 δ < 0 δ = 0 δ > 0 δ = 0 est ivariablemet de l ordre de gradeur de la miute d arc tadis et dépedet de la qualité de la mise e statio de la moture. Le positioemet est raremet fait avec ue précisio supérieure à la miute d arc. Il semble doc tout à fait vai de réaliser la correctio de Kig si les dérives dues au mauvais positioemet de la moture e sot pas corrigées : u défaut de positioemet de l ordre de gradeur de ue miute d arc implique des dérives du même ordre de gradeur que celles dues à la variatio de la réfractio.

8 8. Retouremet d ue moture allemade Le retouremet d ue moture allemade laisse ivariates les erreurs e décliaiso dues aux erreurs de positioemet de la moture et à la réfractio atmosphérique et double les erreurs e agle horaire dues aux défauts de la moture : À l équateur : u voisiage du pôle : δ = 0 = ta δ β + χ cos δ δ = 0 = χ δ = 0 cos δ = β + χ

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Nathalie Va de Wiele - Physique Sup PCSI - Lycée les Eucalyptus - Nice Série d exercices SERIE D EXERCICES N : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Propagatio rectilige. Exercice. Das le cas

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

B) CHAÎNES DE SOLIDES

B) CHAÎNES DE SOLIDES Chaîes de solides B) CHAÎNES DE SOLIDES Objectifs Cette théorie a pour but d'aalyser les comportemets statique et ciématique d'u mécaisme à partir d'u modèle défii par le schéma ciématique du mécaisme.

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Thème : PHENOMENES VIBRATOIRES. Chap 2 : REFLEXION ET REFRACTION DE LA LUMIERE

Thème : PHENOMENES VIBRATOIRES. Chap 2 : REFLEXION ET REFRACTION DE LA LUMIERE Thème : PHENOMENES VIBRATOIRES hap : REFLEXION ET REFRATION DE LA LUMIERE 1) Itroductio : La lumière est de l éergie qui se propage sous forme de rayoemet. Das u milieu homogèe, liéaire, isotrope (mêmes

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Chapitre 3: Réfraction de la lumière

Chapitre 3: Réfraction de la lumière 2 e B et C 3 Réfractio de la lumière 16 Chapitre 3: Réfractio de la lumière 1. Expériece 1 : tour de magie avec ue pièce de moaie a) Dispositio Autour d'ue petite boîte coteat ue pièce de 1 de ombreux

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique Titre : Élémets fiis de joit mécaiques et élémets fi[...] Date : 28/10/2014 Pae : 1/10 Élémets fiis de joit mécaiques et élémets fiis de joit couplés hydromécaique Résumé : Cette documetatio porte sur

Plus en détail

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes.

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes. Chapitre 1 Nombres complexes Le buts du chapitres sot : Cosolider les aquis de termiale, Savoir maipuler les ombres complexes, e particulier la factorisatio par l agle de moitié. Avoir des otios sur le

Plus en détail

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13,

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13, LYCEE GRAND AIR Correctio Devoir commu Classes de Secodes cocerées : de 10, de 11, de13, feuilles + papier millimétré. 08/0/013 Exercice 1 : L aée lumière. 1. D après le texte, la vitesse de la lumière

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme Statistiques I. Tableaux d effectifs, de fréqueces : 1. Calculer la fréquece d'ue valeur ou d'ue classe : Diviser l effectif de la valeur par l effectif total fréquece La somme des fréqueces est 1 (ou

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Utilisation de lentilles dans les conditions de Gauss

Utilisation de lentilles dans les conditions de Gauss IUT Sait Nazaire Départemet Mesures Physiques MP Semestre Utilisatio de letilles das les coditios de Gauss - Système optique cetré e coditios de Gauss Du fait de l étude préalable de la réfractio (letilles,

Plus en détail

Concours de l Iscae. Épreuve Commune de Mathématiques (2015)

Concours de l Iscae. Épreuve Commune de Mathématiques (2015) Mohiieddie Beayad Cocours de l Iscae Épreuve Commue de Mathématiques (5) Voici l éocé de l épreuve commue de Mathématiques du cocours d etrée à l ISCAE de l aée 5, aisi que l itégralité du corrigé. Les

Plus en détail

Le mouvement de pédalage

Le mouvement de pédalage Le mouvemet de pédalage Javier 214 cotact@velomath.fr http://www.velomath.fr Le mouvemet de pédalage a fait l objet d u grad ombre d aalyses. La très grade majorité de ces aalyses sot du domaie de la bio-mécaique

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

10ème cours Une variable numérique : indices de localisation

10ème cours Une variable numérique : indices de localisation 10ème cours Ue variable umérique : idices de localisatio Das ce cours, o fait u rappel sur les idices de localisatio, médiae, quatiles et moyee, et o étudie la faço de les utiliser pour comparer les distributios

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

Codes détecteurs et correcteurs d erreurs

Codes détecteurs et correcteurs d erreurs Codes détecteurs et correcteurs d erreurs Lorsque des doées umériques sot stockées ou trasmises, des perturbatios (par exemple électromagétiques) peuvet les edommager. Les codes détecteurs et correcteurs

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE TP O. Page /5 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O. Ce documet compred : - ue fiche descriptive du sujet destiée à l examiateur : Page /5 - ue fiche descriptive

Plus en détail

Université Joseph Fourier, Grenoble. Séries numériques. Luc Rozoy, Bernard Ycart

Université Joseph Fourier, Grenoble. Séries numériques. Luc Rozoy, Bernard Ycart Uiversité Joseph Fourier, Greoble Maths e Lige Séries umériques Luc Rozoy, Berard Ycart Disos-le tout et, ce chapitre est pas idispesable : d ailleurs, vous e verrez pas vraimet la différece avec les suites.

Plus en détail

La fonction de la maîtrise des vitesses est d assurer un temps

La fonction de la maîtrise des vitesses est d assurer un temps sas frotière OÎTE À OUTILS Guide de dimesioemet La maîtrise des vitesses hydrauliques JEN ROUSSEU 1 La oîte à outils du précédet uméro de Techologie traitait du choix d u distributeur pour l actioeur hydraulique.

Plus en détail

CHAPITRE 1 STATIQUE, POSTURES D ÉQUILIBRE, FORCES ET MOMENTS AUX ARTICULATIONS

CHAPITRE 1 STATIQUE, POSTURES D ÉQUILIBRE, FORCES ET MOMENTS AUX ARTICULATIONS CHAPITRE 1 STATIQUE, PSTURES D ÉQUILIBRE, FRCES ET MMENTS AUX ARTICULATINS L objet de toutes études biomécaiques est d aalyser au travers d u double système de forces (forces iteres et exteres) les postures

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

LO12. Chap 5. 5. Le fenêtrage. x r x w. y r y w. 5.1 Introduction. OpenGL. 1 x. Transformation de cadrage. glviewport();

LO12. Chap 5. 5. Le fenêtrage. x r x w. y r y w. 5.1 Introduction. OpenGL. 1 x. Transformation de cadrage. glviewport(); LO 5. Le feêtrage 5. Itroductio L affichage d u modèle implique la mise e correspodace des coordoées des poits et des liges du modèle avec les coordoées appropriées du dispositif où l image doit être visualisée.

Plus en détail

PROBABILITES EXERCICES CORRIGES

PROBABILITES EXERCICES CORRIGES PROBABILITES EXERCICES CORRIGES Vocabulaire des probabilités Exercice. Das chacue de situatios décrites ci-dessous, éocer l évéemet cotraire de l évéemet doé. ) Das ue classe, o choisit deux élèves au

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Corrigé. Exercice 1 : (5 points)

Corrigé. Exercice 1 : (5 points) Corrigé Exercice : (5 poits) Pour les questios. et. o doera les résultats sous forme de fractios et sous forme décimale par défaut à 0 3 près. U efat joue avec 0 billes, 3 rouges et 7 vertes. Il met 0

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Texte Filtre de Kalman-Bucy

Texte Filtre de Kalman-Bucy Page 1. Texte Filtre de Kalma-Bucy 1 e modèle U avio se déplace etre Paris et odres. Il suit ue trajectoire théorique appelée trajectoire omiale dot les coordoées sot coues de tous. a trajectoire de l

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Modes propres de vibration ; interprétation ondulatoire

Modes propres de vibration ; interprétation ondulatoire SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 1/5 MDES PRPRES DE IBRATI Ce qu'il faut reteir Modes propres de vibratio ; iterprétatio odulatoire 1. Productio d u so à l aide d u istrumet de musique U istrumet

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

DROITES, TABLEAUX, FORMULES. Location de voitures. - Pour chaque société déterminer k et f et exprimer P en fonction de n.

DROITES, TABLEAUX, FORMULES. Location de voitures. - Pour chaque société déterminer k et f et exprimer P en fonction de n. 1/8 Situatios Des essais de locatio de voitures ot été effectués das trois sociétés de locatio différetes. our chaque essai, la voiture 'a été louée qu'ue jourée. Société Aimatour J'ai payé u jour 34 pour

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Statistiques à deux variables. Approche des séries statistiques à deux variables.. Nuage de poits Sur ue classe de BTSA, le professeur a relevé les moyees de élèves e mathématiques et e agroomie. Les otes

Plus en détail

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1

Moment d'une force Théorème du moment cinétique. Johann Collot collot@in2p3.fr http://lpsc.in2p3.fr/atlas_new/teachingitem.htm Mécanique L1 et IUT1 Momet d'ue force Théorème du momet ciétique Théorème du momet ciétique référetiel iertiel repère fixe /réf. o poit o fixe / repère m M V dt = d P OM dt = OM d P d OM P = d OM P OM d P = V dt m V OM d P

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002 CORRIGE DE L'EXAMEN DU 4 DECEMBRE EXERCICE. Notos X la variable aléatoire décrivat l'idetificatio des pièces défectueuses. Le ombre de valeurs possibles de X correspod au ombre de cofiguratios possibles

Plus en détail

La propagation de la lumière

La propagation de la lumière Image EX Partie / Des systèmes optiques producteurs d images La propagatio de la lumière Exercices -- orrectio EX ) O rappelle que la réflexio de la lumière sur u support est spéculaire lorsque la taille

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

Ce type de compresseur est aussi appelée compresseur volumetrique.

Ce type de compresseur est aussi appelée compresseur volumetrique. Chapitre 4 Compresseurs Buts 1. Savoir que das ce cas if faut se redre compte qu il y a des effets thermique 2. Savoir qu il y a ue limite á l augmetatio de la pressio de gaz 3. Savoir quelles istabilités

Plus en détail

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres. Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé

Problème I- Acide éthanoïque (ph et conductimétrie) Enoncé - Acide éthaoïque (ph et coductimétrie) Eocé 1- L acide éthaoïque (H 3 OOH) est u oxydat e solutio aqueuse das le couple H 3 OOH/H 3 H OH (acide éthaoïque/éthaol). Écrire la demi-équatio d oxydoréductio

Plus en détail

Placement optimal d antennes de téléphonie mobile

Placement optimal d antennes de téléphonie mobile 87 Placemet optimal d atees de téléphoie mobile Romai BADINA, Justie DIDIERJEAN, Iliyas JORIO, Thomas LE SAUX, Clémet MOUREAUX, Thibault PERRIN, Bejami SAUNIER, Paul-Heri SOUSTRE Pavage hexagoal : régulier

Plus en détail

Version du 28 novembre 2016 (20h06)

Version du 28 novembre 2016 (20h06) CHAPITRE 3. SYSTÈMES DE RCES......................................... - 3.1-3.1. Vecteurs caractéristiques d u système de forces............................... - 3.1-3.1.1. Défiitio.....................................................

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE Nombre de pages de l épreuve Durée de l épreuve 0 pages 3h00 Compte teu du fait qu il s agissait d u cocours d etraiemet, cette épreuve à été prise sur le

Plus en détail

Fiche de synthèse ONDES

Fiche de synthèse ONDES Fiche de sythèse ONDES A) Sigaux temporels ) Valeur moyee et valeur efficace valeur moyee : v( t) v( t) dt, o vérifie la dimesio, c'est aussi la partie sigal cotiu du sigal. alt crete La partie variable

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail