Support du cours de Probabilités IUT d Orléans, Département d informatique

Dimension: px
Commencer à balayer dès la page:

Download "Support du cours de Probabilités IUT d Orléans, Département d informatique"

Transcription

1 Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau

2

3 Introduction La théorie des probabilités a pour objectif de modéliser des expériences où plusieurs issues sont possibles, mais où leur réalisation n est pas déterminée à l avance (par exemple un lancé de dés), ceci en vue d évaluer les risques ou de mettre sur pieds des stratégies pour faire face aux aléas. La théorie des probabilités ne va pas permettre de prédire quelle issue va se réaliser, mais quelle chance a chaque issue de se réaliser. La théorie des probabilités et par extension les statistiques a des applications dans de nombreux domaines : 1. La biologie et la médecine : repérage de séquences ADN, tests de médicaments, évaluation du risque de propagation de virus La finance (Les banques) : évaluation de produits financiers (options...), maîtrise des risques liés à des investissements Industries : aéronautique, automobile, chimie Economie : prévision de croissance, sondages, contrôle de gestion Les jeux : Loto, Casinos... Tous ces champs d applications sont en lien étroit avec l informatique : développement et utilisation de logiciels de simulations et de logiciels de traitements statistiques, base de données... Fig. 1 Courbes de fluctuations de deux indices boursiers - Aléatoires? 1

4 2

5 Table des matières Introduction 1 1 Evènements Probabilité et Variables aléatoires L espace des issues, l ensemble des évènements Définition et Propriétés d une probabilité Variables Aléatoires Discrètes Indépendance et probabilités conditionnelles Indépendance Probabilités conditionnelles Variables Aléatoires Discrètes - Moyenne - Variance Espérance (Moyenne) d une variable aléatoire discrète La Variance et la Covariance Lois classiques Fonction génératrice Variables Aléatoires Continues Définition d une variable aléatoire absolument continue Espérance et variance Variables aléatoires continues usuelles Théorèmes limites Introduction Loi des grands nombres Théorème de la limite centrale

6 4

7 Chapitre 1 Evènements Probabilité et Variables aléatoires Dans un premier temps, on va associer à chaque issue possible un nombre entre 0 et 1 qui traduit notre estimation des chances que cette issue a de se réaliser : on appelle ce nombre la probabilité de cette issue. On appelle évènement un ensemble d issues. La probabilité qu on associe à un évènement est la somme des probabilités de chaque issue de cet ensemble. Typiquement, la question est de déterminer la probabilité d un évènement, et la difficulté est d une part de décrire l expérience de façon commode afin d énumérer toutes les issues possibles et leur probabilité respective, et d autre part de décomposer l évènement considéré en issues. 1.1 L espace des issues, l ensemble des évènements Avant de calculer les probabilités d évènements, il faut définir l espace des issues de façon commode et complète. Cet espace comprendra toutes les issues possibles du jeu, ou de l expérience aléatoire que l on considère, même éventuellement celles qui ne nous intéressent pas, a priori. Dans chaque situation, l espace des issues sera noté Ω (grand omega), alors que les issues seront notées ω (petit omega). Exemple On considère un dé à 6 faces, numérotées de 1 à 6. On suppose que le dé est équilibré, ce qui veut dire que les 6 faces ont la même chance de sortir. L ensemble Ω des issues possibles d un lancer est Ω = {1, 2, 3, 4, 5, 6}. Une issue possible est {3} c est à dire la face 3 sort. Un événement est par exemple On obtient un nombre pair que l on peut écrire {2, 4, 6}. Exemple On considère le même dé, sauf que sur la sixième face, le nombre 6 a été remplacé par 5. Il y a donc deux faces où 5 est inscrit. L ensemble des issues est ici Ω = {1, 2, 3, 4, 5}. L événement on obtient un nombre pair s écrit {2, 4}. On considère des expériences avec un nombre fini ou dénombrable d issues. On note Ω cet ensemble d issues et F l ensemble des événements. F est l ensemble des parties de Ω. 5

8 Exemple Si Ω = {1, 2, 3}, alors, où est l ensemble vide. F = {, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}} Exemple Considérons l exemple 1.1.1, un événement est par exemple : {On obtient un nombre pair}, que l on peut aussi écrire de la façon suivante {2, 4, 6}. Pouvez-vous déterminer F? En théorie des probabilités on a souvent besoin de ramener le calcul de la probabilité d un évènement au calcul de la probabilité de l union ou de l intersection d événements plus élémentaires, on introduit donc les notations suivantes : Si A et B sont deux sous-ensembles de Ω, on note A B = {ω; ω A ou ω B} : A ou B se réalise A B = {ω; ω A et ω B} : A et B se réalisent A B = {ω; ω A et ω / B} : A se réalise mais pas B Ā = Ω A l évènement A ne se réalise pas. Deux évènements A et B de F sont disjoints s ils n ont aucune issue en commun, c est à dire que A B =. Par exemple, A et Ā sont disjoints, ainsi que et A. Exemple Prenons l exemple 1.1.1, soit A = {2, 4, 6}, B = {5, 6}, C = {3}, on a : 1. A B = {2, 4, 5, 6} 2. A B = {6} 3. A C = 4. Ā = {1, 3, 5}, Ā correspond à l évènement on obtient un nombre impair. 5. A B = {2, 4} on remarque que A \ B = A B. Effectuer une analyse similaire pour l exemple Remarque Lorsque l on écrit l évènement A on obtient un nombre pair sous la forme {2, 4, 6} il est sous-entendu que les, sont des ou, on peut également écrire A = {2} {4} {6}. 1.2 Définition et Propriétés d une probabilité On commence par définir ce qu est une probabilité : Definition Une probabilité P sur Ω est une fonction de F dans l intervalle [0, 1] telle que 1. P (Ω) = 1, 2. Si (A i ) i I est une famille finie ou dénombrable d événements deux à deux disjoints (i.e. A i A j = si i j), alors P ( i I A i ) = i I P (A i ) (1.1) 6

9 De cette définition, découlent les propriétés fondamentales suivantes : Proposition P ( ) = Pour tout événement A, P (A) + P (Ā) = Pour tous événements quelconques A et B, P (A B) = P (A) + P (B) P (A B). 4. Si A et B sont deux événements tels que A B alors P (A) P (B). Exemple Reprenons l exemple 1.1.1, étant donné que le dé est équilibré on pense pour ce cas à une probabilité comme à une fonction p sur Ω, telle que p(1) p(6) = 1 et on associe à chaque issue la probabilité 1/6. En utilisant le second point de la définition d une probabilité on calcule facilement la probabilité de l évènement A = on obtient un nombre pair. En effet A = {2} {4} {6}, les 3 issues qui composent A étant 2 à 2 disjointes 1, P (A) = P (2) + P (4) + P (6) = 1/6 + 1/6 + 1/6 = 1/2. Si on veut maintenant calculer la probabilité de l évènement obtenir un nombre impair, on peut utiliser le petit 4. de l exemple et la propriété 2. de la Proposition Pour l exemple 1.1.2, comme le dé est équilibré, les faces 1, 2, 3 et 4 ont chacune la probabilité 1/6 de sortir, alors que P (5) = 2/6. Quelle est la probabilité qu un nombre pair sorte? L exemple suivant a pour but de manipuler la propriété 3. de la Proposition Exemple Toujours sur l exemple 1.1.1, soit A = {2, 4, 6}, B = {5, 6}, C = {3}, calculons de deux façon différentes : 1. On se rappelle du 1. de l exemple et on a donc P (A B) = P ({2, 4, 5, 6}) et comme chacun des évènements {2}, {4}, {5} et {6} sont deux à deux disjoints P (A B) = P (2) + P (4) + P (5) + P (6) = 4/6 = 2/3. 2. On utilise la propriété 3. de la Proposition On a vu dans l exemple précédent que P (A) = 1/2, il est facile de voir que P (B) = 1/6 + 1/6 = 1/3 et que d aprés le petit 2. de l Exemple 1.1.5, A B = {6} et donc que P (A B) = 1/6. Ainsi on obtient P (A B) = P (A) + P (B) P (A B) = 1/2 + 1/3 1/6 = 2/ Variables Aléatoires Discrètes Définition et Notations Definition Une fonction sur Ω à valeurs réelles est appelée variable aléatoire. Notation Les variables aléatoires seront notées par des lettres majuscules, X, Y,... Les valeurs qu elles prennent lorsqu une issue ω se réalise sont notées par des lettres minuscules. Par exemple on pourra écrire x à la place de X(ω). 1 en effet on ne peut obtenir qu un unique chiffre lors d un lancé! 7

10 Exemple Donnons un premier exemple élémentaire de variable aléatoire. Une variable de Bernoulli de paramètre p [0, 1] est une variable aléatoire qui prend soit la valeur 0 avec une probabilité 1 p soit la valeur 1 avec une probabilité p, on l utilise souvent pour décrire une expérience aléatoire ayant 2 issues possibles. Un autre exemple, que l on reprendra en détail en TD, on considère le jeté de deux dés simultanément. On peut définir une variable aléatoire qui est égale à la somme des deux dés Loi d une variable aléatoire Definition Soit P une probabilité sur un espace des issues Ω. Soit X une variable aléatoire définie sur Ω. Lorsqu à chaque valeur x i (1 i n) de X on associe les probabilités p i de l événement X = x i, on dit que l on définit la loi de probabilité P X de la variable aléatoire X. Remarque Pour connaître la loi d une variable aléatoire, il faut connaître l ensemble de ses valeurs possibles et la probabilité avec laquelle elle réalise chaque valeur. Exemple Une variable de Bernoulli X de paramètre p a pour loi : Valeur de X x i 0 1 p i P (X = x i ) 1-p p où p est compris entre 0 et 1. Ce tableau se lit de la façon suivante : p 0 P (X = 0) = p et p 1 P (X = 1) = 1 p. Par convention on notera X B(p) lorsque X suit une loi de Bernoulli. On remarque que si p = 1 alors X est constante égale à 0. Prenons maintenant un exemple un peu plus compliqué, Exemple on considère 2 jetés successifs d une pièce de monnaie équilibrée. On définit une variable aléatoire X qui compte le nombre de face que l on a obtenu. Sur deux lancés de pièces X peut prendre soit la valeur 0 qui correspond à l évènement la pièce n est jamais tombé sur face, soit la valeur 1 qui correspond au cas où la pièce est tombé une fois sur face soit la valeur 2 si on obtient deux fois face. Etant donné que la pièce est équilibrée on obtient pour X la loi suivante : x i P (X = x i ) 1/4 1/2 1/4 On remarque bien entendu que P (X = 0) + P (X = 1) + P (X = 2) p 0 + p 1 + p 2 = 1. Remarque Bien que très élementaire ce dernier exemple sous entend l indépendance des deux lancés. La notion d indépendance qui est intuitive ici sera explicité dans le chapitre suivant. On pourrait par exemple supposer que l on lance une seconde fois la pièce que si on a obtenu face au premier coup, les deux lancés ne sont alors plus indépendants et la loi de X est donnée par : x i P (X = x i ) 1/2 1/4 1/4 8

11 1.3.3 Fonction de répartition Proposition La loi d une variable aléatoire X est caractérisée par sa fonction de répartition F X définie par : F X : R [0, 1] x P (X x) Remarque F X est par définition une fonction en escalier, qui est constante entre deux valeurs successives prises par la variable aléatoire X et qui fait un saut en chacune de ses valeurs. On retrouve donc sur le graphe de F X d une part les valeurs prises par X ainsi que les probabilités d obtenir les valeurs. Il est équivalent de connaître la loi de X ou sa fonction de répartition. Exemple Reprenons l exemple 1.3.6, la fonction de répartition de X est donnée par le graphe suivant : F X (x) 1 3/4 P(X=2) 1/4 P(X=1) P(X=0) x Fig. 1.1 Fonction de répartition pour l Exemple Fonction indicatrice On définit dans ce paragraphe la fonction indicatrice, et on donne quelques propriétés. Definition La fonction indicatrice notée 1 A d un événement A Ω, est la variable aléatoire donnée par 1 A : Ω {0, 1} { 1 si ω A w 0 si ω / A Proposition Pour tout A Ω et B Ω, on a : 9

12 1. 1 A B = 1 A 1 B, 2. Si A B = alors 1 A B = 1 A + 1 B, 3. 1 Ā = 1 1 A. Remarque La fonction indicatrice 1 A est une variable aléatoire de Bernoulli de paramètre p = P (A). 10

13 Chapitre 2 Indépendance et probabilités conditionnelles 2.1 Indépendance Cas de deux évènements ou deux variables aléatoires On commence par donner la définition de deux événements indépendants : Definition Deux événements A et B sont indépendants si et seulement si P (A B) = P (A)P (B). (2.1) Exemple On s intéresse à deux lancés d un dé. On suppose que ces deux lancés sont indépendants, c est à dire que le résultat du lancé du premier dé n a aucune influence sur le lancé du second dé. Ainsi les événements A = {On obtient 2 au premier lancé} et par exemple B = {On obtient 5 au second lancés} sont indépendants. En terme de probabilité cela se traduit par : P (A B) = P (A)P (B) = (1 \ 6) (1 \ 6). (2.2) On définit maintenant l indépendance pour deux variables aléatoires : Definition Deux variables aléatoires X : Ω {x 1,, x M, } et Y : Ω {y 1,, x N, } sont indépendantes si pour tous i et j, P (X = x i, Y = y j ) = P (X = x i )P (Y = y j ). (2.3) Exemple On s intéresse à deux variables aléatoires de Bernoulli : X 1 de paramètre p et X 2 de paramètre q. On suppose que X 1 et X 2 sont indépendantes. Le couple (X 1, X 2 ) peut prendre les valeurs (0, 0) ; (0, 1), (1, 0) et (1, 1). Par indépendance on a P ((0, 0)) P (X 1 = 0, X 2 = 0) = P (X 1 = 0)P (X 2 = 0) = (1 p) (1 q). (2.4) 11

14 Maintenant définissons la variable aléatoire Y = X 1 +X 2, on peut calculer la probabilité P (Y = 0) de la façon suivante : On remarque que l événement {Y = 0} = {X 1 = 0, X 2 = 0} on en déduit donc, d après ce qui précède que P (Y = 0) = (1 p) (1 q). Pouvez vous calculer P (Y = 1) et P (Y = 2)? Remarque Dans l exemple précédent si on suppose de plus que q = p, la variable Y est connue sous le nom de variable Binomiale de paramètres p et 2 correspondant au fait que l on a sommé 2 variables de Bernoulli de même paramètre p indépendantes pour obtenir Y. Nous reviendrons sur les variables Binomiales dans le chapitre suivant Cas d un nombre fini d évènements ou variables aléatoires On généralise la notion d indépendance à un nombre fini d évènements et de variables aléatoires : Definition Les événements {A 1, A 2,, A n } sont indépendants si et seulement si pour tout ensemble d indices I {1,, n} ( ) P A i = P (A i ), (2.5) i I i I on rappelle que si I = {i 1,, i k }, j I P (A j) P (A i1 ) P (A i2 ) P (A ik ). Exemple Si on a un ensemble de 3 évènements A 1, A 2 et A 3, ils sont indépendants si et seulement si : P (A 1 A 2 A 3 ) = P (A 1 )P (A 2 )P (A 3 ), (2.6) P (A 1 A 2 ) = P (A 1 )P (A 2 ), (2.7) P (A 1 A 3 ) = P (A 1 )P (A 3 ), (2.8) P (A 2 A 3 ) = P (A 2 )P (A 3 ). (2.9) Réciproquement, si on lance 3 fois successivement et indépendamment une pièce de monnaie et que l on souhaite calculer la probabilité de l événement {P, F, P } {on obtient Pile au premier lancé,face au second et Pile au dernier}, par indépendance on a : Quelle est la probabilité que l on obtienne 2 fois Pile? Indépendance pour une suite de variables aléatoires : P ({P, F, P }) = P (P )P (F )P (P ) = 1/8. (2.10) Definition Les variables aléatoires {X 1, X 2,, X n } sont indépendantes si pour tout ensemble d indices I {1,, n} et tous réels x i appartenant aux valeurs possibles de X i, (i I) : ( ) P {X i = x i } = P (X i = x i ). (2.11) i I i I 12

15 Exemple Supposons que pour tout 1 i 8, X i suit une loi de Bernoulli de paramètre p et supposons que la suite {X 1, X 2,, X 8 } soit indépendante, soit I = {1, 3, 6, 8} on a ( ) P {X i = 1} P (X 1 = 1, X 3 = 1, X 6 = 1, X 8 = 1) i I = P (X 1 = 1) P (X 3 = 1) P (X 6 = 1) P (X 8 = 1) = p 4. (2.12) Soit I = {1, 3} et J = {5, 6} on a ( P i = 1} i I{X ) {X j = 0} j I P (X 1 = 1, X 3 = 1, X 5 = 1, X 6 = 1) = P (X 1 = 1) P (X 3 = 1) P (X 5 = 0) P (X 6 = 0) = p 2 (1 p) 2. (2.13) On termine ce paragraphe par le résultat suivant : Proposition Soient X et Y deux variables aléatoires indépendantes. Si f et g : R R sont deux fonctions quelconques, alors f(x) et f(y ) sont indépendantes. 2.2 Probabilités conditionnelles Définitions et propriétés On commence par une définition Definition Soient A et B deux événements avec P (B) > 0. La probabilité conditionnelle de A sachant B est donnée par P (A B) = P (A B). P (B) On dit que P (A B) est la probabilité de A sachant B. Exemple On reprend ici l exemple de la Remarque On effectue 2 lancés d une pièce de monnaie mais avec la règle suivante : on ne relance la pièce que si l on a obtenu face au premier lancé. Il est intuitif que si l on obtient face au premier lancé alors on obtient face au second avec une probabilité 1/2. Notons A = {On obtient Face au second lancé} et B = {On obtient face au premier lancé}. On remarque que P (A) = P (A B)+P (A B) = P (A B) =1/4 de plus P (B) = 1/2 d où P (A B) = P (A B) P (B) = 1/2. (2.14) On donne maintenant le résultat suivant que l on vérifie ensuite sur un exemple simple : 13

16 Proposition Soient A et B deux événements indépendants et tel que P (B) > 0, alors P (A B) = P (A) (2.15) Exemple On utilise les mêmes notations que pour l exemple précédent. Si on s intéresse à deux lancés indépendants d une pièce de monnaie, indépendant signifiant que quel que soit le résultat du premier lancé on lance une seconde fois la pièce, on a donc P (A) = P (B) = 1/2 de plus P (A B) = 1/4, ainsi On a donc bien P (B A) = P (B). P (A B) = P (A B) P (B) = 1/2. (2.16) Probabilité totale et Théorème de Bayes Comme nous l avons déjà mentionné au début de ce cours il est parfois utile de décomposer un événement en sous ensemble d évènements élémentaires afin d en calculer la probabilité avec plus de facilité. La proposition suivante va dans ce sens. On commence par donner la définition d une partition de Ω Definition On appellera partition de Ω toute suite (A i, i I) vérifiant A i A j = φ pour tout i j et i I P (A i) = 1. Proposition Formule des probabilités totales. Soit (A i, i I) une partition finie ou dénombrable de Ω, telle que pour tout i, P (A i ) > 0. Pour tout événement B Ω, P (B) = i I P (B A i )P (A i ). (2.17) Exemple Supposons qu on dispose de deux urnes contenant des boules blanches et noires. La première urne contient 100 boules, dont 99 blanches. La deuxième urne contient 100 boules, dont 10 blanches. Un jeu consiste à choisir une urne au hasard et à tirer une boule dans cette urne. Notons B l événement On a tiré une boule blanche, on va donner une partition de cet évènement. Soient A 1 = {On a tiré dans la première urne} et A 2 = {On a tiré dans la deuxième urne}, on a Ω = A 1 A 2 de plus A 1 A 2 = φ, on peut donc écrire que B = B A 1 B A 2, et ainsi P (B) = P (B A 1 ) + P (B A 2 ) = P (B A 1 )P (A 1 ) + P (B A 2 )P (A 2 ). Il est facile de voir que P (A 1 ) = 1/2 et P (A 2 ) = 1/2, de plus P (B A 1 ) = 99/100 et P (B A 2 ) = 1/10. On en déduit donc que P (B) = 109/200. Proposition Formule de Bayes. Soit (A i, i I) une partition finie ou dénombrable de Ω, et soit B tel que P (B) > 0. Pour tout i, on a P (A i B) = P (A i )P (B A i ) j I P (B A j)p (A j ). (2.18) 14

17 Exemple On reprend l exercice précédent, et l on cherche à calculer P (A 1 B), par la formule de Bayes on a : P (A 1 B) = P (A 1 ) P (B A 1 ) P (B A 1 )P (A 1 ) + P (B A 2 )P (A 2 ) D après l exemple précédent P (B) = 109/200 et P (B A 1 ) = 99/100, on en déduit P (A 1 B) = 99/

18 16

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique Support du cours de Probabilités et Statistiques IUT d Orléans, Département informatique Pierre Andreoletti IUT d Orléans, Département Informatique Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences)

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires Chapitre I Probabilités Bcpst 1 2 novembre 2015 I Exemples d expériences aléatoires Une expérience aléatoire est une expérience dont on ne peut pas prédire le résultat avant de l avoir réalisée... ce qui

Plus en détail

Probabilités et statistique

Probabilités et statistique Probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon les termes de la licence

Plus en détail

Chapitre 4 NOTIONS DE PROBABILITÉS

Chapitre 4 NOTIONS DE PROBABILITÉS Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 4 NOTIONS DE PROBABILITÉS Les chapitres précédents donnent des méthodes graphiques et numériques pour caractériser

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Cours de Probabilités. Jean-Yves DAUXOIS

Cours de Probabilités. Jean-Yves DAUXOIS Cours de Probabilités Jean-Yves DAUXOIS Septembre 2013 Table des matières 1 Introduction au calcul des probabilités 7 1.1 Espace probabilisable et loi de variable aléatoire........ 8 1.1.1 Un exemple

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité Table des matières PROBABILITÉS Résumé de cours I) Introduction, aperçu historique 1 II) Loi de probabilité 1 III)Probabilité d évènement 2 1. Le vocabulaire des probabilités................................

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

Chapitre 8 : Probabilités-Indépendance

Chapitre 8 : Probabilités-Indépendance Cours de mathématiques Terminale S Chapitre 8 : Probabilités-Indépendance Année scolaire 008-009 mise à jour 6 janvier 009 Fig. Andreï Kolmogorov Un précurseur de la formalisation de la théorie des probabilités

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

2 Probabilités conditionnelles. Événements indépendants

2 Probabilités conditionnelles. Événements indépendants 2 Probabilités conditionnelles. Événements indépendants 2.1 Probabilité conditionnelle Soient A et B deux événements tels que P(B) > 0. Soit alors P(A B), la probabilité que A se réalise, B étant réalisé.

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

les probabilités en Terminale Bac Pro

les probabilités en Terminale Bac Pro les probabilités en Terminale Bac Pro stéphane GARNUNG Domaine Public : http://creativecommons.org/licenses/publicdomain/2.0/fr/ juin 2012 1.0 Table des matières I - Langage probabiliste 3 1. Expérience

Plus en détail

Exercices corrigés de probabilités et statistique

Exercices corrigés de probabilités et statistique Exercices corrigés de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon

Plus en détail

Thème 3 : ensembles, espaces de probabilités finis

Thème 3 : ensembles, espaces de probabilités finis Thème 3 : ensembles, espaces de probabilités finis Serge Cohen, Monique Pontier, Pascal J. Thomas Septembre 2004 1 Généralités : ensembles et parties d un ensemble Définition 1.1 On appelle ensemble une

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

1. Probabilités élémentaires

1. Probabilités élémentaires 1. Probabilités élémentaires MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: probabilités 1/48 Plan 1. Expériences aléatoires et événements 2. Probabilités 3. Analyse combinatoire

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres

Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres 1 Introduction Le nombre de piles obtenus au cours d une série de n lancers de pile ou face ou plus généralement dans

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015 Indépendance de deux évènements Chapitre 2 : Le modèle probabiliste - Indépendance d évènements 15 janvier 2015 Sommaire 1 Indépendance de deux évènements 2 Indépendance de deux évènements Approche intuitive

Plus en détail

Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut

Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut Probabilité conditionnelle et indépendance Télécom Saint-Étienne 2014 Sommaire 1 Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou

Plus en détail

Formellement, un processus aléatoire est une succession de variables aléatoires (X n ) n 0

Formellement, un processus aléatoire est une succession de variables aléatoires (X n ) n 0 Chapitre 1 Modélisation markovienne 11 Introduction Un processus aléatoire est un phénomène dont une partie de l évolution temporelle est aléatoire On rencontre ces processus dans divers domaines de la

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

I. Qu est-ce qu une probabilité?

I. Qu est-ce qu une probabilité? I. Qu est-ce qu une probabilité? 1. Première approche : Une probabilité en mathématique est un chiffre compris entre 0 et 1. Ce chiffre représente une évaluation du caractère probable d un événement. Si

Plus en détail

Peut-on imiter le hasard?

Peut-on imiter le hasard? 168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard

Plus en détail

Chapitre 5 Les Probablilités

Chapitre 5 Les Probablilités A) Introduction et Définitions 1) Introduction Chapitre 5 Les Probablilités De nombreuses actions provoquent des résultats qui sont dus en partie ou en totalité au hasard. Il est pourtant nécessaire de

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

2010 My Maths Space Page 1/6

2010 My Maths Space Page 1/6 A. Des statistiques aux probabilités 1. Statistiques descriptives, analyse de données. Vocabulaire des statistiques : Population : c'est l'ensemble étudié. Individu : c'est un élément de la population.

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

PROBABILITÉS. I Vocabulaire des événements 2 I.1 Vocabulaire... 2 I.2 Intersection et réunion d événements... 2 I.3 Représentation des évenements...

PROBABILITÉS. I Vocabulaire des événements 2 I.1 Vocabulaire... 2 I.2 Intersection et réunion d événements... 2 I.3 Représentation des évenements... PROBABILITÉS Table des matières I Vocabulaire des événements 2 I.1 Vocabulaire.............................................. 2 I.2 Intersection et réunion d événements................................ 2

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES B. MARCHADIER Dépendance et indépendance de deux aléas numériques images Mathématiques et sciences humaines, tome 25 (1969), p. 2534.

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

TD: Ensembles, applications, dénombrement

TD: Ensembles, applications, dénombrement Université de Provence Année 011/1 Licence Math Info ème année S3 Fondements de l Informatique 1 Ensembles et fonctions TD: Ensembles, applications, dénombrement 1. On suppose que l ensemble de tous les

Plus en détail

Probabilités discrètes : exercices

Probabilités discrètes : exercices Université de Strasbourg Probabilités Département de mathématiques Agreg interne 2015-2016 Probabilités discrètes : exercices Vous pouvez me contacter à l adresse nicolas.juilletatmath.unistra.fr. J ai

Plus en détail

Relations Binaires Relations d équivalence sur un ensemble

Relations Binaires Relations d équivalence sur un ensemble Relations Binaires Relations d équivalence sur un ensemble MPSI 2 1 Généralités Soit E un ensemble non vide. Définition 1..1 On appelle relation binaire sur E le couple (E, G où G est un graphe de E dans

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

Exercices corrigés de SQ20

Exercices corrigés de SQ20 1 Exercices corrigés de SQ2 Corrigés TD 1 à 4 Printemps 215 responsable de l'uv : André Turbergue SQ2 TD1 : espaces probabilisés TD1 : espaces probabilisés 1 Énoncés Exercice 1. Calculer si possible une

Plus en détail

Correction des exemples. Mathieu EMILY

Correction des exemples. Mathieu EMILY Correction des exemples Mathieu EMILY Novembre 2005 Table des Matières Exemple_Exercice 1 Page 2 Exemple_Exercice 2 Page 3 Exemple_Exercice 3 Page 5 Exemple_Exercice 4 Page 6 Exemple_Exercice 5 Page 7

Plus en détail

TD 1 & 2 Rappels de probabilités

TD 1 & 2 Rappels de probabilités Master IF, ENS de Lyon Évaluation de performance 5 & 22 septembre 20 TD & 2 appels de probabilités lionel.rieg@ens-lyon.fr Probabilités discrètes. Calcul de probabilités Exercice Soient A et B des événements

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Modèles de Markov et bases de données Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale

Plus en détail

Cours d algebre pour la licence et le Capes

Cours d algebre pour la licence et le Capes Cours d algebre pour la licence et le Capes Jean-Étienne ROMBALDI 6 juillet 007 ii Table des matières Avant-propos Notation v vii 1 Éléments de logique et de théorie des ensembles 1 11 Quelques notions

Plus en détail

CHAPITRE II NOTIONS DE PROBABILITES

CHAPITRE II NOTIONS DE PROBABILITES CHAPITRE II NOTIONS DE PROBABILITES II.1. Un exemple : le poker Distribuer une main de poker (5 cartes sur 52) revient à tirer au hasard 5 cartes parmi 52. On appelle expérience aléatoire une telle expérience

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Mathématiques : statistiques et simulation

Mathématiques : statistiques et simulation Université de Picardie - LAMFA CNRS UMR 6140 PAF Amiens - Formation Enseignement des Mathématiques - 20 janvier 2012 (Extrait du document ressource pour la classe de seconde) Dans le sens commun des sondages,

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

Programme de l enseignement obligatoire commun de mathématiques Cycle terminal de la série sciences et technologies du management et de la gestion

Programme de l enseignement obligatoire commun de mathématiques Cycle terminal de la série sciences et technologies du management et de la gestion Programme de l enseignement obligatoire commun de mathématiques Cycle terminal de la série sciences et technologies du management et de la gestion L enseignement des mathématiques au collège et au lycée

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Éléments de logique et de théorie des ensembles

Éléments de logique et de théorie des ensembles 1 Éléments de logique et de théorie des ensembles Pour les exemples et exercices traités dans ce chapitre les ensembles usuels de nombres entiers, rationnels réels et complexes sont supposés connus, au

Plus en détail

Cours de mathématiques Terminale STMG

Cours de mathématiques Terminale STMG Cours de mathématiques Terminale STMG Chapitre 1 Information chiffrée...3 I Proportions...3 II Taux d'évolution...3 a) Détermination d'un taux d'évolution...3 b) Appliquer un taux d'évolution...4 III Taux

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

IUT d Orléans - Département d Informatique TD de Probabilités

IUT d Orléans - Département d Informatique TD de Probabilités IUT d Orléans - Département d Informatique TD de Probabilités Fiche 1 Dénombrement DENOMBREMENT : arrangements et combinaisons Le but de cette première partie est d introduire la fonction factorielle,

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

LEÇON N 5 : 5.1 Probabilité conditionnelle. Pré-requis : Opérations sur les ensembles, cardinaux ; Espaces probabilisés ; Calcul de probabilités.

LEÇON N 5 : 5.1 Probabilité conditionnelle. Pré-requis : Opérations sur les ensembles, cardinaux ; Espaces probabilisés ; Calcul de probabilités. LEÇON N 5 : Probabilité conditionnelle, indépendance de deux événements (on se limitera au cas où l ensemble d épreuves des fini). Applications à des calculs de probabilité. Pré-requis : Opérations sur

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007 Introduction aux probabilités Série n 3 Exercice 1 Une urne contient neuf boules. Quatre de ces boules portent le numéro

Plus en détail

Couple de variables aléatoires - Notion d indépendance.

Couple de variables aléatoires - Notion d indépendance. Couple de variables aléatoires - Notion d indépendance. Préparation au Capes - Université Rennes 1 On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux

Plus en détail

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE Statistiques et probabilités : Loi Normale Les I.P.R. et Formateurs de l Académie de LILLE Bulletin officiel spécial 8 du 13 octobre 2011 Cadre général : loi à densité Définition Une fonction f définie

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

COURS DE PROBABILITE 2ième année d économie et de gestion Semestre 1

COURS DE PROBABILITE 2ième année d économie et de gestion Semestre 1 COURS DE PROBABILITE 2ième année d économie et de gestion Semestre 1 Laurence GRAMMONT Laurence.Grammont@univ-st-etienne.fr Les solutions des exercices posés dans ce polycopié ne sont pas rédigées. October

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités Master Génie des Systèmes Industriels, mentions ACCIE et RIM Université du Littoral - Côte d Opale, La Citadelle Laurent SMOCH (smoch@lmpa.univ-littoral.fr)

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Chapitre Ce que dit le programme : Probabilités CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Objectifs visés par l enseignement des statistiques et probabilités à l occasion de résolutions de problèmes dans

Plus en détail

Fiche méthodologique Les pièges dans les dénombrements

Fiche méthodologique Les pièges dans les dénombrements Fiche méthodologique Les pièges dans les dénombrements BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Dans cette fiche, on résume quelques points techniques sur les dénombrements et la théorie des probabilités.

Plus en détail