2. u 3 = 16, u 7 = 1 et u p = 1 8.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "2. u 3 = 16, u 7 = 1 et u p = 1 8."

Transcription

1 EXERCICE 1 (u n ) est une suite arithmétique de raison a, déterminer l entier k dans chacun des cas suivants : 1. u 21 = 34, a=1,5 et u k = 1 2. u 10 = 64, u 5 = 14 et u k = 114. EXERCICE 2 (u n ) est une suite géométrique de raison q strictement positive, déterminer l entier p dans chacun des cas suivants : 1. u 6 = 4, q= 1 2 et u p = u 3 = 16, u 7 = 1 et u p = 1 8. EXERCICE 3 Soit (u n ) la suite définie par : u 0 = 16 et pour tout entier naturel n, u n+1 = 0,75 u n. 1. a) Quelle est la nature de la suite (u n )? b) Exprimer, pour tout entier naturel n, u n en fonction de n. c) Étudier la monotonie de la suite(u n ). d) On note S n la somme des n+1 premiers termes de la suite u n. Calculer S On a tracé ci-dessous dans un repère orthonormé, la courbe représentative de la fonction f définie pour tout réel x par f(x)=0,75x et la droite D d équation y=x. y D A1 M u 1 u 0 x A. YALLOUZ Page 1 sur 10

2 a) Construire sur le graphique les termes de la suite u 2, u 3,,u 11. b) Que peut-on conjecturer à propos de la limite de la suite (u n )? 3. À l aide de la calculatrice, déterminer le plus petit entier n tel que u n 0,1. 4. Montrer que pour tout entier n, S n = 64 ( 1 0,75 n+1). Vers quel réel tend S n quand n tend vers+? EXERCICE 4 Soit (u n ) la suite géométrique définie par : u 0 = 1 2 et pour tout entier naturel n, u n+1 = 8 5 u n. 1. a) Exprimer, pour tout entier naturel n, u n en fonction de n. b) Étudier le sens de variation de la suite(u n ). 2. a) Utiliser les droites d équations y=x et y=1,6x pour construire les huit premiers termes de la suite(u n ). y x b) Que peut-on conjecturer à propos de la limite de la suite (u n )? 3. À l aide de la calculatrice, déterminer le plus petit entier n tel que u n On note S la somme des n premiers termes de la suite u n. a) Montrer que pour tout entier n, S= 5(1,6n 1). 6 b) Vers quel réel tend S quand n tend vers+? A. YALLOUZ Page 2 sur 10

3 I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite(u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la suite géométrique. 2 PROPRIÉTÉ 1 Soit (u n ) une suite géométrique de raison q et de premier terme u 0 alors pour tout entier n, u n = u 0 q n 3 PROPRIÉTÉ 2 Si(u n ) une suite géométrique de raison q alors pour tout entier n et pour tout entier p, u n = u p q n p 4 MONOTONIE Soit (u n ) une suite géométrique de raison q et de premier terme u 0 donc : u n+1 u n = u 0 q n+1 u 0 q n = u 0 q n (q 1) La monotonie de la suite dépend du signe de u 0, q n et(q 1) Si q<0 alors q n est positif pour n pair, négatif pour n impair donc la suite n est pas monotone. Si q>0 alors la suite est monotone, croissante ou décroissante selon le signe du produit u 0 (q 1). Nous pouvons en déduire les deux théorèmes suivants THÉORÈME 1 Soit q un réel non nul. Si q<0 alors la suite(q n ) n est pas monotone. Si q>1 alors la suite(q n ) est strictement croissante. Si 0<q<1 alors la suite(q n ) est strictement décroissante. Si q=1 alors la suite(q n ) est constante. THÉORÈME 2 Soit (u n ) une suite géométrique de raison q non nulle et de premier terme u 0 non nul Si q<0 alors la suite(u n ) n est pas monotone. Si q>0 et u 0 > 0 alors la suite(u n ) a le même sens de variation que la suite(q n ). Si q>0 et u 0 < 0 alors la suite(u n ) a le sens de variation contraire de celui de la suite(q n ). 5 SOMME DE TERMES CONSÉCUTIFS Soit (u n ) une suite géométrique de raison q 1 et de premier terme u 0 alors pour tout entier n, u 0 + u 1 + +u n = n i=0 ( ) 1 q n+1 u i = u 0 1 q A. YALLOUZ Page 3 sur 10

4 Lycée JANSON DE SAILLY Cette formule peut se retenir de la façon suivante : La somme S de termes consécutifs d une suite géométrique de raison q 1 est : S=premier terme 1 qnombre de termes 1 q II LIMITE D UNE SUITE 1 LIMITE FINIE DÉFINITION Soit (u n ) une suite définie surnetlun réel. 1. Dire que la suite (u n ) admet pour limite le réel l signifie que tout intervalle ouvert de la forme ]l r;l+r[ contient tous les termes de la suite à partir d un certain rang n 0. On écrit : lim u n =l n + 2. Une suite qui admet pour limite un réel l est dite convergente. Autrement dit, une suite (u n ) est convergente vers un réel l si tous les termes de la suite à partir d un certain rang peuvent être aussi proches que voulu del. INTERPRÉTATION GRAPHIQUE Si on représente la suite convergente par un nuage de points dans un repère, à partir d un certain rang n 0, tous les points sont dans la bande délimitée par les droites d équation y=l r et y=l+r. u n l+r l l r n 0 n PROPRIÉTÉ La suite(u n ) converge vers un réellsi, et selement si, la suite(u n ) l est convergente vers un 0. A. YALLOUZ Page 4 sur 10

5 Lycée JANSON DE SAILLY 2 LIMITE INFINIE DÉFINITION On dit qu une suite (u n ) admet une limite égale à + quand n tend vers + si pour tout nombre réel A strictement positif, tous les termes de la suite sont supérieurs à A à partir d un certain rang n 0. On écrit : lim u n =+ n + Concrètement, une suite (u n ) tend vers + si u n est aussi grand que l on veut dès que n est suffisamment grand. INTERPRÉTATION GRAPHIQUE On a représenté ci-dessous une suite(u n ) ayant une limite égale à+ u n A n 0 n Pour tout entier nn 0, u n > A REMARQUES 1. De la même façon, on définit une limite égale à quand n tend vers + si pour tout nombre réel A strictement négatif, tous les termes de la suite sont inférieurs à A à partir d un certain rang n 0. On écrit : lim u n = n + 2. Une suite peut ne pas admettre de limite. Par exemple la suite de terme général( 1) n prend alternativement les valeurs 1 et 1. Elle n admet pas de limite. 3 LIMITES D UNE SUITE GÉOMÉTRIQUE THÉORÈME (admis) Soit q un réel strictement positif : Si 0<q<1 alors la suite géométrique de terme général q n converge vers 0 : lim n + qn = 0. Si q=1 alors la suite géométrique de terme général q n est constante et sa limite est 1. Si q>1 alors la suite géométrique de terme général q n a pour limite+ : lim n + qn =+. A. YALLOUZ Page 5 sur 10

6 COROLLAIRE Soit (u n ) une suite géométrique de premier terme u 0 non nul et de raison q strictement positive. Si 0<q<1 alors la suite(u n ) converge et lim n + u n = 0. Si q=1 alors la suite(u n ) est constante et égale à u 0. Si q>1 alors la suite(u n ) admet une limite infinie avec : lim u n = si u 0 < 0 et lim u n =+ si u 0 > 0 n + n + RECHERCHE D UN SEUIL À L AIDE D UN ALGORITHME EXEMPLE 1 Soit (u n ) la suite géométrique de raison 0,95 et de premier terme u 0 = 500 Comme 0<0,95<1 la suite(u n ) converge vers 0 : lim n ,95n = 0. L algorithme suivant permet d obtenir le seuil à partir duquel le terme général de la suite est inférieur à C est à dire déterminer le plus petit entier n 0 tel que pour tout entier nn 0, 500 0,95 n INITIALISATION : A=500 ; I = 0; TRAITEMENT : TANT_QUE A>10 12 FAIRE I prend la valeur I+ 1 ; A prend la valeur 0,95 A ; FIN TANT_QUE SORTIE : Afficher I PROGRAMME TEXAS CASIO PROGRAM : SEUIL ===== SEUIL ===== : 500 A 500 A : 0 I 0 I : While A > 10ˆ (-6) While A > 10ˆ(-6) : I + 1 I I + 1 I : 0.95*A A 0.95*A A : End WhileEnd : Disp I I La calculatrice affiche 660. Donc pour tout entier n600, 500 0,95 n EXEMPLE 1 Soit (u n ) la suite géométrique de raison 1,2 et de premier terme u 0 = 0,01 01,2>1 et u 0 < 0 donc la suite(u n ) est décroissante et lim n + 0,01 1,2n =. L algorithme suivant permet d obtenir le seuil à partir duquel le terme général de la suite est inférieur à C est à dire déterminer le plus petit entier n 0 tel que pour tout entier nn 0, 0,01 1,2 n < 10 9 INITIALISATION : A= 0,01 ; I = 0; TRAITEMENT : TANT_QUE A 10 9 FAIRE I prend la valeur I+ 1 ; A prend la valeur 1,2 A ; FIN TANT_QUE SORTIE : Afficher I La calculatrice affiche 139. Donc pour tout entier n139, 0,01 1,2 n < A. YALLOUZ Page 6 sur 10

7 III SUITES ARITHMÉTICO-GÉOMÉTRIQUES DÉFINITION Soit a et b deux réels. La suite (u n ) définie pour tout entier n, par la relation de récurrence u n+1 = au n + b et de terme initial u 0 est une suite arithmético-géométrique REMARQUE Si a=1 la suite est arithmétique. Si b=0 la suite est géométrique. Dans les autres cas, la suite n est ni arithmétique ni géométrique. ÉTUDIER UNE SUITE ARITHMÉTICO-GÉOMÉTRIQUE Soit a et b deux réels tels que a 1 et b 0.(u n ) la suite définie par u 0 et pour tout entier n, u n+1 = au n + b. REPRÉSENTATION GRAPHIQUE On trace la courbe représentative de la fonction affine f : x ax+b et la droite d équation y=x a<0 a>0 y y y=ax+b 1 y=ax+b 0 1 u 1 u 3 u 5 u 7 α u 8 u 6 u 4 u 2 u 0 x u 0 u 1 u 2 u 3 u 4 u 5 u 6 α x Le graphique permet d obtenir un certain nombre de conjectures à propos de la monotonie ou de la convergence de la suite. UNE SUITE AUXILIAIRE Si une suite arithmético-géométrique définie par une relation de récurrence du type u n+1 = au n +b est convergente, alors sa limite est l unique solution de l équation ax+b=x. Soit x= b avec a 1. Soit (v n ) la suite définie pour tout entier n, par v n = u n b. Montrons que la suite (v n) est une suite géométrique. En effet, pour tout entier n, v n+1 = u n+1 b = au n + b b = au n ab ( = a u n b ) Ainsi, pour tout entier n, v n = a v n donc(v n ) est une suite géométrique de raison a. A. YALLOUZ Page 7 sur 10

8 Par conséquent, pour tout entier n, v n = v 0 a n avec v 0 = u 0 b. On en déduit que pour tout entier n, u n = v 0 a n + b EXEMPLE Chloé dépose 1000 C sur un compte d épargne rémunéré au taux mensuel de 0,2% et choisit d y ajouter à la fin de chaque mois la somme de 250 C. On note u n le montant, en euros, du capital acquis au bout de n mois. 1. Exprimer u n+1 en fonction de u n. Le coefficient multiplicateur associé à un taux d intérêt de 0,2% est 1,002. Donc pour tout entier n, u n+1 = 1,002 u n Soit(v n ) la suite définie pour tout entier n, par v n = u n Montrer que v n est une suite géométrique dont on précisera la raison et le premier terme. Pour tout entier n, v n+1 = u n = 1,002 u n = 1,002 (u n ) = 1,002 v n Ainsi,(v n ) est une suite géométrique de raison 1,002 et de premier terme v 0 = = Exprimer u n en fonction de n. (v n ) est une suite géométrique de raison 1,002 et de premier terme v 0 = donc pour tout entier n, v n = ,002 n. Donc pour tout entier n, u n = ,002 n Étude de la suite(u n ). a) Variation Pour tout entier n, u n = ,002 n Donc pour tout entier n, u n+1 u n = ( ,002 n ) ( ,002 n ) = ,002 n ,002 n = ,002 n (1,002 1) = 252 1,002 n D où u n+1 u n > 0. Par conséquent, la suite(u n ) est strictement croissante. b) Limite Comme 1,002 > 1, lim n + 1,002n =+ donc lim n ,002n =+. c) Combien de mois sont nécessaires pour que le montant du capital disponible dépasse C? On cherche à déterminer le plus petit entier n 0 tel que pour tout entier nn 0, u n > L algorithme suivant permet d obtenir le seuil à partir duquel le terme général de la suite (u n ) est supérieur à A=1000 ; I = 0; TANT_QUE A15000 FAIRE I prend la valeur I+ 1 ; A prend la valeur 1,002 A+250 ; FIN TANT_QUE Afficher I La calculatrice affiche 53. Donc le capital disponible dépassera C au bout de 53 mois. A. YALLOUZ Page 8 sur 10

9 CORRECTION DU DM N O 1 (D après sujet bac Antilles Septembre 2008) Une association caritative a constaté que, chaque année, 20 % des donateurs de l année précédente ne renouvelaient pas leur don mais que, chaque année, 300 nouveaux donateurs effectuaient un don. On étudie l évolution du nombre de donateurs au fil des années. On note u n le nombre de donateurs lors de la n-ième année. 1. Sachant que u 1 = 1000, calculer u 2 et u 3. Chaque année, 80% des donateurs de l année précédente renouvellent leur don : u 2 = ,80+300=1100 u 3 = ,80+300= Montrer que, pour tout entier naturel n non nul, on a : u n+1 = 0,8 u n Chaque année, 80 % des donateurs de l année précédente renouvellent leur don et 300 nouveaux donateurs effectuent un don donc : Pour tout entier naturel n1, on a u n+1 = 0,8 u n On introduit la suite(v n ) définie pour tout entier naturel non nul n, par v n = 1500 u n. a) Montrer que (v n ) est une suite géométrique. Préciser sa raison et son premier terme. Pour tout entier naturel non nul n, v n+1 = 1500 u n+1 = 1500 (0,8 u n + 300) = ,8 u n = 0,8 (1500 u n ) = 0,8 v n Ainsi, pour tout entier naturel n1, on a v n+1 = 0,8 v n donc (v n ) est une suite géométrique de raison 0,8. D autre part, v 1 = 1500 u 1 soit v 1 = =500 (v n ) est la suite géométrique de raison 0,8 et de premier terme v 1 = 500 b) En déduire l expression de v n puis de u n en fonction de n. (v n ) est une suite géométrique de raison 0,8 et de premier terme v 1 = 500 donc : pour tout entier naturel n1, on a v n = 500 0,8 n 1 = 625 0,8 n Or pour tout entier naturel non nul n, v n = 1500 u n soit u n = 1500 v n. Donc pour tout entier naturel n1, u n = ,8 n c) Si la tendance se poursuit, combien y aura-t-il de donateurs dans dix ans? Le terme u 11 correspond au nombre de donateurs dix ans. u n = , Si la tendance se poursuit, il y aura environ 1446 donateurs dans dix ans. A. YALLOUZ Page 9 sur 10

10 Lycée JANSON DE SAILLY d) L association peut-elle espérer passer la barre des 1500 donateurs? Justifier. Méthode 1 : pour tout entier n non nul, u n 1500= 625 0,8 n Or pour tout entier n, 0,8 n > 0 d où pour tout entier n non nul, u n 1500<0 L association ne peut pas espérer dépasser la barre des 1500 donateurs. Méthode 2 : 0<0,8<1 donc lim n + 0,8n = 0. Par conséquent, lim n ,8n = Donc la suite(u n ) converge vers D autre part, u n+1 u n = ( ,8 n+1) ( ,8 n ) = 625 0,8 n 625 0,8 n+1 = 625 0,8 n (1 0,8) = 125 0,8 n D où, u n+1 u n > 0 donc la suite(u n ) est croissante. La suite(u n ) est croissante et converge vers 1500 donc pour tout entier n non nul, u n L association ne peut pas espérer dépasser la barre des 1500 donateurs. y Représentation graphique de la suite(u n ) 1500 u M M 10 u 11 9 u 10 9 M 8 8 M 7 u 7 M 6 u 6 M 5 u 5 M 4 u 4 M 11 M 12 M 13 u 3 M 3 u 2 M u 1 M x A. YALLOUZ Page 10 sur 10

u n+1 = qu n 100 100 (diminution) (augmentation) ou 1

u n+1 = qu n 100 100 (diminution) (augmentation) ou 1 I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite(u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2012, regroupe des documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2012, regroupe des documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polycopié conforme au programme 01, regroupe des documents distribués aux élèves en cours d année. CERTAINS CHAPITRES DU PROGRAMME NE SONT PAS TRAITÉS Année 013-014

Plus en détail

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite (u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la

Plus en détail

Chapitre 1 - Suites. Suites géométriques. I.1 Définition et propriétés

Chapitre 1 - Suites. Suites géométriques. I.1 Définition et propriétés Chapitre 1 - Suites I Suites géométriques I.1 Définition et propriétés TD 1 : Évolutions de populations Le premier janvier 2011, une ville A compte 350 000 habitants. A la même date, une ville B compte

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite (u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite I Exercices 1 Définition de suites Pour toutes les suites (u n ) définies ci-dessous, on demande de calculer u 1, u, u 3 et u 6 1 u n = 7n n + { u0 = u n+1 = u n + 3 3 u n est le n ième nombre premier

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Mathématiques Ch. 1 : Suites arithmétiques et géométriques

Mathématiques Ch. 1 : Suites arithmétiques et géométriques 1 - LYCÉE LOUIS PAYEN - BTS CGO Mathématiques Ch. 1 : Suites arithmétiques et géométriques Cours J-L NEULAT 1 Généralités sur les suites 1.1 Les différents modes de génération d une suite Un suite peut

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

Suites numériques. Sommaire :

Suites numériques. Sommaire : Suites numériques I Activité n o 2 page 295 Sommaire : II Généralités sur les suites numériques III Variations et bornes IV Suites arithmétiques V Suites géométriques VI Suites convergentes VII Représentation

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Exercice Devoir Commun : 3 heures -7..- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Soient f : R { } R, x x3 + x + x + (x + ), et C la courbe de f dans un repère orthonormé d unité, 5cm.. Limites.

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 17 octobre 2005 1 Suites On appelle suite numérique toute application de N ou une partie de N vers R. On notera par u n le terme général d une suite.

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES LIBAN 2015 Une entreprise artisanale produit des parasols. Elle en fabrique

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Sciences Po Paris 2012 Mathématiques Solutions

Sciences Po Paris 2012 Mathématiques Solutions Sciences Po Paris 202 athématiques Solutions Partie : Le modèle de althus odèle discret a Pour tout entier naturel n, on a P n+ P n = P n donc P n+ = +P n Par suite la suite P n est géométrique de raison

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

Suites : Calcul et comportement asymptotique.

Suites : Calcul et comportement asymptotique. 4 Chapitre 3 Suites : Calcul et comportement asymptotique. 3. Méthodes de définition. Comment définir une suite (u n ) n N de réels? Par l expression de son terme général, Par une formule de récurrence

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS

CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS Extrait Bac. ES - 2008 1) Une baisse de 25 % est compensée par une hausse, arrondie à l unité, de :

Plus en détail

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

Définition d une suite récurrente à l aide de la fonction ln

Définition d une suite récurrente à l aide de la fonction ln Définition d une suite récurrente à l aide de la fonction ln Thèmes. fonction ln, théorème des valeurs intermédiares, suite définie par récurrence : majoration, minoration, monotonie, convergence, eistence.

Plus en détail

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés.

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés. Suites numériques 1ère STG Introduction : Intérêts simpleset composés. On dispose d un capital de 1 000 euros que l on peut placer de deux façons différentes : à intérêts simples au taux annuel de 10%.

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Suites Géométriques et Arithmético-Géométriques

Suites Géométriques et Arithmético-Géométriques Suites Géométriques et Arithmético-Géométriques Table des matières 1 suites géométriques 2 1.1 exploitation dans une situation donnée........................... 2 1.1.1 activités..........................................

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

Baccalauréat STMG Polynésie 17 juin 2014

Baccalauréat STMG Polynésie 17 juin 2014 Baccalauréat STMG Polynésie 17 juin 2014 Durée : 3 heures EXERCICE 1 Cet exercice est un Q.C.M. 4 points Pour chaque question posée, quatre réponses sont proposées parmi lesquelles une seule est correcte.

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20 Fonctions affines Table des matières 1 généralités : (images, formule, variations, tableau de valeurs, courbe, équations, inéquations) 2 1.1 activité............................................... 3 1.2

Plus en détail

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés Chapitre I Suites Exercices 8, 9, 0, 3, 4, 6, 3, 3, 34 page 34 pour revoir les notions de première sur les suites (récurrence, sens de variation...) Suite géométrique. Définition Définition Une suite u

Plus en détail

Baccalauréat ST2S Antilles Guyane juin 2013 Correction

Baccalauréat ST2S Antilles Guyane juin 2013 Correction Baccalauréat ST2S Antilles Guyane juin 2013 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre d abonnements au service de téléphonie mobile en France entre fin 2001 et fin 2009, exprimé

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

MATHÉMATIQUES Enseignement spécifique et de spécialité. y=e x

MATHÉMATIQUES Enseignement spécifique et de spécialité. y=e x T le ES MATHÉMATIQUES Enseignement spécifique et de spécialité 0,4 y y=e x 0,3 0,2-3 -2 0,1-1 0 1 2 N (0;1) e y=lnx 1 un+1=au n + b 0 1 e 0 1 1 1 1 0 2 0 1 2 0 2 1 0 2 0 x Le polycopié regroupe les documents

Plus en détail

) est une suite croissante si et seulement si, pour tout entier n, u n + 1

) est une suite croissante si et seulement si, pour tout entier n, u n + 1 1> Généralités sur les suites numériques Définition Une suite numérique est une fonction définie sur 0 ou sur une partie de 0 Sens de variation d une suite La suite ( est une suite croissante si et seulement

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Baccalauréat STG CGRH Polynésie corrigé

Baccalauréat STG CGRH Polynésie corrigé EXERCICE 1 Baccalauréat STG CGRH Polynésie corrigé 8 points Le tableau ci-dessous donne les dépenses, en millions d euros, des ménages en France de 2000 à 2009 pour les programmes audio-visuels. cinéma

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante.

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante. Chapitre : Fonctions de référence I Fonctions affines Définition d'une fonction affine f est une fonction affine si, et seulement si, il existe deux réels a et b tels que pour tout x, f x ( ) = ax + b

Plus en détail

Corrigé, bac S, mathématiques

Corrigé, bac S, mathématiques Corrigé, bac S, mathématiques jeudi juin 0 Eercice 4 points Le plan est muni d un repère orthonormé (O; ı ; j) On considère une fonction f dérivable sur l intervalle [ 3; ] On dispose des informations

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

T.D. 1. Licence 2, 2014 15 - Université Paris 8

T.D. 1. Licence 2, 2014 15 - Université Paris 8 Mathématiques Financières Licence 2, 2014 15 - Université Paris 8 C. FISCHLER & S. GOUTTE T.D. 1 Exercice 1. Pour chacune des suites ci-dessous, répondre aux questions suivantes : Est-ce une suite monotone?

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE SESSION 014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL STS DURÉE DE L ÉPREUVE : heures COEFFICIENT : 3 Ce sujet comporte 5 pages numérotées de 1

Plus en détail

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction Baccalauréat STMG Nouvelle-alédonie 14 novembre 014 orrection EXERIE 1 7 points Dans cet exercice, les parties A, B et sont indépendantes. Le tableau suivant donne le prix moyen d un paquet de cigarettes

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

MATHÉMATIQUES Enseignement spécifique et de spécialité. y=e x. Ce polycopié regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES Enseignement spécifique et de spécialité. y=e x. Ce polycopié regroupe les documents distribués aux élèves en cours d année. T le ES MATHÉMATIQUES Enseignement spécifique et de spécialité 0,4 y y=e x 0,3 0, -3-0,1-1 0 1 N (0;1) e y=lnx 1 un+1=au n + b 0 1 e 0 1 1 1 1 0 0 1 0 1 0 0 x Ce polycopié regroupe les documents distribués

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION CHAPITRE 2 FONCTIONS I. INTRODUCTION Une fonction est «une machine à transformer des nombres». Par eemple, la fonction «carré» désigne la «machine» qui transforme les nombres en leurs carrés. Ainsi elle

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

66 exercices de mathématiques pour Terminale ES

66 exercices de mathématiques pour Terminale ES 3 novembre 205 66 exercices de mathématiques pour Terminale ES Stéphane PASQUET Sommaire Disponible sur http: // www. mathweb. fr 3 novembre 205 I Suites........................................ I. Suite

Plus en détail

Partiel - 12 mars 2014

Partiel - 12 mars 2014 Licence STS, semestre 4 013 14 Mathématiques pour l Informatique (Info 9) 1 mars 014 http://www.lri.fr/~paulin/mathinfo Partiel - 1 mars 014 L examen dure heures. L énoncé est composé de 5 pages. Toutes

Plus en détail

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros Cours de mathématiques Terminale S Enseignement obligatoire Jean-Paul Widehem 2009-2010 Lycée Roland Garros Table des matières partie 1. Récurrence et suites 1 Chapitre 1. Raisonnement par récurrence

Plus en détail

géométrique et u n = 3(2) n. Cela donne au total :

géométrique et u n = 3(2) n. Cela donne au total : Leçon N 2 : Les suites Rappels importants Il y a deux façons de décrire une suite On nous donne la fonction qui permet de fabriquer ces termes : u n = f (n), n N. Exemple : u n = n² n N, cela donne 0 ;

Plus en détail