I) Le temps des matrices. A- A propos des matrices. Quang-Thai NGO Ch 01. Difficulté ** Importance **** Objectifs

Dimension: px
Commencer à balayer dès la page:

Download "I) Le temps des matrices. A- A propos des matrices. Quang-Thai NGO Ch 01. Difficulté ** Importance **** Objectifs"

Transcription

1 Ch01 : Matrice Les matrices ont été introduites récemment au programme des lycées. Il s agit d outils puissants au service de la résolution de problèmes spécifiques à nos classes, en particulier les problèmes de modélisation et d évolution. Fondamentalement, les matrices sont des tableaux à deux dimensions sur lesquels on peut définir toutes les opérations classiques : somme, produit et produit avec un réel. Ce thème est propice à la mise en place d algorithmes. Difficulté ** Importance **** Objectifs Vocabulaire : matrice carrée, matrice ligne, matrice colonne Opérations sur les matrices : addition, produit Matrice inverse d une matrice carrée I) Le temps des matrices A- A propos des matrices Activité 1: Trois personnes placent leur argent le 31 décembre 014 dans deux banques. John place : 3000 à la Caisse d Epargne 800 à la Banque Postale Philippe place : 1000 à la Caisse d Epargne 1500 à la Banque Postale Éric place : 500 à la Caisse d Epargne 000 à la Banque Postale 1 ) Par facilité de visualisation, présenter ces informations dans un tableau à double entrée. Y a-t-il un seul tableau possible? ) Recopier le tableau choisi en supprimant les intitulés et en mettant le tout entre crochets. On obtient une matrice. Donner le nombre de lignes et de colonnes. Indiquer le nombre situé à l intersection de la première ligne et de la deuxième colonne de cette matrice et en donner une signification concrète. 3 ) Dans chacune des banques, le taux d intérêt annuel est de 3%. Représenter la situation au 1 er janvier 015 dans une nouvelle matrice. 4 ) Les conjoints de chacune des personnes précédentes placent également leur argent dans les mêmes banques avec les mêmes conditions. La matrice B donne les sommes placées dans chaque banque et par chaque conjoint : B = ( ) Représenter les sommes placées au 31 décembre 014 par chaque ménage. Une matrice de taille m n est un tableau de nombres formé de m lignes et n colonnes. Une telle matrice s'écrit sous la forme : a 11 a 1n A = ( ) = (a ij ) a mn a mn Les nombres a ij sont appelés les coefficients de la matrice A se trouvant à la i-ième ligne et j-ième colonne. Mnémotechnique : Dans le coefficient a ij, i représente une ligne et j une colonne. Un moyen de retenir est de penser au Président américain : Lincoln (ligne - colonne). Exemple 1: A = ( 5 4 ) est une matrice de taille Exemple : Il existe divers formats de matrices. En voici quelques spécimens! Les vecteurs colonnes ou les matrice colonnes de dimension n sont des matrices de dimension n 1 : 3

2 a 1 a ( ) a n Souvent, c'est par une matrice colonne que l'on représente les coordonnées d'un vecteur dans le plan, dans l'espace et même ailleurs. Les vecteurs lignes de dimension n sont des matrices de dimension 1 n. Elles comportent donc une ligne et n colonnes. Elles sont de la forme (a 1 a n ). Là encore, c'et souvent par une matrice ligne que l'on représente les coordonnées d'un point ou d'un vecteur dans le plan ou l'espace. Une matrice de taille n n est appelée une matrice carrée. Exemple 3: B = ( 1 3 ) est une matrice carrée de taille. 7 Parmi les matrices carrées d'ordre 3, il en est deux assez particulières : 0 0 La première est la matrice nulle. Tous ses coefficients sont nuls. Il s'agit de ( ) 0 0 La matrice identité, tous ses coefficients sont nuls sauf ceux de sa diagonale qui sont égaux à 1 : 1 0 ( ) 0 1 Deux matrices sont égales si, et seulement si, elles ont la même taille et ont les coefficients égaux placés aux mêmes positions. B- Opérations sur les matrices Maintenant que nous avons une idée de ce que sont les matrices, nous allons pouvoir les opérer. Sortez les bistouris! Soit A et B deux matrices de même taille et λ un nombre réel. La somme A + B est la matrice dont les coefficients sont obtenus par addition à chaque position deux à deux des coefficients de A et B. λ A est la matrice dont les coefficients sont obtenus en multipliant tous les termes de A par λ. Remarque : Cette définition montre qu'il n'est possible d'additionner que des matrices de même taille. Exemple 4 : A = ( ) et B = (1 ), alors A + B = ( ) = (3 7 6 ) 3 B = ( ) = ( ), Soit A, B et C trois matrices carrées de même taille, λ et λ deux réels. On a les propriétés suivantes : - Commutativité : A + B = B + A - Associativité : (A + B) + C = A + (B + C) - Distributivité : λ(a + B) = λa + λb (λ + λ )A = λa + λ A (λ(λ A) = (λλ )A (λa)b = A(λB) = λ(a B) Dire que A est l'opposé de B signifie que A + B = 0. Exemple 5 : Résoudre 3. [X ( )] + (0 ) = 5. X + ( ) 4

3 On considère une matrice A de taille (m, n) et une matrice B de taille (n, p). Le produit AB est égal à la matrice C de taille (m, p) telle que le terme de position (i, j) de C est égal à la somme des produits de la i-ème ligne de A par la j-ème colonne de B. Ce schéma résume concrètement les opérations à faire : Remarque : A l'école primaire, vous avez appris à poser vos multiplications. Une astuce similaire existe pour 1 le produit matriciel : par exemple multiplions les matrice A = ( 0) et B = ( on écrit ces deux matrices dans un tableau : le premier sur la gauche et le second sur le haut nde matrice 1 ). Pour ce faire, ère matrice = 4 1 ( ) + 1 = = = 1-0 ( ) = 4 ( ) ( ) = 4 ( ) = 6 ( ) = = 5 1 ( ) = = = 1 Matrice produit Cette disposition présente l avantage d identifier aisément la ligne et la colonne à multiplier, ce qui réduit les 1 risques d erreurs : ( 0) ( ) = ( ) Remarque : AB n existe pas forcément! Pour pourvoir définir la multiplication AB, le nombre de colonnes de A doit être égal au nombre de lignes de B. Ainsi pour A = ( ) et = (3 ), il est possible de définir AB mais pas BA! En effet : 4 nde matrice - 1 ère matrice ? 1 - Pas de matrice produit Soit A, B et C trois matrices carrées de même taille et un réel k. a) Associativité : (A B) C = A (B C) = A B C b) Distributivité : A (B + C) = A B + A C et (A + B) C = A C + B C c) (ka)b = A(kB) = k(a B) Remarque : La multiplication de matrices n'est pas commutative : A B B A. Prenez A = (1 ) et B = ( 1 5 ). 5

4 Méthode : Matrice et calculatrice Il est possible d entrer une matrice dans la calculatrice, d affiche son terme et de mener des opérations sur les matrices. Par exemple, on peut entrer la matrice A = ( 3 3 ) TI Casio Accéder au menu Matrices Choisir la matrice A Indiquer les dimensions de la matrice Entrer les termes de la matrice Revenir à l écran de calcul Rappeler la matrice à l écran Rappeler un terme de la matrice L ajout de Frac permet l affichage des éléments sous forme fractionnaire C- Matrice inverse d une matrice carrée Comme pour les nombres réels, il est possible de définir l inverse d une matrice. Mais comme le produit matriciel n est pas commutatif, on doit parler de produit à gauche et produit à droit. On dit qu une matrice carrée A d ordre n est inversible lorsqu il existe une matrice carrée B telle que AB = BA = I n La matrice B est appelée la matrice inverse de A, on la note A 1. Remarque : Lorsqu elle existe, la matrice inverse est unique et on a AA 1 = A 1 A = I n 6

5 Méthode : Comment déterminer l inverse d une matrice? On souhaite calculer l inverse de la matrice A = ( 0 1 ). 1 ) On peut utiliser la calculatrice : pour ce faire, on saisit avec une TI On obtient : ) On peut aussi utiliser la méthode du pivot de Gauss : ( ) ( ) L 1 L ( ) L 1 L 1 L ( ) L 1 L La matrice inverse est donnée à gauche : ( ). La matrice carrée A = ( a b ) d ordre est inversible ssi son déterminant det(a) = ad bc est non nul. c d Si tel est le cas, on a : A 1 = 1 ( d b ad bc c a ). Méthode : Inverse d une matrice d ordre Prenons comme exemple A = ( ). 1 ) Calcul du déterminant On a : det(a) = 3 7 = = 1. A est donc inversible. 5 ) Application de la formule On obtient : A 1 = 1 ( d b ad bc c a ) = ( ). Vérification : AA 1 = ( ) ( ) = ( ). II) Applications A- Résolution de système d équations à deux inconnues x 3y = 7 On considère le système (S) suivant : { x + 5y = 3 On pose : A = ( ), X = (x y ) et B = ( 7 3 ). x 3y On a alors : AX = ( ) et ainsi, le système peut s'écrire AX = B. x + 5y Soit A une matrice carrée inversible, alors le système d équations AX = B admet une unique solution : X = A 1 B Méthode : Comment résoudre un système d équations à l aide d une matrice inversible? x 3y = 7 Résoudre le système (S) suivant : { x + 5y = 3 En posant : A = ( ), X = (x 7 y ) et B = ( ), on obtient : AX = B. 3 7

6 1 ) Calcul de l inverse de A : a- det(a) = 5 1 ( 3) = b- A 1 = 1 ( ) = ( ) ) Solution D où x = et y = 1. X = ( x y ) = A 1 B = ( ) ( 7 3 ) = ( 1 ) B- Matrice de Léontief Le modèle de Léontief est un modèle économique permettant de prévoir l influence des changements dans un secteur d activité ou le changement de consommation sur le reste de l économie. Cette modélisation économique a été développée par Wassily Leontief (prix Nobel d économie 1973). Considérons un pays virtuel, sans échange extérieur, où l économie très simplifiée se compose de n secteurs. Chaque secteur consomme des productions des autres secteurs et, éventuellement, une partie de sa propre production : ce sont les consommations intermédiaires. Le reste correspond à la consommation finale (ou demande). On appelle - coefficient technique le rapport entre la consommation intermédiaire d un produit par une branche et la production totale de la branche - la matrice technologique C, la matrice des coefficients techniques (c est une matrice carrée d ordre n). La relation "production = consommations intermédiaires + consommation finale" se traduit par la relation matricielle suivante : P = CP + F qui s écrit aussi P CP = F, d où P(I n C) = F. On appelle la matrice de Leontief la matrice L = I n C. Si elle est inversible, la matrice production P est telle que P = L 1 F. Exemple 6 : Soit un pays fictif sans échanges extérieures, dont l économie se décompose en deux branches : l agriculture et l industrie L agriculture : la production est de répartie en consommation intermédiaires consommés par l industrie (industrie agro-alimentaire, ) consommés par l agriculture elle-même (engrais verts, ). Le reste en consommation finale, soit , disponible pour satisfaire les besoins de la population. L industrie : la production est de répartie en consommations intermédiaires consommés par l agriculture (engrais chimique, énergie, machines, ) consommés par l industrie elle-même (énergie, machine, ) Le reste en consommation finale, soit , disponible pour satisfaire les besoins de la population. Donnons un tableau entrées-sorties pour deux secteurs (agriculture et industrie). Ce tableau décrit et synthétise les opérations en branche d activité : Consommation intermédiaire Consommation finale Production S 1 S total Agriculture S Industrie S La matrice des coefficients technologiques est donnée par : C = = ( ,1 0,4 ) = ( ,06 0, ) ( ) La matrice de Leontief est définie par : L = I C = ( 1 0 0,1 0,4 0,9 0,6 ) ( ) = ( 0 1 0,06 0, 0,94 0,78 ) L 1 0, ,47393 = ( 0,745 0,7109 ) 8

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes.

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes. Chapitre : Calcul matriciel Spé Maths - Matrices carrées, matrices-colonnes : opérations. - Matrice inverse d une matrice carrée. - Exemples de calcul de la puissance n-ième d une matrice carrée d ordre

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Les matrices. 1 Définitions. 1.1 Matrice

Les matrices. 1 Définitions. 1.1 Matrice Les matrices 2012-2013 1 Définitions 11 Matrice Définition 1 Une matrice m n est un tableau de nombres à m lignes et n colonnes Les nombres qui composent la matrice sont appelés les éléments de la matrice

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Séquence 1. Matrices - Applications

Séquence 1. Matrices - Applications Séquence 1 Matrices - Applications Sommaire 1. Pré-requis 2. Notion de matrice Addition-Multiplication par un réel 3. Multiplication de matrices 4. Applications 5. Synthèse de la séquence 6. Exercices

Plus en détail

Arthur Cayley (1821-1895)

Arthur Cayley (1821-1895) Arthur Cayley (1821-1895) Mathématicien britannique, il fait partie des fondateurs de l'école britannique moderne de mathématiques pures. Il est considéré comme l'inventeur des matrices. Dès 1854, il a

Plus en détail

A. 1. Définitions 96/154. Cas particuliers

A. 1. Définitions 96/154. Cas particuliers I II III IV V VI VII VIII Cours de Mathématiques IUT Orsay DUT INFORMATIQUE A - Semestre 0-0 Introduction Wims Calcul ensembliste Relations binaires, applications Logique Raisonnements par récurrence,

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

en utilisant un point-virgule.

en utilisant un point-virgule. 6 Chapitre Chapitre 6. Géométrie analytique Ce chapitre présente les possibilités de votre calculatrice dans le domaine de la géométrie analytique, tout particulièrement pour les problèmes liés aux espaces

Plus en détail

Matrices. 1. Définition. Exo7. 1.1. Définition

Matrices. 1. Définition. Exo7. 1.1. Définition Exo7 Matrices Vidéo partie 1 Définition Vidéo partie 2 Multiplication de matrices Vidéo partie 3 Inverse d'une matrice : définition Vidéo partie 4 Inverse d'une matrice : calcul Vidéo partie 5 Inverse

Plus en détail

Opérations sur les matrices. Novembre 2010

Opérations sur les matrices. Novembre 2010 Opérations sur les matrices Dédou Novembre 2010 Exemple d addition La somme de c est ( 2 3 5 4 6 7 et ( 3 4 6 7 8 8 ( 1 1 1 3 2 1. Exo 1 Calculez la somme de ( 2 2 3 5 et ( 5 7 4 1. Carte de visite des

Plus en détail

Cours de mathématiques M22 Algèbre linéaire

Cours de mathématiques M22 Algèbre linéaire Cours de mathématiques M22 Algèbre linéaire λ u u + v u v u Exo7 Sommaire Systèmes linéaires 3 Introduction aux systèmes d équations linéaires 3 2 Théorie des systèmes linéaires 7 3 Résolution par la méthode

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Algèbre linéaire. 1 Espaces vectoriels R n. Jean-Paul Davalan. 1.1 Les ensembles R n. 1.2 Addition dans R n. (R n, +) désigne R n muni de l addition.

Algèbre linéaire. 1 Espaces vectoriels R n. Jean-Paul Davalan. 1.1 Les ensembles R n. 1.2 Addition dans R n. (R n, +) désigne R n muni de l addition. Algèbre linéaire. Jean-Paul Davalan 2001 1 Espaces vectoriels R n. 1.1 Les ensembles R n. Définition 1.1 R 2 est l ensemble des couples (x, y) de deux nombres réels x et y. D une manière générale, un entier

Plus en détail

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan Exo7 Systèmes linéaires Vidéo partie 1. Introduction aux systèmes d'équations linéaires Vidéo partie 2. Théorie des systèmes linéaires Vidéo partie 3. Résolution par la méthode du pivot de Gauss 1. Introduction

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Algèbre Linéaire. Bachelor 1ère année 2008-2009. Sections : Matériaux et Microtechnique ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Algèbre Linéaire Bachelor ère année 28-29 Sections : Matériaux et Microtechnique Support du cours de Dr Lara Thomas Polycopié élaboré par : Prof Eva Bayer Fluckiger

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 18 octobre 2004 40 Chapitre 3 Vecteurs dans R m Dans ce chapitre, nous allons nous familiariser avec la notion de vecteur du point de vue algébrique. Nous reviendrons

Plus en détail

MATHÉMATIQUES - SPÉCIALITÉ. Table des matières

MATHÉMATIQUES - SPÉCIALITÉ. Table des matières MATHÉMATIQUES - SPÉCIALITÉ F.HUMBERT Table des matières Chapitre A - Congruences 2 Chapitre B - PGCD 5 Chapitre C - Nombres premiers 11 Chapitre D - Matrices et évolution de processus 14 Chapitre E - Matrices

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

[ [ [ ] 1. Définitions et Vocabulaire. Chapitre 3 Calcul matriciel. a. Définitions d'une matrice

[ [ [ ] 1. Définitions et Vocabulaire. Chapitre 3 Calcul matriciel. a. Définitions d'une matrice Chapitre Calcul matriciel. Définitions et Vocabulaire a. Définitions d'une matrice Définition Une matrice de dimension n p est un tableau de nombres comportant n lignes et p colonnes s [ 8 6 0 [ 6 8 0

Plus en détail

Notes de cours de spé maths en Terminale ES

Notes de cours de spé maths en Terminale ES Spé maths Terminale ES Lycée Georges Imbert 05/06 Notes de cours de spé maths en Terminale ES O. Lader Table des matières Recherche de courbes sous contraintes, matrices. Systèmes linéaires.......................................

Plus en détail

A. Déterminant d une matrice carrée

A. Déterminant d une matrice carrée IUT ORSAY Mesures Physiques Déterminants Initiation à la diagonalisation de matrice Cours du ème Semestre A Déterminant d une matrice carrée A-I Définitions élémentaires Si A est la matrice ( a ) on appelle

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Cours de Mathématiques II Chapitre 1. Algèbre linéaire

Cours de Mathématiques II Chapitre 1. Algèbre linéaire Université de Paris X Nanterre UFR Segmi Année 7-8 Licence Economie-Gestion première année Cours de Mathématiques II Chapitre Algèbre linéaire Table des matières Espaces vectoriels Espaces et sous-espaces

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Algèbre 2 - L1 MIASHS/Lettres-Maths. UFR MIME, Université Lille 3.

Algèbre 2 - L1 MIASHS/Lettres-Maths. UFR MIME, Université Lille 3. Algèbre 2 - L1 MIASHS/Lettres-Maths AMIRI Aboubacar UFR MIME, Université Lille 3. 10 avril 2015. Université Lille 3 1 Définitions et notations Quelques matrices particulières Matrice d une famille sur

Plus en détail

MAT1702 A - SOLUTIONS DU TEST #2 - VERSION A

MAT1702 A - SOLUTIONS DU TEST #2 - VERSION A MAT702 A - SOLUTIONS DU TEST #2 - VERSION A. (5 points) Étant donné A 3 et B. 0 Pour chacune des opérations matricielles ci-dessous, calculez la matrice résultante si elle existe. Si l opération n est

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

Matrices et déterminants

Matrices et déterminants Matrices et déterminants Matrices Définition.. Une matrice réelle (ou complexe) M = (m i,j ) (m, n) à m lignes et n colonnes est un tableau à m lignes et n colonnes de réels (ou de complexes). Le coefficient

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

C H A P I T R E 2 C A L C U L S A L G E B R I Q U E S

C H A P I T R E 2 C A L C U L S A L G E B R I Q U E S Classe de Troisième C H A P I T R E C A L C U L S A L G E B R I Q U E S UTILISER DES LETTRES...4 EXPRESSIONS ÉQUIVALENTES...6 VOCABULAIRE DU CALCUL LITTÉRAL...7 RÉDUCTIONS D'ÉCRITURES...9 DÉVELOPPER UN

Plus en détail

Feuille 5 : Exercices sur les déterminants, quelques corrections

Feuille 5 : Exercices sur les déterminants, quelques corrections Université de Poitiers Mathématiques L SPIC, Module 2L2 2/2 Feuille 5 : Exercices sur les déterminants, quelques corrections Exercice 3 : Dans cet exercice, pour obtenir directement les polnômes sous forme

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Université Joseph Fourier, Grenoble. Calcul matriciel. Bernard Ycart

Université Joseph Fourier, Grenoble. Calcul matriciel. Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Calcul matriciel Bernard Ycart Ce chapitre est essentiellement technique et ne requiert pas d autre connaissance théorique que celle des espaces vectoriels

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Chapitre 2. 1 2.3. Réciproque d une application linéaire

Chapitre 2. 1 2.3. Réciproque d une application linéaire Chapitre 2 2 Réciproque d une application linéaire On commence par rappeler le concept d application inversible Fonctions inversibles Une application T : X Y est dite inversible si, pour tout y Y, l équation

Plus en détail

Université Joseph Fourier, Grenoble. Systèmes linéaires. Bernard Ycart

Université Joseph Fourier, Grenoble. Systèmes linéaires. Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Systèmes linéaires Bernard Ycart Si vous savez déjà résoudre un système linéaire par la méthode de Gauss, vous n apprendrez pas grand chose de neuf dans

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

Équations et inéquations du 1 er degré

Équations et inéquations du 1 er degré Équations et inéquations du 1 er degré I. Équation 1/ Vocabulaire (rappels) Un équation se présente sous la forme d'une égalité constituée de nombres, de lettres et de symboles mathématiques. Par exemple

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R)

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R) Matrices Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes un tableau rectangulaire de nombres réels comportant n lignes et p colonnes } }{{}

Plus en détail

Exercices Corrigés Matrices 1 2 A = 2 1

Exercices Corrigés Matrices 1 2 A = 2 1 Exercices Corrigés Matrices Exercice Considérons les matrices à coefficients réels : A =, B = 4 C =, D = 0, E = Si elles ont un sens, calculer les matrices AB, BA, CD, DC, AE, CE Exercice extrait partiel

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements 3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail

Chap. I. Calcul Matriciel

Chap. I. Calcul Matriciel Printemps 2010 Chap. I. Calcul Matriciel 1 Chap. I. Calcul Matriciel Printemps 2010 Printemps 2010 Chap. I. Calcul Matriciel 2 Dans tout ce qui suit, K désigne R ou C. 1 Dénitions et propriétés Un tableau

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C.

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C. Matrices Dans tout ce chapitre, K désigne R ou C Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes à coefficients dans K tout tableau rectangulaire

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

CHAPITRE 6 : Tableaux. Définition. Tableaux à une dimension (Vecteurs)

CHAPITRE 6 : Tableaux. Définition. Tableaux à une dimension (Vecteurs) Année Universitaire 2006/2007 CHAPITRE 6 : Tableaux Définition Tableaux à une dimension (Vecteurs) Déclaration ; Mémorisation M ; Tableaux à plusieurs dimensions Déclaration Tableaux à deux dimensions

Plus en détail

LES DÉTERMINANTS DE MATRICES

LES DÉTERMINANTS DE MATRICES LES DÉTERMINANTS DE MATRICES Sommaire Utilité... 1 1 Rappel Définition et composantes d'une matrice... 1 2 Le déterminant d'une matrice... 2 3 Calcul du déterminant pour une matrice... 2 4 Exercice...

Plus en détail

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22...

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22... Chapitre 3 Matrices 1 Définitions et généralités Définition 11 Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a 12 a 1q a 21 a 22 a 2q A a p1 a p2 a ps Les coefficients a ij,

Plus en détail

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 Chapitre 13 Calcul matriciel Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 On note K = R ou C Mathématiques PTSI (Lycée Déodat de Séverac)

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

Algorithmes (2) Premiers programmes sur calculatrice. Programmation sur calculatrice TI. codage

Algorithmes (2) Premiers programmes sur calculatrice. Programmation sur calculatrice TI. codage Objectifs : lgorithmes () Premiers programmes sur calculatrice - passer de la notion d algorithme à la notion de programme - aborder la notion de langage de programmation - s initier à la programmation

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

VI- Des transistors aux portes logiques. Conception de circuits

VI- Des transistors aux portes logiques. Conception de circuits 1 VI- Des transistors aux portes logiques. Conception de circuits Nous savons que l ordinateur traite uniquement des instructions écrites en binaire avec des 0 et des 1. Nous savons aussi qu il est formé

Plus en détail

UNIVERSITE PAUL SABATIER 2008/2009. Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le nombre réel (ou complexe)

UNIVERSITE PAUL SABATIER 2008/2009. Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le nombre réel (ou complexe) UNIVERSITE PAUL SABATIER 2008/2009 YjY L1 - PCP - DETERMINANTS (COURS-EXERCICES) YjY 1 Déterminant, définition, propriètés Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le

Plus en détail

Division de Polynômes

Division de Polynômes LGL Cours de Mathématiques 00 Division de Polynômes A INTRODUCTION Motivations: * Résoudre des équations d un degré supérieur à * Représenter des fonctions algébriques en se basant et sur des fonctions

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Exercice 1 : Exécutez un algorithme Considérez l algorithme suivant. Variables A, B, C en Entier; Début Lire A; Lire B; TantQue B 0 C A; TantQue

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48 1 CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES 9E S, L, M, GnivA NA DÉPARTEMENT DE L INSTRUCTION PUBLIQUE GENÈVE 1995 11.038.48 TABLE DES MATIÈRES 3 Table des matières 1 Les ensembles

Plus en détail

M0SE 1003 TP d algèbre sur Scilab : Matrices, test "if-then-else" TP 2

M0SE 1003 TP d algèbre sur Scilab : Matrices, test if-then-else TP 2 M0SE 1003 TP d algèbre sur Scilab : Matrices, test "if-then-else" TP 2 Essayez les commandes, observez les réponses de Scilab, répondez aux questions, puis effectuer les exercices. Création de matrices

Plus en détail

1/2 2/2. 2. Matrices. Sections 2.4 et 2.5 MTH1007. J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016.

1/2 2/2. 2. Matrices. Sections 2.4 et 2.5 MTH1007. J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016. 2. Matrices Sections 2.4 et 2.5 MTH1007 J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016 (v4) MTH1007: algèbre linéaire 1/18 Plan 1. Les règles des opérations matricielles 2.

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées 48 Chapitre 4 Réduction des endomorphismes et des matrices carrées La motivation de ce chapitre est la suivante. Étant donné un endomorphisme f d un espace E de dimension finie, déterminé par sa matrice

Plus en détail

Mécanique des solides déformables

Mécanique des solides déformables Mécanique des solides déformables Auteur Michel MAYA 1 Descriptions 2 Représentations graphiques Ce cours est mis à disposition selon les termes de la licence Creative Commons Paternité + Pas d utilisation

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Congruences et théorème chinois des restes

Congruences et théorème chinois des restes Congruences et théorème chinois des restes Michel Van Caneghem Février 2003 Turing : des codes secrets aux machines universelles #2 c 2003 MVC Les congruences Développé au début du 19ème siècle par Carl

Plus en détail

Guide de formation. EasyCruit

Guide de formation. EasyCruit Guide de formation EasyCruit Contents INTRODUCTION... 3 PRÉSENTATION ET NAVIGATION... 3 CRÉATION D UN PROJET DE RECRUTEMENT... 5 ETAPE 1 : Nom interne du projet... 5 ETAPE 2 : Associer l offre au bon département...

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail