Calcul intégral. II Intégrale d une fonction 4

Dimension: px
Commencer à balayer dès la page:

Download "Calcul intégral. II Intégrale d une fonction 4"

Transcription

1 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions I. Clculs de primitives I.. Primitives des fonctions usuelles I.. Opértions sur les primitives II Intégrle d une fonction 4 III Interpréttion grphique : clcul d ire 5 III. Aire d un fonction positive III. Aire d une fonction négtive III. Aire d une fonction quelconque : découpge d ire IV Propriétés de l intégrle 6 IV. Reltion de Chsles IV. Linérité IV. Inéglités IV.4 Inéglité de l moyenne IV.5 Inéglité des ccroissements finis V Méthodes de clcul d intégrles 9 V. Intégrtion pr prtie V. Chngement de vribles V.. Chngement de vrible du typex x +β V.. Chngement de vrible du typex αx lorsqueα V.. Cs générl : chngement de vrible du typex ϕ(x)

2 BTS DOMOTIQUE Clcul intégrl 8- Dns tout le chpitre,etbsont deux réels d un intervllei bornes incluses tels que b. I Primitives I. Définitions Définition Soitf une fonction définie sur un intervllei. On ppelle primitive def suri toute fonctionf définie et dérivble suri vérifint F (x) =f(x) pour toutx R. Exemple Considérons l fonctionf définie sur R prf(x) = x. L fonctionf définie sur R prf(x) =x est une primitive def sur R puisquef (x) =f(x). L fonctiongdéfinie sur R prg(x) =x + est ussi une primitive def sur R puisqueg (x) =f(x). Exemple Soitf l fonction définie sur R prf(x) = primitive def. On clculef, l dérivée def et on vérifie que l on obtientf : F x (x) = x + + = x x + =f(x). x x +, lors l fonctionf définie surrprf(x) = x + +π est une Propriété Soitf une fonction définie sur un intervllei de R,k un réel,x I ety R fixés. Sif est dérivble suri, lorsf possède u moins une primitive suri. Sif dmet une primitivef suri, les primitives def sont les fonctions du typef(x) +k Sif est dérivble suri, il existe une unique primitivef def suri telle quef(x ) =y. Exemple Les fonctionsf (x) = 4 x4,f (x) = 4 x4 +,F (x) = 4 x4 +,...,F k (x) = 4 x4 +k veck R sont toutes des primitives de l fonctionsf. Cependnt, il n existe qu une unique primitivef def vérifintf() = : il s git def. I. Clculs de primitives L objet de ce prgrphe est de présenter quelques techniques simples permettnt l obtention de primitives de fonctions données sur un intervlle déterminé. --

3 BTS DOMOTIQUE Clcul intégrl 8- I.. Primitives des fonctions usuelles L lecture du tbleu des primitive se fit en lisnt celui des dérivées «à l envers». Les fonctions f suivntes sont définies, dérivbles sur l intervlle I, n est un entier reltif différent de. Obtention de primitives pr lecture inverse du tbleu des dérivées : f(x) une primitive F(x) conditions k I = R x I = R x n x n+ I = R sin> n + I = R sin< x I = R x x I = R x + cosx sinx I = R sinx cosx I = R e x e x I = R x lnx I = R + Remrque Pour obtenir toutes les primitives d une fonction f donnée, il suffit de rjouter une constnte. Exemple 4 Une primitive de l fonctionf définie sur R prf(x) =x 8 estf(x) = 9 x9. Une primitive de l fonctionf définie sur R + prf(x) = estf(x) = x8 7x 7. I.. Opértions sur les primitives u etvsont des fonctions de primitivesu etv sur un intervllei. Tbleu des opértions sur les primitives : Forme de l fonction Une primitive Conditions u +v U +V k u k U u u n u n+ n N n + u u n (n )u n n N u u u(x)> u u cosu u sinu u e u u u sinu cosu e u lnu u(x)> --

4 BTS DOMOTIQUE Clcul intégrl 8- Exemple 5 On cherche à déterminer dns chcun des cs suivnt une primitivef de le fonctionf sur l intervllei : f(x) = 4x eti= R :F(x) = 4 x = 4x. f(x) = x(x ) 5 eti= R :f(x) = (x ) (x ) 5 doncf(x) = (x )6. 6 f(x) = x 6 etx> :f(x) = (x 6) x 6 doncf(x) = x 6. f(x) = x + cos(x) 6 sin(x ) eti= R :f(x) = x + (x) cos(x) (x ) sin(x ) doncf(x) =x + sin(x) + cos(x ). f(x) = 9e x eti= R :f(x) = ( x ) e x donc :F(x) = e x. f(x) = 4x x x+ eti= R :f(x) = (x x+) x x+ donc :F(x) = ln(x x+). II Intégrle d une fonction Définition On ppelle intégrle def sur [;b ] le nombre réelf(b) F() oùf est une primitive quelconque def suri. Il est noté f(x)dx =F(b) F(). Exemple 6 Clcul de l intégrle : xdx : Une primitive def(x) =x estf(x) = x. donc, xdx =F() F() = 9 4 = 5. Remrque L intégrle d une fonctionf sur [;b ] est indépendnte du choix de l primitivef. On note ussi Dns l écriture b f(x)dx = [F(x)] b =F(b) F(). f(x)dx, l vriblexest «muette», ce qui signifie que f(x)dx = Ledx oudt détermine l vrible pr rpport à lquelle on intègre l fonction :x, out. f(t)dt =

5 BTS DOMOTIQUE Clcul intégrl 8- III III. Interpréttion grphique : clcul d ire Aire d un fonction positive Propriété Sif est une fonction positive sur [;b ], lors f(x)dx est égl à l ire du domine compris entre l courbe def, l xe des bcsisses et les droites d équtionsx = etx =b exprimée en unité d ire. Exemple 7 Clcul de l ire du domine compris entre l courbe d éqution x, l xe des bcsisses, et les droites d équtionsx = etx = 4 dns un repère orthonormé (O; i ; j ) d unité grphique cm : 4 4 x dx = [ln(x)]4 = ln 4 ln = ln 4 + ln x dx = ln 8 = ln U.A., 8 cm. 4 III. Aire d une fonction négtive Si l fonctionf est négtive, lors l fonction f est positive et les courbes sont symétriques pr rpport à l xe des bscisses. Dns ce cs,a = [ f(x)]dx. Exemple 8 On considère l fonctionf définie sur R prf(x) = x 7 x. f est négtive sur l intervlle [ ; 9 ]. Pour clculer l ire du domine compris entre l courbe def, l xe des bcsisses, et les droites d équtionx=etx=9, il suffit de clculer l ire du domine compris entre l courbe de f, l xe des bcsisses, et les droites d équtionx = etx = 9 : Grphique def : Grphique de f : A A. A =A = 9 [ f(x)]dx = 9 ) ( x 7 +x dx = ] 9 [ x4 8 +x = U.A. -5-

6 BTS DOMOTIQUE Clcul intégrl 8- III. Aire d une fonction quelconque : découpge d ire Pour clculer l ire d un domine définie pr une fonction chngent de signe, il fut découper l intervlle en plusieurs intervlles sur lesquels l fonction est de signe constnt. Exemple 9 On considère l fonctionf définie prf(x) =x x. On noteal ire du domine compris entre l courbe def, l xe des bcsisses, et les droites d équtionx= etx=: A =A +A 4 A = A = A = A = A = 9 [ x ( [ f(x)]dx + [f(x)]dx ( x +x+)dx + (x x )dx ] [ ] x +x + x + x x ) ( + + ) 6, U.A. A A IV IV. Propriétés de l intégrle Reltion de Chsles Propriété Soitf une fonction dérivble sur R etc [;b ], lors f(x)dx = c f(x)dx + c f(x)dx. Interpréttion grphique : A A b c -6-

7 BTS DOMOTIQUE Clcul intégrl 8- IV. Linérité Propriété 4 Soientf,g : [;b ] R deux fonctions dérivbles etλun réel, lors : [f(x) +g(x)]dx = λf(x)dx =λ f(x)dx. f(x)dx + g(x) dx. Ce théorème permet en prtique de rmener le clcul d une intégrle d une fonction complexe à une succession d intégrtions de fonctions plus élémentires. Exemple Clcul de l intégrle :I= I = xdx + 5 ( 6x + 5 ) dx : x x dx I = [ x ] + 5 [lnx] I = (4 ) + 5(ln ln ) I = ln. IV. Inéglités Propriété 5 Soientf,g : [;b ] R deux fonctions dérivbles. Inéglité : si, pour toutx [;b ], on f(x) g(x), lors Positivité : si, pour toutx [;b ], on f(x), lors Vleur bsolue : f(x)dx f(x) dx. f(x)dx f(x)dx. g(x) dx. ATTENTION! L réciproque de l positivité n est ps forcément vrie, on peut voit sur [;b ] : (x )dx = [x x] = 6. Donc, (x )dx. Cependnt, l fonctionx x n est ps positive sur [ ; ]. f(x)dx sns voirf positive Grphiquement, toutes ces propriétés peuvent se «voir» ssez fcilement en considérnt les ires obtenues pour chcune des intégrles. -7-

8 BTS DOMOTIQUE Clcul intégrl 8- IV.4 Inéglité de l moyenne Propriété 6 Soitf une fonction dérivble sur un intervlle [;b ]. S il existe des réelsm,m etktels que pour toutx [;b ], on it : m f(x) M, lors m(b ) f k, lors f(x) dx k(b ). f(x)dx M(b ). Interpréttion grphique : Dns le cs oùf est positive sur [;b ] et oùm, l ire de l prtie égle à f(x)dx est comprise entre l ire du rectngle de bseab de huteurmet l ire du rectngle de bseab de huteurm. M m A B Définition Soitf : [; b ] Rune fonction dérivble. Si b, on ppelle vleur moyenne def sur [; b ] le nombre réelµ f défini pr µ f = f(x)dx. b Interpréttion grphique : L droite d équtiony=µ f est l droite horizontle telle l ire des prtie de pln délimitées pr l xe des bscisses, les droites d équtionx=etx=bd une prt et les courbes d équtiony=f(x) ety=m f soient de même vleur. Exemple L vleur moyenne sur [ ; ] de l fonction crré est :µ = [ x x dx = ] =. IV.5 Inéglité des ccroissements finis Les théorèmes de comprison d intégrles permettent d obtenir des encdrements d une fonction lorsqu on sit encdrer s dérivée. Propriété 7 (Inéglité des ccroissements finis) Soitf une fonction dont l dérivéef est dérivble sur un intervlle [,b ]. S il existe trois réelsm,m etktels que, pour toutxde [,b ], on it m f (x) M lors f (x) k lors m(b ) f(b) f() M(b ). f(b) f() k(b ). -8-

9 BTS DOMOTIQUE Clcul intégrl 8- V Méthodes de clcul d intégrles V. Intégrtion pr prtie Soituetvdeux fonctions dérivbles sur un intervllei. L dérivée du produituv est (uv) =u v +uv d où u v = (uv) uv. On peut donc énoncer l propriété suivnte : Propriété 8 Sietbsont deux éléments dei, on lors u (x)v(x)dx = soit encore, si on choisituv comme primitive de (uv), (uv) (x)dx u(x)v (x)dx. u (x)v(x)dx = [u(x)v(x)] b u(x)v (x)dx. Exemple On désire clculer l intégrle I = xe x dx. u (x) =e x u(x) =e x On pose d où v(x) =x v (x) =. Donc : xe x dx = [xe x ] e x dx = (e e ) [e x ] =e e+ =. V. Chngement de vribles V.. Chngement de vrible du typex x +β Propriété 9 Soitf une fonction dérivble sur un intervlle du type [ +β,b +β] où,betβ R vec b, lors f(x +β)dx = +β +β f(t)dt. Exemple On se propose de clculer l intégrle I = (x + ) dx. On peut fire le clcul directement en remrqunt qu une primitive de (x + ) sur [, ] est (x + ). On peut églement effectuer une trnsltion de vecteur i de mnière à effectuer un clcul plus simple : [ ] I = (x + ) dx = t dt = x =. -9-

10 BTS DOMOTIQUE Clcul intégrl 8- V.. Chngement de vrible du typex αx lorsqueα Propriété Soitf une fonction dérivble sur l intervlle [α,αb ], oùα, lors f(αx)dx = α αb α f(x)dx. Exemple 4 On se propose de clculeri= I = e x dx = e x dx : e t dt = [ e t ] = ( e ). V.. Cs générl : chngement de vrible du typex ϕ(x) Propriété Soitϕune fonction dérivble sur un intervllei= [,b ] dont l dérivée est dérivble suri. Pour toute fonctionf définie et continue sur l intervllef(i), on : ϕ(b) ϕ() f(x)dx = f [ϕ(t)]ϕ (t)dt. Exemple 5 4 Clculons l intégrle dx x + x en posntt = x, ce qui équivut àx =t =ϕ(t) : On clcule les nouvelles bornes d intégrtion : Pourx [, 4 ], on obtientt [, ] On exprime l expression à intégrer pr rpport à l nouvelle vrible : on x + x dx = ϕ(t) + ϕ(t) ϕ (t)dt = t +t tdt. donc : 4 dx x + x = = tdt t +t t + dt = [ ln( +t) ] = (ln ln ) = ln ( ). --

Calcul intégral. I Intégrale d une fonction 2

Calcul intégral. I Intégrale d une fonction 2 T le STIGE Clcul intégrl 8-9 Clcul intégrl Tble des mtières I Intégrle d une fonction II Interpréttion grphique : clcul d ire II. Aire d un fonction positive...................................... II. Aire

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1 Chpitre 7 Intégrle et primitive TABLE DES MATIÈRES pge - Chpitre 7 Intégrle et primitive Tble des mtières I Exercices I-................................................ I- Clcul pproché d une intégrle

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6 Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.

Plus en détail

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1 Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI Intégrtion T le STI I - Intégrle d une fonction Définition Soit F une primitive de l fonction f sur [; ], lors, on note Exemple : Clcul de Clcul de 4 (3x ) dx = = [F(x)] = F() F() xdx : Une primitive de

Plus en détail

Nous admettrons et utiliserons souvent le théorème suivant:

Nous admettrons et utiliserons souvent le théorème suivant: < 20 Intégrtion: fonction réelle d une vrile réelle. Définition 2.5. (Intégrilité u sens de Riemnn) Une fonction réelle f: [, ] R est dite intégrle sur [,], si ǫ > 0, f 1, f 2 : [, ] R fonctions en escliers

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI Toutes les questions de cours et R.O.C. u bc de T.S. Vincent PANTALONI VERSION DU 9 MARS 2012 Tble des mtières Bc 2011 3 Bc 2011 5 Bc 2010 9 Bc 2009 11 Bc 2008 13 Bc 2007 17 Bc 2006 19 Bc 2005 21 ii Remerciements.

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f Chpitre 6 : Clcul intégrl I Intégrle d une fonction continue positive 1 Unité d'ire Le pln est muni d un repère orthogonl O;i!,! j!!" "!!! " " En posnt OI = i et OJ = j, l ire du rectngle OIKJ définit

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S Kit de survie - Bc S. Inéglités - Étude du signe d une expression Opértions sur les inéglités Règles usuelles : Pour tout x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k

Plus en détail

Chapitre 11 : Calcul intégral

Chapitre 11 : Calcul intégral Cpitre 11 : Clcul intégrl I Intégrle d une fonction positive I.1 Définition Définition ( 1. Dns un repère ortogonl O; i ; ) j, on ppelle unité d ire l ire du rectngle de côtés [OI] et [OJ]. 2. Soient f

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques Bcclurét 20 Résumé Ce document contient les principles définitions, théorèmes et propriétés du cours de mthémtiques du tronc commun de mthémtiques de Terminle S. Je tiens à remercier

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Intégration et primitives

Intégration et primitives TS 202-203 Intégrtion et primitives Intégrle d une fonction continue et positive. Notion d ire sous une coure Etnt donné une fonction f continue et positive sur un intervlle [; ] vec, on note C s représenttion

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

Chapitre 8 Le calcul intégral

Chapitre 8 Le calcul intégral Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl Chpitre 8 Le clcul intégrl A) Intégrle d une fonction dérivle sur un intervlle 1) Définition Soit f une fonction dérivle sur un intervlle

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Mathématiques Différentielle - Intégrale

Mathématiques Différentielle - Intégrale Mthémtiques Différentielle - Intégrle F. Richrd 1 1 Institut PPRIME - UPR 3346 CNRS Déprtement Fluides, Thermique, Combustion Frnce Institut des Risques Industriels Assurntiels et Finnciers IRIAF F. Richrd

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

mémento de mathématiques pour les ECE1

mémento de mathématiques pour les ECE1 mémento de mthémtiques pour les ECE1 Abdellh Becht Résumé L objectif de ce mémento est de permettre ux élèves de première nnée des clsses préprtoires ux Ecoles de Commerces, option économique, d voir un

Plus en détail

Clamaths.fr - Les Roc en Terminale S

Clamaths.fr - Les Roc en Terminale S Clmths.fr - Les Roc en Terminle S CONTENTS ROC - exigibles... 2 Roc 1 Théorème de comprison pour les suites... 2 Roc 2 Limite de qn lorsque q > 1... 2 Roc 3 Unicité de l fonction exponentielle... 3 Roc

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

Variables aléatoires à densité

Variables aléatoires à densité Vribles létoires à densité Rppels : Une vrible létoire réelle (VAR) est une ppliction X : Ω R où (Ω,A,P) est un espce probbilisé. Lorsque X(Ω) est un ensemble discret on dit que X est une VAR discrète.

Plus en détail

Calcul Intégral - Equations Différentielles M211-1

Calcul Intégral - Equations Différentielles M211-1 /46 Clcul Intégrl - Equtions Différentielles M11-1 Michel Fournié michel.fournie@iut-tlse3.fr http://www.mth.univ-toulouse.fr/ fournie/ /46 Introduction Tble des mtières 1 Introduction Préliminires, Rppels

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Chapitre 3 Intégrale double

Chapitre 3 Intégrale double Chpitre 3 Intégrle oule Nous llons supposer le pln usuel muni un repère orthonormé (O,i,j). 3. Aperçu e l éfinition formelle e l intégrle oule Soit =[, [, (

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Clcul d intégrles - Intégrtion pr prties Cours CHAPITRE 7 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Dns ce cours, nous disposons de trois techniques de clcul d intégrles : ) primitivtion pr lecture

Plus en détail

Série n 6 : Interpolation et méthodes des moindres carrés

Série n 6 : Interpolation et méthodes des moindres carrés Université Clude Bernrd, Lyon I 43, boulevrd du 11 novembre 1918 696 Villeurbnne Cedex Licence Sciences & Technologies Spécilité Mthémtiques UE : Clcul Scientifique 009-010 Série n 6 : Interpoltion et

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Mémo de cours n 4. Intégrales

Mémo de cours n 4. Intégrales Mémo de cours n 4 Intégrles v.0 4. Primitive 4.. Définition Si l fonction f (x) est l dérivée de l fonction F(x), c est à dire que f (x) = df(x) dx, lors nous ppelons l fonction F une primitive de f. On

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles 19 mrs 14 Introduction Chercher une primitive et clculer une intégrle n est ps tout à fit l même chose. Une primitive d une fonction f, c est une fonction F qui, lorsqu on l dérive,

Plus en détail

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions.

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions. Fiches de cours nlyse 4 ème Sciences epérimentles Limites et continuité Limites et comprison de fonctions. L et L ' sont des réels. désigne soit un réel, soit +, soit Premier théorème de comprison Soit

Plus en détail

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen Cours de DEUG Méthodes mthémtiques pour les sciences de l vie I Avner Br-Hen Université Aix-Mrseille III 3 Tble des mtières Tble des mtières i Fonctions, limites, continuité Fonction, représenttion grphique......................

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Analyse 1 L1-mathématiques

Analyse 1 L1-mathématiques Anlyse L-mthémtiques Renud Leplideur Année 3-4 UBO Tble des mtières Inéglités et clculs 3. Nombres..................................... 3.. Les ensembles N, Z, Q et R...................... 3.. Les intervlles

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Chapitre 6 : Fonctions Logarithme Népérien

Chapitre 6 : Fonctions Logarithme Népérien Lycée Pul Sbtier, Cstelnudry Clsse de T`le STG Chpitre 6 : Fonctions Logrithme Népérien D. Zncnro et C. Aupérin 008-009 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

COURS TERMINALE S LE CALCUL INTEGRAL

COURS TERMINALE S LE CALCUL INTEGRAL COURS TERMINALE S LE CALCUL INTEGRAL A. Notion d'intégrle. Aire sous l coure On définit le domine pln, qu'on ppeller ire sous l coure C représenttive d'une fonction positive f sur un intervlle [; ], l

Plus en détail

Résumés de cours : Terminale S.

Résumés de cours : Terminale S. Résumés de cours : Terminle S. Mths-Terminle S. Mr Mmouni : myismil@ltern.org source disponible sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tble des mtières Nombres complexes. 3. Prtie réelle

Plus en détail

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications.

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications. LEÇON N 76 : Primitives d une fonction continue sur un intervlle ; définition et propriétés de l intégrle, inéglité de l moyenne. Applictions. Pré-requis : Si f est une fonction numérique dérivble sur

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts Ch7 : Clcul intégrl-ts CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION Activité n : Trcer dns un repère orthonorml l représenttion grphique de l fonction f définie pr : f(x) = 5. Hchurer l'ire du domine pln

Plus en détail

Lycée Stendhl (Grenole) Niveu : Titre Cours : Terminle S Année : Chpitre 09 : Les Intégrles 204-205 826-866 874-94 Cittion du moment : «Le seul enseignement qu un professeur peut donner, à mon vis, est

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

Fonctions : variations et extremums. Fonctions affines

Fonctions : variations et extremums. Fonctions affines Fonctions : vritions et extremums. Fonctions ffines Clsse de seconde I. Sens de vrition d'une fonction... 1) Fonctions croissntes... ) Fonctions décroissntes... II. Tbleu de vritions...3 III. Mximum, minimum...3

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction Prép. Agrég. écrit d Anlyse, Annexe n o 6. Méthode de Lplce dns R d Fonctions définies pr une intégrle On suppose que g et h sont deux fonctions réelles définies sur R d, telles que l fonction F(t = g(x

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

Table des matières. Avant propos

Table des matières. Avant propos Tble des mtières Avnt propos ii 1 Intégrle de Riemnn 1 1.1 Intégrle des fonctions en esclier............ 2 1.2 Fonctions intégrbles u sens de Riemnn........ 6 1.3 Propriétés générles de l intégrle de Riemnn......

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles Je donne ici des éléments pour triter l exposé de CAPES 76 (liste 2007) : Primitives d une fonction continue sur un intervlle ; définition et propriétés de l intégrle, inéglité

Plus en détail

Continuité - Limites Asymptotes à une courbe

Continuité - Limites Asymptotes à une courbe Continuité - Limites Asymptotes à une cre Continuité - Théorème des vleurs intermédiires Notion de continuité Grphiquement, on peut reconnître une fonction continue sur un intervlle I pr le fit que le

Plus en détail

Cours d harmonisation en mathématiques. Bérangère Delourme-Jose Gomez

Cours d harmonisation en mathématiques. Bérangère Delourme-Jose Gomez Cours d hrmonistion en mthémtiques Bérngère Delourme-Jose Gomez septembre 206 2 Tble des mtières Trigonométrie et nombres complexes 7. Trigonométrie élémentire...............................................

Plus en détail

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes...

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes... Lycée Pul Doumer 203-204 TS Cours Limites de Fonction Contents Limites d une fonction et symptotes. Limite en l infini....................................2 Limite en un réel..................................

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques TS Lycée Henri IV Tble des mtières I Les nombres complexes 7 Rcines n ième d un nombre complexe non nul 7. Définition.................................................... 7.2 Représenttion

Plus en détail

Chapitre 2 Limites et asymptotes

Chapitre 2 Limites et asymptotes Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2 Intégrle de Riemnn cours et exercices de Licence, L1, PC, S2 H. Le Ferrnd Jnury 29, 2010 Contents 1 Des premières méthodes 2 2 Sommes de Drboux 2 3 Fonction intégrble u sens de Riemnn 3 3.1 Qu est-ce qu

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Mathématiques du signal déterministe

Mathématiques du signal déterministe Conservtoire Ntionl des Arts et Métiers MAA17 Mthémtiques du signl déterministe Nelly POINT 11 octobre 211 Tble des mtières 1 Intégrtion 3 1.1 Méthodes d intégrtion : rppels........................ 3

Plus en détail

PARTIE II : Un exemple pour se familiariser avec la conjecture et cette drôle de fonction. . (On ne cherchera pas à exprimer F plus simplement.

PARTIE II : Un exemple pour se familiariser avec la conjecture et cette drôle de fonction. . (On ne cherchera pas à exprimer F plus simplement. Eercice. Découverte des fonctions définies pr une intégrle et premiers ps vers le téorème fondmentl du clcul intégrl. PARTE : Découverte de l fonction «ire sous l courbe» et conjecture sur s dérivée et

Plus en détail

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli Chpitre 6 : Fonctions ffines -8-01-1- Seconde 7, 010-011, Y. Angeli 1. Éqution réduite d une droite Théorème. Dns un repère, soient A(x A ;y A ) et B(x B ;y B ) tels que x A x B. Alors l droite (AB) est

Plus en détail

Intégrales et primitives

Intégrales et primitives Chpitre 3 Intégrles et primitives 3.1 Définitions Soit f(x une fonction continue définie sur l intervlle [, ]. L intégrle de f sur l intervlle [, ] est un nomre réel noté qui est défini de l fçon suivnte

Plus en détail

Lois de probabilité continues

Lois de probabilité continues Lois de probbilité continues Tble des mtières I Lois de probbilité continues I.1 Principe et définitions........................................... I. Exemples de lois continues.........................................

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

EB - INTEGRALES DEPENDANT D UN PARAMETRE

EB - INTEGRALES DEPENDANT D UN PARAMETRE EB - INTEGRALES DEPENDANT D UN PARAMETRE Définition 1 Soit (f x ) x A une fmille de fonctions continues à vleurs dns C, définies sur un intervlle [, b[ de R. On considère l intégrle impropre g(x) = que

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail