Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation :

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation :"

Transcription

1 Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3 Déroulement de l animation : - 0] Préambule (30 min) a) Introduction b) Programme du cycle 3 - I] Première prise en main du logiciel 1) Quelques fonctionnalités, construction de figures usuelles On s appuie sur la séance réalisée avec les élèves, voir en annexe 2 (bis) 2) Particularités du logiciel - II] Séance : première manipulation du logiciel par les stagiaires (45 min) - III] Premier retour sur le logiciel : analyse (15 min) 1) Intérêt de «géogébra» dans l activité 2) Les questions les plus fréquentes - IV] Analyse d une séance d activité à réaliser avec les élèves (20 min) Retour sur la séance réalisée avec les élèves, voir en annexe 2 (bis) - V] Questions diverses (10 min) 1

2 0] Préambule (30 min) a) Introduction Le logiciel «géogébra» est un logiciel de géométrie dynamique. Sa prise en main est relativement simple, il permet de construire des figures géométriques, pour cela il dispose de toutes les figures géométriques usuelles : le point, la droite, la demi-droite, le segment, le cercle et des figures plus complexes : les polygones, les polygones réguliers (triangle équilatéral, carré, pentagone, hexagone ). Il va nous permettre également de construire aisément, et ceci via un simple icône se situant dans la barre d outils, la droite parallèle ou perpendiculaire à une droite donnée passant par un point donné ou encore le symétrique d un point par rapport à une droite. Je vous propose dans un premier temps de découvrir ensemble quelques fonctionnalités de ce logiciel et ceci de manière exhaustive et ensuite vous expérimenterez par vous-même et ce sur une ou des activités proposées, vous noterez alors au cours de ces manipulations la difficulté de prise en main, l intérêt pour vous puis pour vos élèves d un tel logiciel. 2

3 b) Programme du cycle 3 Cours élémentaire 2 ème année Dans le plan Reconnaître, décrire, nommer et reproduire, tracer des figures géométriques : carré, rectangle, losange, triangle rectangle Vérifier la nature d une figure plane en utilisant la règle graduée et l équerre Construire un cercle avec un compas Utiliser en situation le vocabulaire : côté, sommet, angle, milieu Reconnaître qu une figure possède un ou plusieurs axes de symétrie, par pliage ou à l aide d un papier calque Tracer, sur papier quadrillé, la figure symétrique d une figure donnée par rapport à une droite donnée Dans l espace Reconnaître, décrire et nommer : un cube, un pavé droit Utiliser en situation le vocabulaire : face, arête, sommet Problème de reproduction, construction Reproduire des figures (sur papier uni, quadrillé ou pointé Construire un carré ou un rectangle de dimensions données Cours moyen 1 ère année Dans le plan Reconnaître que des droites sont parallèles. Utiliser en situation le vocabulaire géométrique : points alignés, droite, droites perpendiculaires, droites parallèles, segment, milieu, angle, axe de symétrie, centre d un cercle, rayon, diamètre Vérifier la nature d une figure plane simple en utilisant la règle graduée, l équerre, le compas Décrire une figure en vue de l identifier parmi d autres figures ou de la faire reproduire Dans l espace Reconnaître, décrire et nommer les solides droits : cube, pavé, prisme Reconnaître ou compléter un patron de cube ou de pavé Problèmes de reproduction, de construction Compléter une figure par symétrie axiale Tracer une figure simple à partir d un programme de construction ou en suivant des consignes 3 Cours moyen 2 ème année Dans le plan Utiliser des instruments pour vérifier le parallélisme de deux droites (règle, équerre) et pour tracer deux droites parallèles Vérifier la nature d une figure en ayant recours aux instruments Construire une hauteur d un triangle Reproduire un triangle à l aide d instruments Dans l espace Reconnaître, décrire et nommer les solides droits : cube, pavé, cylindre, prisme Reconnaître ou compléter un patron de solide droit Problèmes de reproduction, de construction Tracer une figure (sur papier uni, quadrillé ou pointé), à partir d un programme de construction ou d un dessin à main levée (avec des indications relatives aux propriétés et aux dimensions)

4 I] Première prise en main du logiciel 1) Quelques fonctionnalités, construction de figures usuelles Voir les fonctionnalités incontournables, en annexe 3 - Placer un point - Tracer un segment - Placer trois points,, tracer la droite, tracer la demi-droite, tracer le segment ; - Tracer la droite parallèle ou perpendiculaire à une droite donnée passant par un point donné ; - Tracer un cercle de centre et de rayon ou encore de centre et passant par ; - Construire un polygone, un polygone régulier ; - Construire le symétrique d un point par rapport à une droite : symétrie axiale. 2) Particularités du logiciel - L essai-erreur est très simple à gérer ; - Ce logiciel est un logiciel de géométrie dynamique : les figures peuvent bouger!!! II] Séance : première manipulation du logiciel par les stagiaires (45 min) Voir séance n 1, en annexe 1 III] Premier retour sur le logiciel : analyse (15 min) 1) Intérêt de «géogébra» dans l activité. - Possibilité de visualiser «tous ensembles» sur de multiples figures la nature du triangle et du quadrilatère ; - Mise en place d un programme de construction sans avoir à maîtriser les instruments de géométrie ; - Analyse fine de l acquisition de compétences (détailler un point du programme en compétences fines) ; - Programme/algorithme de construction, on suit un programme, on écrit un programme. Indication : Pour visualiser la construction «pas à pas», cliquer sur puis sur même alors écrire leur programme., les élèves peuvent alors suivre leur construction et ATTENTION : Il ne faut surtout pas perdre de vue que la maîtrise des instruments de géométrie est une attente de nos programmes. 4

5 2) Les questions les plus fréquentes. - A quoi ça sert «géogébra» et quelle utilisation peut-on en faire en classe? - A quelles compétences fait-on appel quand on utilise «géogébra»? - L utilisation de «géogébra» doit rester un outil, il faut continuer bien sûr à insister sur la maîtrise des instruments de géométrie tels que l équerre, la règle, le compas, le rapporteur. IV] Analyse d une séance d activité à réaliser avec les élèves (20 min) Voir exemples de séances, en annexe 2 V] Questions diverses (10 min) 5

6 Annexe 1 : utilisation de l outil numérique en géométrie au cycle 3 Objectifs : - Première manipulation du logiciel : à l aide de figures géométriques usuelles et de transformation du plan construction d une figure géométrique complexe ; - Utilisation du logiciel pour visualiser, à l aide d un déplacement, une conjecture émise ; - Utilisation du logiciel pour visualiser, à l aide du mode «trace activée», un ensemble de points. Compétences visées : Cours élémentaires 2 ème année : - Reconnaître, décrire, nommer et reproduire, tracer des figures géométriques : carré, rectangle, losange, triangle rectangle ; - Vérifier la nature d une figure plane en utilisant la règle graduée et l équerre ; - Construire un cercle avec un compas Cours moyen 1 ère année : - Utiliser en situation le vocabulaire géométrique : points alignés, droite, droites perpendiculaires, droites parallèles, segment, milieu, angle, axe de symétrie, centre d un cercle, rayon, diamètre - Tracer une figure géométrique à partir d un programme de construction ou en suivant des consignes ; Cours moyen 2 ème année : - Vérifier la nature d une figure en ayant recours aux instruments ; - Construire une hauteur d un triangle I] A l aide du logiciel - Placer un point puis un point et tracer la droite ; - Placer le milieu du segment, vous aurez besoin de renommer le point qui sera automatiquement nommé. Vous utiliserez pour ça le «clic droit» sur le point puis «renommer» ; - Tracer le cercle de centre et de rayon ; - Placer un point sur le cercle ; - Quelle est, d après vous, la nature du triangle? D après vous la nature du triangle change-t-elle si le point se trouve ailleurs sur le cercle? Indication : Vous pourrez, pour répondre à cette question, utiliser l icône puis l icône, vous pourrez ainsi «déplacer» le point sur tout le cercle. - Placer le milieu du segment ; - Tracer la droite ; - Construire le symétrique du point par rapport à la droite ; - Tracer les segments et ; 6

7 - Quelle est, d après vous, la nature du quadrilatère?... D après vous, où faut-il placer le point pour que le quadrilatère soit un carré?... - Tracer le segment ; - Placer le point milieu du segment ; - D après vous, quel ensemble décrit le point lorsque décrit le cercle ; Indication : cliquer sur le point, un clic droit, puis sur «trace activée», à présent «déplacer» le point, vous pouvez alors visualiser la trace du point Cette dernière question permet de donner la définition d un cercle : Un cercle de centre et de rayon est l ensemble des points situés à la distance du point. 7

8 Annexe 2, séance n 1 : utilisation de l outil numérique en géométrie au cycle 3 Objectifs : Tracer deux droites parallèles, mise en place d une méthode de construction : - Utilisation d un logiciel de géométrie «géogébra», sans utiliser les instruments de géométrie on met en place la méthode de construction, on n oublie pas d écrire le programme de construction ; - On trace les deux droites parallèles en suivant le programme élaboré ci-dessus et cette fois-ci avec les instruments de géométrie. Compétences visées : - Reconnaître que des droites sont parallèles ; - Utiliser en situation le vocabulaire géométrique : droite, droites perpendiculaires, droites parallèles ; - Tracer une figure simple à partir d un programme de construction ou en suivant des consignes ; - Reconnaître, décrire, nommer et reproduire, tracer des figures géométriques : rectangle. - Construire un rectangle de dimension donnée ; I] A l aide du logiciel (l enseignant peut le faire seul au tableau) - Cliquer sur l icône puis placer deux points et. - En cliquant sur l icône et sur tracer la droite ; - Tracer la droite (d) perpendiculaire à la droite passant par à l aide de l icône puis ; - Placer un point sur la droite à l aide de l icône ; - Tracer la droite perpendiculaire à la droite passant par à l aide de puis. Que pensez-vous des droites et?... 8

9 Propriété (vue en classe de 6 ème ). Si deux droites sont perpendiculaires à la même droite alors elles sont parallèles entre elles. II] Avec les instrument de géométrie, vous aurez besoin de la règle et de l équerre. 1) Programme de construction à compléter : - Placer deux points... - Tracer la - Tracer..perpendiculaire à la droite. passant par ; - Placer un point sur la droite ; - Tracer. 2) Tracer, ci-dessous, la droite parallèle à la droite. 3) Prolongement 1 : - Tracer la droite (d ) perpendiculaire à la droite passant par ; - Les droites et sont sécantes, elles se coupent en. - Que pensez-vous des droites et? Vérifier à l aide du logiciel. 9

10 ... - Quelle est la nature du quadrilatère? Justifier votre réponse.... Définition. Un quadrilatère qui possède.. 4) Prolongement 2 : Construire un rectangle avec et, vous pourrez d abord faire un schéma. 10

11 Objectifs : Annexe 2 (bis), séance n 2 : utilisation de l outil numérique en géométrie au cycle 3 - Première manipulation du logiciel : à l aide de figures géométriques usuelles et de transformation du plan construction d une figure géométrique ; - Utilisation du logiciel pour visualiser, à l aide d un déplacement, une conjecture émise ; Compétences visées : Cours élémentaires 2 ème année : - Reconnaître, décrire, nommer et reproduire, tracer des figures géométriques : carré, rectangle, losange, triangle rectangle ; Cours moyen 1 ère année : - Utiliser en situation le vocabulaire géométrique : points alignés, droite, droites perpendiculaires, droites parallèles, segment, milieu, angle, axe de symétrie, centre d un cercle, rayon, diamètre - Tracer une figure géométrique à partir d un programme de construction ou en suivant des consignes ; Cours moyen 2 ème année : - Reproduire un triangle à l aide d instruments I] Enoncé Réaliser le programme de construction suivant : - Tracer un segment tel que ; - Placer un point tel que et, y a-t-il plusieurs possibilités? - Tracer les segments et, y a-t-il plusieurs triangles? Appelez l enseignant pour lui montrer votre construction Bravo!! vous avez tracé un triangle tel que, et. 1) Sur une feuille blanche, à l aide des instruments de géométrie ; 2) A l aide du logiciel «géogébra». II] Prolongement de l application. - Pouvez-vous construire un triangle tel que, et? - Qu en pensez-vous? Appelez votre enseignant pour lui montrer vos recherches. 11

12 III] Commentaires de la séance L activité que je vous propose est la construction d un triangle tel que, et, à faire au tableau à main levée. - Tracé du segment ; - Tracé, par essais successifs, d un unique point tel que. En général, l élève semble satisfait de sa construction mais peut tout de même se laisser convaincre que tout ça n est pas très précis. Pour une précision optimale, l utilisation du compas peut alors faire son apparition. Quelques élèves seulement y pensent - On trace alors deux arcs de cercle de centre et de centre de rayons respectifs et. L élève trouve en général un seul point - Une fois cette construction terminée, on peut dans un premier temps s apercevoir que les constructions sont loin d être satisfaisantes et dans un second temps on doit répondre à des questions d élèves : J ai fait comme vous, mais je n ai pas la même figure, est-ce que j ai juste? L élève a bien suivi le programme de construction mais n a pas tracé la base dans la même position que nous. Mon triangle est à l envers, est-ce que j ai juste? L élève a choisi le second point possible dans la construction à l aide du compas. Si je trace d abord le segment d abord le segment. est-ce que j obtiendrai la même figure? et si je trace - A la fin de cette activité, une première conclusion est : soit la lecture/compréhension d un programme de construction n est pas acquise, soit l utilisation des outils géométriques n est pas acquise. - On peut alors penser à dissocier ces deux compétences par le biais de l utilisation d un logiciel : 1 ère étape : construction à l aide d un logiciel du triangle ; Intérêt de géogébra : - Réalisation d un programme de construction sans avoir à maîtriser les outils de géométrie ; - Visualiser qu il y a deux points possibles ; - Visualiser par «déplacement de la figure» que peu importe la première étape, on construit toujours le même triangle. Synthèse : il y a une infinité de tracés possibles. 2 ème étape : construction de ce même triangle sur une feuille blanche avec ou sans quadrillage. Il ne faut surtout pas perdre de vue que la maîtrise des outils de géométrie est une attente de nos programmes. 12

13 Annexe 3 : les fonctionnalités incontournables - Pour placer un point : cliquer sur l icône puis sur ; - Pour tracer la droite, cliquer sur l icône puis sur ; - Pour tracer la demi-droite, cliquer sur l icône puis sur ; - Pour tracer le segment, cliquer sur l cône puis sur ; - Pour placer le milieu d un segment, cliquer sur l icône puis sur ; - Pour tracer un cercle, cliquer sur l icône puis sur ou sur ; - Pour tracer la droite perpendiculaire à une droite passant par un point cliquer sur l cône puis sur ; - Pour tracer la droite parallèle à une droite passant par un point, cliquer sur l icône puis sur ; - Pour tracer le symétrique d un point par rapport à une droite, cliquer sur l icône puis sur ; - Pour noter le point d intersection entre deux objets, cliquer sur l icône puis sur ; - Pour «déplacer» un point, cliquer sur l icône puis sur ; - Pour déplacer le graphique, cliquer sur puis sur. 13

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par

Plus en détail

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France

Plus en détail

Construction de la bissectrice d un angle

Construction de la bissectrice d un angle onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie? Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879- Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une

Plus en détail

Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième

Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième GUYOT Stéphanie Professeur stagiaire en mathématiques au collège Lo Trentanel de GIGNAC I.U.F.M. de l académie de Montpellier Site de Montpellier Eléments de Choix d Utilisation de l Informatique dans

Plus en détail

Logiciel SCRATCH FICHE 02

Logiciel SCRATCH FICHE 02 1. Reprise de la fiche 1: 1.1. Programme Figure : Logiciel SCRATCH FICHE 02 SANS ORDINATEUR : Dessiner à droite le dessin que donnera l'exécution de ce programme : Unité : 50 pas : Remarque : vous devez

Plus en détail

Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème

Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Les TICE en cours de Mathématiques au collège Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Généralités page 2 Différents outils page 4 Classe de 6 ème page 5 Classe de 5 ème page

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard

Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard Pylote (http://pascal.peter.free.fr/?17/pylote) Logiciels d aide en mathématique

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice) Utilisation de l'ordinateur et apport des TIC en enseignement (1NP) Module 03 Maîtriser les fonctionnalités d un traitement de texte. Sens du Module De nombreux documents remis aux enfants sont réalisés

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Document d aide au suivi scolaire

Document d aide au suivi scolaire Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde

Plus en détail

Exercice numéro 1 - L'escalier

Exercice numéro 1 - L'escalier Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?

Plus en détail

Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année

Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année PALIER 2 CM2 La maîtrise de la langue française DIRE S'exprimer à l'oral comme à l'écrit dans un vocabulaire approprié

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

Math 5 Dallage Tâche d évaluation

Math 5 Dallage Tâche d évaluation Math 5 Dallage Tâche d évaluation Résultat d apprentissage spécifique La forme et l espace (les transformations) FE 21 Reconnaître des mosaïques de figures régulières et irrégulières de l environnement.

Plus en détail

Introduction à. Version 4.4. Traduction et adaptation française. www.geogebra.org

Introduction à. Version 4.4. Traduction et adaptation française. www.geogebra.org Introduction à Version 4.4 www.geogebra.org Traduction et adaptation française Introduction à GeoGebra Dernière modification : 23 novembre 2013, adaptée à la version GeoGebra 4.4. Ce livre expose une introduction

Plus en détail

NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2

NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /

Plus en détail

Proposition de programmes de calculs en mise en train

Proposition de programmes de calculs en mise en train Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

Je découvre le diagramme de Venn

Je découvre le diagramme de Venn Activité 8 Je découvre le diagramme de Venn Au cours de cette activité, l élève découvre le diagramme de Venn et se familiarise avec lui. Pistes d observation L élève : reconnaît les éléments du diagramme

Plus en détail

PRATIQUE DU COMPAS ou

PRATIQUE DU COMPAS ou PRTQU U OMPS ou Traité élémentaire de tous les traits servant aux rts et Métiers et à la construction des âtiments ZR, éomètre ii Reproduction de l édition de 1833, VNN, imprimerie TMON Père et ils, par

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

Comment sélectionner des sommets, des arêtes et des faces avec Blender?

Comment sélectionner des sommets, des arêtes et des faces avec Blender? Comment sélectionner des sommets, des arêtes et des faces avec Blender? VVPix v 1.00 Table des matières 1 Introduction 1 2 Préparation d une scène test 2 2.1 Ajout d objets dans la scène.........................................

Plus en détail

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement. «Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier

Plus en détail

LPP SAINT JOSEPH BELFORT MODE OPERATOIRE ACTIVINSPIRE. Bonne utilisation à toutes et tous! UTILISATION DES TBI LE LOGICIEL ACTIVINSPIRE

LPP SAINT JOSEPH BELFORT MODE OPERATOIRE ACTIVINSPIRE. Bonne utilisation à toutes et tous! UTILISATION DES TBI LE LOGICIEL ACTIVINSPIRE LPP SAINT JOSEPH BELFORT MODE OPERATOIRE ACTIVINSPIRE Utilisation des TBI UTILISATION DES TBI LE LOGICIEL ACTIVINSPIRE T B utoriel de base, ce mode d emploi a pour objectif de vous présenter les principales

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Paris et New-York sont-ils les sommets d'un carré?

Paris et New-York sont-ils les sommets d'un carré? page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

C.F.A.O. : Conception et Fabrication Assistées par Ordinateur.

C.F.A.O. : Conception et Fabrication Assistées par Ordinateur. C.F.A.O. : Conception et Fabrication Assistées par Ordinateur. La CFAO réunit dans une même démarche informatique les actions de conception et de fabrication d un objet. La technique utilisée permet à

Plus en détail

UN TOURNOI A GAGNER ENSEMBLE

UN TOURNOI A GAGNER ENSEMBLE UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir

Plus en détail

Réalisation de cartes vectorielles avec Word

Réalisation de cartes vectorielles avec Word Réalisation de cartes vectorielles avec Word Vectorisation de la carte Après avoir scanné ou avoir récupéré un fond de carte sur Internet, insérez-la dans votre fichier Word : Commencez par rendre visible

Plus en détail

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Séquence 2. Repérage dans le plan Équations de droites. Sommaire Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral

cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral Chapitre 3 cent NOMBRS 5 T RPÉRAGȘ RLATIFS Notion de nombre relatif 3 Comparaison 9 mille Repérage sur une droite et dans le plan Calcul littéral ACTIVITÉS USAG DS NOMBRS RLATIFS ACTIVITÉ Dans la vie quotidienne

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

UTILISATION DE CABRI-GEOMETRE POUR LES PROGRAMMES DE CONSTRUCTION EN CLASSE DE SIXIEME

UTILISATION DE CABRI-GEOMETRE POUR LES PROGRAMMES DE CONSTRUCTION EN CLASSE DE SIXIEME I.U.F.M Académie de Montpellier Site de Montpellier BUFFET Charles UTILISATION DE CABRI-GEOMETRE POUR LES PROGRAMMES DE CONSTRUCTION EN CLASSE DE SIXIEME Contexte du mémoire Discipline : Mathématiques

Plus en détail

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013 Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

SÉQUENCE 4 Séance 1. Séquence. Je revise les acquis de l école 1) c) 2) a) 3) d) 4) c) Exercice 1

SÉQUENCE 4 Séance 1. Séquence. Je revise les acquis de l école 1) c) 2) a) 3) d) 4) c) Exercice 1 c Séquence 4 Ce que tu devais faire Je revise les acquis de l école 1) c) 2) a) 3) d) 4) c) Exercice 1 SÉQUENCE 4 Séance 1 Les commentaires du professeur 1) Pour calculer combien Paul dépense, on effectue

Plus en détail

Mise en scène d un modèle dans l espace 3D

Mise en scène d un modèle dans l espace 3D CHAPITRE 3 Mise en scène d un modèle dans l espace 3D Blender permet de construire des espaces à la manière d une scène de théâtre. Pour cela, il présente dès l ouverture tout ce dont on a besoin : un

Plus en détail

Cabri et le programme de géométrie au secondaire au Québec

Cabri et le programme de géométrie au secondaire au Québec Cabri et le programme de géométrie au secondaire au Québec Benoît Côté Département de mathématiques, UQAM, Québec cote.benoit@uqam.ca 1. Introduction - Exercice de didactique fiction Que signifie intégrer

Plus en détail

LIVRET PERSONNEL DE COMPÉTENCES

LIVRET PERSONNEL DE COMPÉTENCES Nom... Prénom... Date de naissance... Note aux parents Le livret personnel de compétences vous permet de suivre la progression des apprentissages de votre enfant à l école et au collège. C est un outil

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Plan académique de formation. Le socle commun : formation, évaluation, validation

Plan académique de formation. Le socle commun : formation, évaluation, validation ACADÉMIE DE BORDEAUX Plan académique de formation Le socle commun : formation, évaluation, validation Nous devons valider les sept compétences du palier 3 du Livret personnel de compétences (LPC). Nous

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................

Plus en détail

1 Création d une pièce. 2 Travail complémentaire. 1-1 Réglage des barres d outils. 1-2 Exemples de réalisation de pièces à l aide d un modeleur 3D

1 Création d une pièce. 2 Travail complémentaire. 1-1 Réglage des barres d outils. 1-2 Exemples de réalisation de pièces à l aide d un modeleur 3D SolidWorks Logiciel de DAO (Dessin Assisté par Ordinateur) Palonnier Servomoteur SOMMAIRE : 1 Création d une pièce 1-1 Réglage des barres d outils 1-2 Exemples de réalisation de pièces à l aide d un modeleur

Plus en détail

Prise en main du logiciel. Smart BOARD Notebook 10

Prise en main du logiciel. Smart BOARD Notebook 10 Prise en main du logiciel Smart BOARD Notebook 10 1. Introduction : Le logiciel Smart BOARD est utilisable avec les tableaux blancs interactifs de la gamme SMART. Toutefois, il n'est pas nécessaire d'avoir

Plus en détail

Comment utiliser le logiciel Interwrite Workspace?

Comment utiliser le logiciel Interwrite Workspace? Comment utiliser le logiciel Interwrite Workspace? La barre d outils par défaut Après avoir lancer le logiciel Interwrite Workspace en mode interactif, la barre d outils ci-dessous apparaît : Réduire la

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur

Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur I- Ouverture d une nouvelle feuille de travail Fichier / Nouveau (ou ctrl + N) Indiquer dans la fenêtre qui s ouvre

Plus en détail

PRESENTATION DU LOGICIEL

PRESENTATION DU LOGICIEL Calibrage du Tableau Interactif (TBI) Mise en route du Logiciel Interwrite Workspace Ouverture du logiciel : La barre d outils apparaît sur le bureau de l ordinateur Clic Droit sur l icône einstruction

Plus en détail

TP 1 Outils collaboratifs de base

TP 1 Outils collaboratifs de base TP 1 Outils collaboratifs de base I Prérequis : créer un compte Google...2 II Découverte de Google Drive...3 1 Les formulaires...3 1.1 En tant qu utilisateur : saisie de la fiche de renseignement ELEVE...3

Plus en détail

Démontrer qu'un point est le milieu d'un segment

Démontrer qu'un point est le milieu d'un segment émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

b) Fiche élève - Qu est-ce qu une narration de recherche 2?

b) Fiche élève - Qu est-ce qu une narration de recherche 2? Une tâche complexe peut-être traitée : Gestion d une tâche complexe A la maison : notamment les problèmes ouverts dont les connaissances ne sont pas forcément liées au programme du niveau de classe concerné

Plus en détail

Aide GeoGebra. Manuel Officiel 3.2. Markus Hohenwarter et Judith Hohenwarter www.geogebra.org

Aide GeoGebra. Manuel Officiel 3.2. Markus Hohenwarter et Judith Hohenwarter www.geogebra.org Aide GeoGebra Manuel Officiel 3.2 Markus Hohenwarter et Judith Hohenwarter www.geogebra.org 1 Aide GeoGebra 3.2 Auteurs Markus Hohenwarter, markus@geogebra.org Judith Hohenwarter, judith@geogebra.org Traduction

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

ACTIVITES MATHEMATIQUES

ACTIVITES MATHEMATIQUES MINISTÈRE DE LA COMMUNAUTÉ FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTÉ FRANÇAISE Administration Générale de l'enseignement et de la Recherche Scientifique Service général des Affaires pédagogiques et du Pilotage

Plus en détail

Activités pour la maternelle PS MS GS

Activités pour la maternelle PS MS GS Gcompris V.8.4.4 linux 1 Activités pour la maternelle SOMMAIRE : Gcompris : Qu est-ce que c est? 2 Remarques et problèmes rencontrés dans la mise en œuvre en classe 3 Liste des activités pour la maternelle

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1................................................................................................... 305 Je calcule la longueur d un cercle.......................................................................

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Prise en main du logiciel Smart BOARD

Prise en main du logiciel Smart BOARD Prise en main du logiciel Smart BOARD 1. Introduction : Le logiciel Smart BOARD est utilisable avec les tableaux blancs interactifs de la gamme SMART. Toutefois, il n'est pas nécessaire d'avoir un tbi

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 15 mars 2006 CLASSE DE PREMIERE ES, GMF Durée : 4 heures Les quatre exercices sont indépendants Les calculatrices sont autorisées L énoncé comporte trois pages Exercice

Plus en détail

PRISE EN MAIN de GeoGebra

PRISE EN MAIN de GeoGebra Qu est ce GeoGebra? GeoGebra est un logiciel mathématique qui allie dessin géométrique, données et calculs analytiques. L idée et le développement sont de Markus Hohenwarter de l université de Salzburg

Plus en détail

Les calques : techniques avancées

Les calques : techniques avancées Les calques : techniques avancées 9 Au cours de cette leçon, vous apprendrez à : importer un calque d un autre fichier ; créer un masque d écrêtage ; créer et modifier un calque de réglage ; employer les

Plus en détail

Les engins roulants, Ecole Paul Salomon 1 / Hélène LEBON ET Madeleine RIVIERE, MS

Les engins roulants, Ecole Paul Salomon 1 / Hélène LEBON ET Madeleine RIVIERE, MS Fiche connaissances pour l enseignant Ce qu'il faut savoir. Pour comprendre ce que fait une voiture qui roule il faut comprendre ce qu'est une FORCE. On appelle «force» une action capable de fournir une

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi!

Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi! Jour Prêt(e) pour le CE Tu es maintenant au CE. vant de commencer les leçons, nous allons réviser avec toi! Géométrie Retrouver un itinéraire en tenant compte des informations. Lis les explications de

Plus en détail

Utilisation du logiciel GALAAD

Utilisation du logiciel GALAAD 1 Sommaire: Présentation du logiciel GALAAD 1. Démarrer le programme........ 2. Présentation de l écran du logiciel....... Les barres d'outils, sauvegarder... 3. Créer un nouveau fichier........ 4. Préparer

Plus en détail

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra

Plus en détail

Manuel de l utilisateur

Manuel de l utilisateur Cabri Géomètre II Plus Manuel de l utilisateur Bienvenue! Bienvenue dans le monde de la géométrie dynamique! Né à la fin des années 80 dans les laboratoires de recherche du CNRS (Centre National de la

Plus en détail

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition. Les Angles I) Angles complémentaires, angles supplémentaires 1) Angles complémentaires Deux angles complémentaires sont deux angles dont la somme des mesures est égale à 90 41 et 49 41 49 90 donc Les angles

Plus en détail

Quels polygones sont formés par les milieux des côtés d un autre polygone?

Quels polygones sont formés par les milieux des côtés d un autre polygone? La recherche à l'école page 13 Quels polygones sont formés par les milieux des côtés d un autre polygone? par d es co llèg es n dré o ucet de Nanterre et Victor ugo de Noisy-le-rand enseignants : Martine

Plus en détail

Initiation au dessin Bitmap

Initiation au dessin Bitmap Sébastien Stasse Initiation au dessin Bitmap Guide d apprentissage et notions de base 2e édition Nom : Classe : Produit par l École Alex Manoogian AW version 6 Initiation au dessin bitmap Initiation au

Plus en détail

modélisation solide et dessin technique

modélisation solide et dessin technique CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir

Plus en détail

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE

Plus en détail

My Custom Design ver.1.0

My Custom Design ver.1.0 My Custom Design ver.1.0 Logiciel de création de données de broderie Mode d emploi Avant d utiliser ce logiciel, veuillez lire attentivement ce mode d emploi pour bien l utiliser correctement. Conservez

Plus en détail

VOS PREMIERS PAS AVEC TRACENPOCHE

VOS PREMIERS PAS AVEC TRACENPOCHE Vos premiers pas avec TracenPoche page 1/16 VOS PREMIERS PAS AVEC TRACENPOCHE Un coup d'oeil sur l'interface de TracenPoche : La zone de travail comporte un script, une figure, un énoncé, une zone d analyse,

Plus en détail