T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014"

Transcription

1 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de la rédaction seront évaluées. Les calculatrices sont autorisées mais ne doivent pas être prêtées. Exercice 1-5 points - ( Pour chacune des questions, une seule réponse parmi les trois est exacte. Indiquer sur la copie le numéro de la question et la réponse choisie correspondante puis justifier cette réponse. Chaque réponse exacte et justifiée rapportera 1 point. Une réponse fausse non justifiée enlève 0,5 point. Q1 - La suite (u n ) a pour terme général u n = 2n + 1, alors u n+1 = a) 2n + 2 b) 2n + 3 c) 2n + 4 Q2 - La suite (u n ) vérifie la relation de récurrence u n+1 = u n ² et u 0 = 6, alors u 2 = a) 36 b) 216 c) 1296 Q3 - La suite (u n ) a pour terme général u n = 5 2 n, alors a) décroissante b) croissante c) ni croissante, ni décroissante Q4 - La fonction f définie et dérivable sur l'intervalle [0; + [, est strictement croissante sur l'intervalle [0; 5] et strictement décroissante sur l'intervalle [5; + [. Sa courbe représentative C f dans un repère du plan admet une tangente T au point d'abscisse 6. Laquelle des équations suivantes est celle de la tangente T. a) y = 3x + 3 b) y = x c) y = 6x 36 Q5 - On a tracé ci-dessous la courbe représentative C f d'une fonction f définie sur R ainsi que sa tangente au point A d'abscisse 2. Parmi les 3 courbes représentées cidessous, laquelle représente la fonction dérivée de la fonction f? a) b) c)

2 Exercice 2-4 points - ( Soient u : R R, x 3 + 2x + 7, et C sa courbe représentative dans un repère orthonormé. Soit P la parabole représentant la fonction v : R R, x 2x 2 x Calculer, pour x R, u (x). Dresser le tableau de variations de la fonction u. 2. a) Montrer que pour tout x R, u(x) v(x) = x(x 2 + 2x 3). b) En déduire la position relative de C et P. Exercice 3-5 points - ( Une ville organise la récupération du verre usagé à partir du 1er janvier 2010 En 2010, la ville a récupéré 300 tonnes de verre et en 2011, elle en a récupéré 318 tonnes 1. Déterminer le pourcentage d augmentation de la quantité récupérée entre 2010 et On suppose que chaque année après 2010, la quantité de verre récupérée va augmenter du même pourcentage. On modélise l évolution de la quantité annuelle récupérée par une suite géométrique. Pour tout entier n, on note u n la quantité de verre récupérée, en tonnes, au cours de l année n a) Expliquer pourquoi u n+1 = u n 1,06 et préciser u 0. b) En déduire l expression de u n en fonction de n. c) Quelle quantité prévoit-on de récupérer en 2016? Arrondir à la tonne d) A l aide de la calculatrice, déterminer l année où la collecte de la ville dépassera les 1000 tonnes. e) Calculer la quantité totale qu on prévoit de récupérer de 2010 à 2020 compris. Arrondir à la tonne.

3 Exercice 4-8 points - ( Partie A Partie B On considère la fonction g définie sur R par g(x) = x Calculer g (x) et étudier son signe. 2. Dresser le tableau de variation de g sur R et en déduire que g(x) > 0 sur R. On considère maintenant la fonction f définie sur [ 1; 3] par f(x) = x x. 1. Montrer que pour tout nombr de [ 1; 3] f (x) = g(x). 2. En utilisant la partie A, donner le signe de f et les variations de f sur [ 1; 3]. 3. Déterminer une équation de la tangente T à la courbe représentative de f au point d abscisse a) Montrer que l équation f(x) = 0 admet une solution unique α dans [ 1; 3]. b) A l aide de la calculatrice déterminer un encadrement de α à 10-2 prés. c) En déduire le signe de f(x) sur [ 1; 3]. 5. Tracer, sur l annexe, la droite T et la courbe C f sur [ 1; 3]. On placera α sur le graphique. Exercice 5-8 points - ( Adèle et Barbara projettent une sortie soit au cinéma soit en randonnée, Adèle ou Barbara décide du choix de l'activité. On désigne par A l'événement «Adèle décide» et par B l'événement «Barbara décide», B est donc l'événement contraire de A. On suppose que la probabilité pour qu'adèle décide est p(a) = Déterminer p(b), probabilité pour que Barbara décide. 2. Lorsque Adèle décide, 3 fois sur 10 elle choisit le cinéma. Lorsque Barbara décide, 4 fois sur 10 elle choisit la randonnée. On désigne par C, l'événement «elles vont au cinéma» et par R, l'événement «elles font une randonnée». Déterminer les probabilités conditionnelles p A(C) et p B(C). Pour traiter la suite de l exercice, on pourra s aider d un arbre. 3. a) Calculer les probabilités p(a C). b) Montrer que p(c) = c) En déduire la probabilité qu Adèle et Barbara partent en randonnée. 4. Sachant qu'adèle et Barbara sont allées en randonnée, quelle est la probabilité pour que ce soit Barbara qui ait décidé?

4 T ES/L CORRECTION DEVOIR SURVEILLE 2 15 / 11 / 2013 Exercice 1-5 points - ( Pour chacune des questions, une seule réponse parmi les trois est exacte. Indiquer sur la copie le numéro de la question et la réponse choisie correspondante puis justifier cette réponse. Chaque réponse exacte et justifiée rapportera 1 point. Une réponse fausse non justifiée enlève 0,5 point. Q1 - La suite (u n ) a pour terme général u n = 2n + 1, alors u n+1 = a) 2n + 2 b) 2n + 3 c) 2n + 4 On sait que u n = 2n + 1 Alors u n+1 = 2(n + 1) + 1 = 2n = 2n + 3 Réponse : b) Q2 - La suite (u n ) vérifie la relation de récurrence u n+1 = u n ² et u 0 = 4, alors u 2 = a) 36 b) 216 c) 1296 On sait que u n+1 = u n ² Alors u 1 = 6 2 = 36 u 2 = u 2 1 = 36 2 = 1296 Réponse : c) Q3 - La suite (u n ) a pour terme général u n = 5 2 n, alors a) décroissante b) croissante c) ni croissante, ni décroissante On sait que la suite de terme général v n = 2 n est croissante Comme 5 < 0 Alors u n = 5 2 n Donc la suite (u n ) est décroissante Réponse : a) Q4 - La fonction f définie et dérivable sur l'intervalle [0; + [, est strictement croissante sur l'intervalle [0; 5] et strictement décroissante sur l'intervalle [5; + [. Sa courbe représentative C f dans un repère du plan admet une tangente T au point d'abscisse 6. Laquelle des équations suivantes est celle de la tangente T. a) y = 3x + 3 b) y = x c) y = 6x 36 La fonction f est dérivable et strictement décroissante sur l'intervalle [5; + [. Par conséquent, f'(6) 0. Parmi les réponses proposées, seule la droite d'équation y = 3x + 3 a un coefficient directeur négatif. Réponse : a) Q5 - On a tracé ci-dessous la courbe représentative C f d'une fonction f définie sur R ainsi que sa tangente au point A d'abscisse 2. Parmi les 3 courbes représentées ci-dessous, laquelle représente la fonction dérivée de la fonction f? a) b) c) La fonction f admet un maximum pour x = 2. Donc la dérivée de la fonction f s'annule en changeant de signe pour x = 2. Réponse : b)

5 Exercice 2-4 points - ( Soient u : R R, x 3 + 2x + 7, et C sa courbe représentative dans un repère orthonormé. Soit P la parabole représentant la fonction v : R R, x 2x 2 x Calculer, pour x R, u (x). Dresser le tableau de variations de la fonction u. On a u(x) = x 3 + 2x + 7 Alors la fonction u est dérivable sur R comme fonction polynomiale. D où u (x) = 3x Etude du signe de u (x) 3x > 0 3x 2 > 2 3x 2 < 2 x 2 < < x < 2 3 ou 6 3 < x < 6 3 x 6 3 Signe de u (x) Variation 8,09 de u ,91 2. a) Montrer que pour tout x R, u(x) v(x) = x(x 2 + 2x 3). On a u(x) = x 3 + 2x + 7 et v(x) = 2x 2 x + 7 Alors u(x) v(x) = x 3 + 2x + 7 (2x 2 x + 7) u(x) v(x) = x 3 + 2x + 7 2x 2 + x 7 u(x) v(x) = x 3 2x 2 + 3x Donc u(x) v(x) = x(x 2 + 2x 3) b) En déduire la position relative de C et P. On doit donc étudier le signe de u(x) v(x) pour connaître la position de C par rapport à P. On a u(x) v(x) = x(x 2 + 2x 3) Etude du signe d 2 + 2x 3 On calcule le discriminant : = b 2 4ac = ( 3) = = 16 On trouve deux solutions : Alors > 0 et a > 0 x 1 = b 2a x 2 = b+ 2a = = = = = 3 Conséquence x x x 2 + 2x u(x) v(x) Conclusion Sur ] ; 3] [0; 1] u(x) v(x) 0 u(x) v(x) la courbe C est au dessus de la parabole P = 1 Sur [ 3; 0] [1; + [ u(x) v(x) 0 u(x) v(x) la courbe C est en dessous de la parabole P

6 Exercice 3-5 points - Une ville organise la récupération du verre usagé à partir du 1er janvier 2010 En 2010, la ville a récupéré 300 tonnes de verre et en 2011, elle en a récupéré 318 tonnes 1. Déterminer le pourcentage d augmentation de la quantité récupérée entre 2010 et Le pourcentage d augmentation de la quantité récupérée entre 2010 et 2011 est égal à : = Chaque année après 2010, la quantité de verre récupérée va augmenter du même pourcentage 6% 2. On suppose que chaque année après 2010, la quantité de verre récupérée va augmenter du même pourcentage. On modélise l évolution de la quantité annuelle récupérée par une suite géométrique. Pour tout entier n, on note u n la quantité de verre récupérée, en tonnes, au cours de l année n a) Expliquer pourquoi u n+1 = u n 1, 06 et préciser u 0. La quantité u n de verre récupérée, en tonnes, au cours de l année n, augmente de 6% et est donc est multipliée par 1 + 6%. On a donc u n+1 = u n 1,06 D où (u n ) est une suite géométrique de raison 1,06 et de premier terme u 0 représente la quantité de verre récupérée en 2010 et u 0 = 300. b) En déduire l expression de u n en fonction de n. Comme (u n ) est une suite géométrique de raison 1,06 et de premier terme u 0 = 300. Alors u n = u 0 q n Donc u n = 300 1,06 n c) Quelle quantité prévoit-on de récupérer en 2016? Arrondir à la tonne En 2016, la quantité de verre récupérée est donnée par u 6 = 300 1,06 6 soit environ 426 tonnes d) A l aide de la calculatrice, déterminer l année où la collecte de la ville dépassera les 1000 tonnes. A l aide de la calculatrice on obtient donc u et u Donc à partir de n = 21 Donc c est en 2031 que la collecte dépassera les 1000 tonnes ( avec cette modélisation) Attention il y a un décalage de 10 car un est la quantité de verre récupérée, en tonnes, au cours de l année n e) Calculer la quantité totale qu on prévoit de récupérer de 2010 à 2020 compris. Arrondir à la tonne La quantité totale qu on prévoit de récupérer de 2010 à 2020 compris est égale à , , ,492 Donc la quantité totale entre 2010 et 2020 sera d environ 4491 tonnes de verre

7 Exercice 4-8 points - ( Partie A On considère la fonction g définie sur R par g(x) = x Calculer g (x) et étudier son signe. On a g(x) = x + 1 La fonction g est dérivable sur R comme somme de fonctions dérivables sur R. Alors g (x) = 1 Or 1 > 0 > 1 x > 0 1 < 0 < 1 x < 0 Donc x 0 + Signe de g (x) Dresser le tableau de variation de g sur R et en déduire que g(x) > 0 sur R. D après la question1, on en déduit que Partie B x 0 + Signe de g (x) 0 + Variation de g g(0) = e = = 2 La fonction g admet un minimum en 0 qui vaut 2 Alors la fonction g est toujours strictement positive sur R. On considère maintenant la fonction f définie sur [ 1; 3] par f(x) = x x. 1. Montrer que pour tout nombr de [ 1; 3] f (x) = g(x). On a f(x) = x x La fonction f est dérivable sur R comme somme de fonctions dérivables sur R. On a f = u + v w Alors f = u + v w w v w 2 D où f (x) = ex x ( ) 2 Donc f (x) = g(x) avec u(x) = x + 1 u (x) = 1 2 v(x) = x v (x) = 1 w(x) = w (x) = = 1 + ex (1 x) ( ) 2 = x = ex +1 x = ex x+1 = g(x) 2. En utilisant la partie A, donner le signe de f et les variations de f sur [ 1; 3]. On sait que f (x) = g(x) Comme pour tout réel x, g(x) > 0 et > 0 Donc pour tout réel x, f (x) > 0 Donc la fonction f est strictement croissante sur [ 1; 3]

8 3. Déterminer une équation de la tangente T à la courbe représentative de f au point d abscisse 0. Une équation de la tangente à C f au point d abscisse zéro est : y = f (0) (x 0) + f(0) où f (0) = g(0) e 0 = 2 1 = 2 et f(0) = e 0 = 1 Donc une équation de la tangente à C f au point d abscisse zéro est : y = 2x a) Montrer que l équation f(x) = 0 admet une solution unique α dans [ 1; 3]. On a f( 1) = e 1 = e1 = e 2,72 f(3) = e 3 = e 3 4,15 Sur l'intervalle [ 1 ; 3], la fonction f est continue, strictement croissante à valeurs dans [ 2,72 ; 4,15] D après le théorème de la valeur intermédiaire : On obtient l'équation f(x) = 0 admet une unique solution α avec α [ 1 ; 3],. b) A l aide de la calculatrice déterminer un encadrement de α à 10-2 prés. À l'aide de la calculatrice, on trouve f( 0,41) 0,00327 f( 0,40) 0,00327 Donc 0,41 α 0,40. c) En déduire le signe de f(x) sur [ 1; 3]. D après les variations de la fonction f strictement croissante sur [ 1 ; 3] Et que f(α) = 0 Donc x α + Signe de f(x) Tracer, sur l annexe, la droite T et la courbe C f sur [ 1; 3]. On placera α sur le graphique.

9 Exercice 5-8 points - ( Adèle et Barbara projettent une sortie soit au cinéma soit en randonnée, Adèle ou Barbara décide du choix de l'activité. On désigne par A l'événement «Adèle décide» et par B l'événement «Barbara décide», B est donc l'événement contraire de A. On suppose que la probabilité pour qu'adèle décide est p(a) = Déterminer p(b), probabilité pour que Barbara décide. On a p(a) = 7 12 Donc p(b) = p (A ) = 1 p(a) = = 12 7 = Lorsque Adèle décide, 3 fois sur 10 elle choisit le cinéma. Lorsque Barbara décide, 4 fois sur 10 elle choisit la randonnée. On désigne par C, l'événement «elles vont au cinéma» et par R, l'événement «elles font une randonnée». Déterminer les probabilités conditionnelles p A(C) et p B(C). Lorsque Adèle décide, 3 fois sur 10 elle choisit le cinéma donc p A(C) = 3 10 Lorsque Barbara décide, 4 fois sur 10 elle choisit la randonnée donc p B(R) = 4 10 Alors pb(c) = 1 pb(r) = = 6 10 Donc pb(c) = 6 10 Pour traiter la suite de l exercice, on pourra s aider d un arbre. 3. a) Calculer les probabilités p(a C) A B 4 10 C R C R p(a C) = p(a) p A(C) = = 7 40 p(b C) = p(b) p B(C) = = 1 4 b) Montrer que p(c) = On sait que A et B forment une partition de l univers Alors p(c) = p(a C) + p(b C) = 7 40 Donc p(c) = p(b) pb(c) = = =

10 c) En déduire la probabilité qu Adèle et Barbara partent en randonnée. On cherche donc p(r) Alors p(r) = 1 p(c) = = Donc la probabilité qu Adèle et Barbara partent en randonnée est de Sachant qu'adèle et Barbara sont allées en randonnée, quelle est la probabilité pour que ce soit Barbara qui ait décidé? On cherche donc p R(B) Alors p R (B) = p(r B) p(r) = p(b) p B (R) p(r) = = = 2 20 = Donc la probabilité pour que ce soit Barbara qui ait décidé, sachant qu'adèle et Barbara sont allées en randonnée est de

11 T ES ANNEXE : DS 2 28 NOVEMBRE 2014 NOM : Prénom : Exercice 2

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Baccalauréat ST2S Polynésie 16 juin 2014 correction

Baccalauréat ST2S Polynésie 16 juin 2014 correction Baccalauréat STS Polynésie 6 juin 0 correction EXERCICE 8 points On présente dans un tableau, extrait d une feuille de calcul, le nombre de cartes SIM (carte électronique permettant d utiliser un réseau

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Baccalauréat CGRH Antilles Guyane 13 septembre 2013 Correction

Baccalauréat CGRH Antilles Guyane 13 septembre 2013 Correction Durée : 2 heures Baccalauréat CRH Antilles uyane 3 septembre 203 Correction EXERCICE 7 points Un concessionnaire automobile s est spécialisé dans la vente de deux types de véhicules uniquement : les coupés

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

3. La suite ( un)a pour terme général un

3. La suite ( un)a pour terme général un NOM : Terminale ES Devoir n vendredi 9 octobre 0 Eercice : sur.5 points Des questions indépendantes. Résoudre l équation ² + 4 = 0. Calculer la dérivée de f dans chacun des cas suivants : a) f ( ) 4 8

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Baccalauréat STMG Polynésie 12 septembre 2014 Correction

Baccalauréat STMG Polynésie 12 septembre 2014 Correction Baccalauréat STMG Polynésie 1 septembre 014 Correction Durée : 3 heures EXERCICE 1 6 points Pour une nouvelle mine de plomb, les experts d une entreprise modélisent le chiffre d affaires (en milliers d

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE SESSION 014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL STS DURÉE DE L ÉPREUVE : heures COEFFICIENT : 3 Ce sujet comporte 5 pages numérotées de 1

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS

CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS Extrait Bac. ES - 2008 1) Une baisse de 25 % est compensée par une hausse, arrondie à l unité, de :

Plus en détail

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Exercice Devoir Commun : 3 heures -7..- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Soient f : R { } R, x x3 + x + x + (x + ), et C la courbe de f dans un repère orthonormé d unité, 5cm.. Limites.

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

Bac ES La Réunion juin 2009

Bac ES La Réunion juin 2009 Bac ES La Réunion juin 2009 Exercice 1 (4 points) Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite I Exercices 1 Définition de suites Pour toutes les suites (u n ) définies ci-dessous, on demande de calculer u 1, u, u 3 et u 6 1 u n = 7n n + { u0 = u n+1 = u n + 3 3 u n est le n ième nombre premier

Plus en détail

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre de maladies professionnelles ayant entrainé un arrêt de travail de 2003 à 2010 : Année

Plus en détail

TES-sujets de révisions BAC Amérique du sud nov. 2009

TES-sujets de révisions BAC Amérique du sud nov. 2009 TES-sujets de révisions BAC Amérique du sud nov. 009 Exercice 3 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des trois réponses est exacte. Indiquer

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

Commun à tous les candidats

Commun à tous les candidats BACCALAURÉAT GÉNÉRAL SESSION 213 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction Baccalauréat STMG Nouvelle-alédonie 14 novembre 014 orrection EXERIE 1 7 points Dans cet exercice, les parties A, B et sont indépendantes. Le tableau suivant donne le prix moyen d un paquet de cigarettes

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Amérique du Sud, novembre 2006

Amérique du Sud, novembre 2006 Exercice 1 ( 5 points) Commun à tous les candidats Un hôpital est composé de trois services : service de soins A, service de soins B, service de soins C. On s intéresse aux prises de sang effectuées dans

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Bac Blanc de Mathématiques Correction Durée : 3 heures

Bac Blanc de Mathématiques Correction Durée : 3 heures Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction Baccalauréat SMTG Pondichéry 8 avril 0 Sciences et technologies du management et de la gestion correction EXERCICE points Les deux parties de cet exercice peuvent être traitées de manière indépendante.

Plus en détail

Baccalauréat STG - Mercatique - CFE - GSI Antilles-Guyane 13 septembre 2012 Correction

Baccalauréat STG - Mercatique - CFE - GSI Antilles-Guyane 13 septembre 2012 Correction Baccalauréat STG - Mercatique - FE - GSI Antilles-Guyane 13 septembre 2012 orrection EXERIE 1 et exercice est un questionnaire à choix multiples (QM). Pour chaque question, quatre réponses sont proposées

Plus en détail

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Exercice 1 (4 points) Dans une classe de terminale STAV de 5 élèves, chaque élève possède une

Plus en détail

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Christian CYRILLE A quoi servent les mathématiques? : C est pour l honneur de l esprit humain? Jacobi 1 Exercice 1-5 points - Commun à tous les candidats

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Baccalauréat Blanc 10 février 2015 Corrigé

Baccalauréat Blanc 10 février 2015 Corrigé Exercice Commun à tous les candidats Baccalauréat Blanc février 25 Corrigé. Réponse d. : e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e 5,4. 2. Réponse b. : positif

Plus en détail

Baccalauréat ES Amérique du Sud 16 novembre 2011

Baccalauréat ES Amérique du Sud 16 novembre 2011 Baccalauréat ES Amérique du Sud 16 novembre 2011 L utilisation d une calculatrice est autorisée. EXERCICE 1 Commun à tous les candidats 4 points Soit u une fonction définie et dérivable sur l intervalle

Plus en détail

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES 1ES DS commun du jeudi 5 mai 011. MATHEMATIQUES NOM. Exercice 1 (8 points/40) Cet exercice est un QCM. Pour chaque question une seule réponse est exacte. On demande d entourer la bonne réponse et aucune

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

Baccalauréat STG CGRH Polynésie corrigé

Baccalauréat STG CGRH Polynésie corrigé EXERCICE 1 Baccalauréat STG CGRH Polynésie corrigé 8 points Le tableau ci-dessous donne les dépenses, en millions d euros, des ménages en France de 2000 à 2009 pour les programmes audio-visuels. cinéma

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

Baccalauréat STMG Polynésie 17 juin 2014

Baccalauréat STMG Polynésie 17 juin 2014 Baccalauréat STMG Polynésie 17 juin 2014 Durée : 3 heures EXERCICE 1 Cet exercice est un Q.C.M. 4 points Pour chaque question posée, quatre réponses sont proposées parmi lesquelles une seule est correcte.

Plus en détail

Baccalauréat blanc nº1 - ES - décembre 2011

Baccalauréat blanc nº1 - ES - décembre 2011 Sujet obligatoire - durée : 3 heures - calculatrice autorisée - coefficient 5 - le sujet comporte 5 pages. Baccalauréat blanc nº - ES - décembre 0 EXERCICE 4points On considère une fonction f définie et

Plus en détail

Baccalauréat STMG Antilles Guyane / 18 juin 2015

Baccalauréat STMG Antilles Guyane / 18 juin 2015 Exercice 1 Durée : 3 heures Baccalauréat STMG Antilles Guyane / 18 juin 2015 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de la question

Plus en détail

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Durée heures. Calculatrice autorisée. Exercice 1 : Une entreprise italienne de fabrication de scooters veut optimiser les bénéfices de

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

BACCALAURÉAT GÉNÉRAL Hiver 2015

BACCALAURÉAT GÉNÉRAL Hiver 2015 BACCALAURÉAT GÉNÉRAL Hiver 2015 Épreuve : MATHÉMATIQUES Séries SCIENCES ÉCONOMIQUES ET SOCIALES, toutes spécialités LITTÉRAIRE, spécialité Mathématiques Classes TES1, TES2, TES3, TES ET TL1ES Durée de

Plus en détail

Terminale ES BAC blanc N 1 ( janvier 2014)

Terminale ES BAC blanc N 1 ( janvier 2014) Terminale ES BAC blanc N 1 ( janvier 2014) Epreuve de mathématiques N anonymat :... Durée : 3 heures Calculatrice autorisée Exercice 1 ( pour tous les candidats ) Cet exercice est un QCM Une seule bonne

Plus en détail

Baccalauréat ES Nouvelle-Calédonie novembre 2007

Baccalauréat ES Nouvelle-Calédonie novembre 2007 accalauréat S Nouvelle-alédonie novembre 007 XRI points ommun à tous les candidats Soit f une fonction définie et dérivable sur l intervalle ]0 ; [, strictement croissante sur l intervalle ]0 ; ] et strictement

Plus en détail

Baccalauréat ES La Réunion 19 juin 2009

Baccalauréat ES La Réunion 19 juin 2009 Baccalauréat ES La Réunion 9 juin 9 EXERCICE points Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces réponses est exacte. Aucune

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE LIBAN 2014 On considère la fonction f définie sur l intervalle [0 ; 5] par f(x) = x+1+e

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 2013 Antilles - Guyane - Polynésie BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

U102 Devoir sur les suites (TST2S)

U102 Devoir sur les suites (TST2S) LES SUITES - DEVOIR 1 EXERCICE 1 L'objectif de cet exercice est de comparer l'évolution des économies de deux personnes au cours d'une année. Pierre possède 500 euros d'économies le 1 er janvier. Il décide

Plus en détail

FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE I. Rappels de la classe de seconde 1) Sens de variation d'une fonction Définitions : Soit f une fonction définie sur un intervalle I. - Dire que f est croissante sur I (respectivement

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Baccalauréat STG CGRH Métropole 13 septembre 2012 Correction

Baccalauréat STG CGRH Métropole 13 septembre 2012 Correction Baccalauréat STG CGRH Métropole 3 septembre 202 Correction La calculatrice est autorisée. EXERCICE Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, trois réponses sont proposées,

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2011 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites 212 nom: DS ( 1h) : Sujet A fonctions affines droites Exercice 1: 1 ) Dans chacun des cas suivants,: Dire si la fonction est affine ou non. Préciser si elle est linéaire. Si la fonction est affine, donner

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Corrigé du baccalauréat STMG Métropole 18 juin 2015

Corrigé du baccalauréat STMG Métropole 18 juin 2015 orrigé du baccalauréat STMG Métropole 18 juin 215 Durée : 3 heures EXERIE 1 4 points Tous les ans, en août, Maïlys reçoit l échéancier (document indiquant le montant de sa cotisation annuelle) de sa mutuelle

Plus en détail

Fonctions hyperboliques et applications réciproques

Fonctions hyperboliques et applications réciproques Chapitre III Fonctions hyperboliques et applications réciproques A Fonctions hyperboliques directes A. Sinus hyperbolique et cosinus hyperbolique On va définir de nouvelles fonctions inspirées notamment

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR MATHEMATIQUES ECE NOTIONS DE COURS A CONNAITRE PAR COEUR CALCULS NUMERIQUES Fractions, puissances, racines carrées, résolution d équations et inéquations GENERALITES SUR LES FONCTIONS ) Nombre dérivé d

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2011 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 5 pages numérotées de 1 à 5. Du papier millimétré est mis à la disposition des

Plus en détail