Prends l air! En Bourgogne- Franche-Comté. Document pédagogique. à destination des collègiens. Fiches thématiques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Prends l air! En Bourgogne- Franche-Comté. Document pédagogique. à destination des collègiens. Fiches thématiques"

Transcription

1 Bgg- F-é P! D éggq à èg Pg b à qé F éq

2 S 0 L L Bgg-F-é L è : b Q qé? A 6 L, Bgg-F-é 7 L x, j f q? 8 D f é à b éég wwwbg www-f-g wwwbgg-f--bgf D éggq éé ç éfq b ég Rég Bgg-F -é f qé b éè g x jx éq é x éggq à é éè V z é f V y z x, jx, f U f b à f 0 f éq b V y z f é xé N éz à éég! A j! 8 L g qé L 6 L 9 L è éq 0 L qé é 7 L z z DRAL F éq L P P Aè (PPA) L L ffg L f L éé é H, ègè é b fg q é! P è Q éq? P éé éé à DRAL Bgg-F-é, PI H-Db, A Bgg-F-é èg

3 L g g B é F L éq L ég gb b qé L : è b, b q, é q b è Z ég «Bgg-F-é» ffé z «b» qé à b è éé 000 éè : é 0 k 00 k z 00 è : é à 0 k A (k) 00 0 { 0 éq é 80% è, y q 0 Sè : é 0 0 k è : à 00 k L bé f éq : f k D bx - Q -- è? R gq : 00 L--S g : b Bç b : é/hé/d b Bf/b U A : L Dj j : ô --S : ô : f éé z : é 0 0 k S -, b ff, bjf bb g UV 00 é ( ) A à f z z! P f f éfq 7 % % z «b» qé 78 % : Dz A gz - R j, 000 L b é L b 0, Féx Bg b é x : à 9 k f à f éq D, q é 9, A x k/ A, q gf b g gq? b ég q j? - Rè ù èg P, é q - : R q : Bç, --Sô, Dj, L--S, L, â, bé b b Bgg-F-é : b Dxygè L gz è é 000 %! - Q : Q é f- à 00 k? F x gq é

4 L éé L x b é L,,, b - S é, b é b éf : L g : è g q é x b - b à éè à x L é : x ù é ég gzx g, q? - g-? D ù -? Dé ffé g -R q à : xy z (Nx) : xy b () : L Nx é é, b ( q, ffg, é, b, gz) éé (fb, éx, ) gz xq q éè Gz,, xy b f b è è gq (gz, b, f b, b) I fé I ég ê é f ffg q I b à ff Ib è, ég xygè f L b b : yx à é é z () : D è, z q, q é é q L b, b éé, q gz q g L z gz gf q L g q : Fé ô, èg AG R I ULUR R L é : y q g A FI R U IR IN DU S RI S, HANI RS I I N N RA IN A L AIR LIBR FAG AUF H D S IQ U Gz é / Gz q j / N è f, q g-? / Gz à g / Ré Q yô q xygè? Q x xygè q? A q f éq b xygè? 6 - Q Q é x é éé? é gq g (V) : L V é bx éé : ég,,,,, é, éq I ffé é :, éq, b, g, bâ,, L ff é è b : x, z, yx, gg, ff à L V ég ff à éé ég éx éff q L : L b è fé é, é, ê g (è é, è q, fx égé,, ) é x é (, fx é, é,, fé g,, yè ffg, g ) L f éè fé égè f g q b à ég bâ - é 6 L z : I f f q A (NH) : Gz è I q, bû g, é ég ég x ég à fb g zé I ég Nx é éfq f 8, 9, 6, 7,,, 7

5 éq Q éq? q éq é? - éq é é f éq 0 éfq L ffé éq é, œ L yô ê é à é Z : è x q : b - z b g - q : Déf Z éé L f b b,, ff ffé à, f f L f ù é é gg à L, ô z b y gê, q é é f -,, yô gg b à L, b éé fç bâ L ég éq (, éô â) q yq, f é éx f é é é g-r é à Bç AVAN APRS A U béq D q éq? Q? q? Q é! 8 F ù à bâ (bâ,, f) L x, éf q L L j é à z g b q, é x b à L b x f b à é à gg gê, * D gè é ( x, è, ), * D, fé ( f b, gz é éq,, ) * L fé b * L x yq, à xé qé, f qé è é?, b q b ê q bb à xé ffé f L q D (, z z, ) Q -- éé é à q û? - R B F - é - L, g f é éé ô x,, ( x é ), é x é q q, é q L ff y 9

6 - L f éé qé R : Aj, b f Q é q? é qé qq j é éég q y éé qé - L b éégq : é - ég - é - é - - P, q fb, éq b, à, qé à A, x, gé g é, qé à! L, é j ô j è D, éé éégq é qé, I, bè «R, é, f» éèb fq q : R wwwff f qq Aj D Aè- Q f-/f--? A f é, é qé A é x V Pé, f - Aè qq, éé qé : L é : : L é f - L ég j ô î à gâ gâ à DRAL L : é fé y j - D éfq R ffé x - : è - g - è - éè : géé bééf q q é é è è P qé é,, f ég L L é, L é :, éé è b q è é fb q é é, P «L q à é» Q qé? A Bgg-F-é L DF ù -- qé? S à P L Pé S g L P F

7 A A? V q q g g B A é F qé, y BggF- é, A Bg g-f é q g qé Q? - Ré qq A Bgg-F-é f é éé q,? q f j é - A F é fx S D q -- Bgg-F-é? ffé é, z (, q g, é x ég ) D é x b? y Aj, q A? éé, A D qq x é : j b, y J f éjà é éq f éfq,,, 8 0 J f é J g éq j à g (f, é, ég) J è j fê ê J f, bg, j è è g J é :, é,, b, wy J é gq à J é j bû A q é, j g qé - è qê è,, f f f q é qé qé ffé S b ff q, g z f x D x éé é g : x ê P é, j jé j x : If Aè A é ôé f qé y : A b P,, A? q é x b ég é q S : ég, P éèg - V qq ég q q f qé N ù é g P é, x f L b é q, A D èg À

8 Pg 7 P è j ô é qé f,, é gb b L é q x Ag : V,, NH f : Nx,,, I,, è : V,, NH ffg q :, Ié à b :, Pg 8 L P N égé 7 Pg è J- à é S Bç Véb f œ, 80 6 b (é I J 0) g q A ! f é, égé b! 0, û U «è» (PPA) q ê Pg b éf q bè é à qé égè A (k) à 00k f 0 b, é è g, z b, éè 0 0 { Sè 0 f q f é, Pg 0 z 00 Pg 9 L b gf : L é y 00 - L PPA Bgg-F-é PPA ég : éè à x gz : Ag,, L é : è L : è L : g, éè Pg x : é,, ég,, é!, é è L éé éé A-L L, - F é : PPA Rég è f Qz : A Bgg-F-é - P F Pg 00 D é : Pg 6 Syô yx : fg, x ê, é, éé y q x xygè q 6 R é (Sé f,f) : P : : 7% 7000 è --Sô é ( ) S : Q() ()? PPA Bf-bé-Hé-D, Dj (009) R é f (N, R) 9 (0) D I A Z D A I L L X D I X Y D D A R B N G G I N Z

9 P f L ' é, g, bâ D ég, z P P 'Aè : ' b Bf- bé ggé Dj --Sô ' à é é f,, 'g é éq q ',, è L f à 'é ég, q é ég ' 'ég é ég 'ég, é b 'égé q è q ég à é, b 'é qé ' L, à f b é g à é qé ' :, ' bû é j, é bk é, L qé ' 'é g 'é Dé qé ' 'g é ég ég x ( ) à 'z ( éé) féq A 'g qé '! DRAL Bgg-F-é, é g : PI H-Db - N j bq - J 08 D à : PPA A Ub Bf/ bé/hé/d é : : 6 PPA Dj PPA --Sô

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven IL If I L S V Ey G Khk U L 13/02/02 pé? xp qé xp pz à pz p héhq pé p à q z p à p héhq fé à p à q pz xp q 'p (è) f, '-à- p. x. ' é ff. N xp à py qq' q z b ( f) P xp pô pp L p - pé pz ': z qq', q -? Bj,

Plus en détail

[Le Canada a 10 ans pour changer ses politiques économiques et sociales Paul Martin

[Le Canada a 10 ans pour changer ses politiques économiques et sociales Paul Martin G G à É FÉ 0 ppç pp g Q [ 0 p g pq éq è gé g p éé q QÉB Qéb y qq p bé éé pp éà p pp g bé Qéb épé ég Qéb pé bé éé «é ppy épé x «p q ép âg 7 pq p 5 é q p 88 é épp b p égq pp b pp Fç pp g Q x b ég Qéb «Bp

Plus en détail

L AIDE AUX ATELIERS D ARTISTES :

L AIDE AUX ATELIERS D ARTISTES : RAPPORT DAVID LANGLOIS-MALLET SOUS LA COORDINATION DE CORINNE RUFET, CONSEILLERE REGIONALE D ILE DE FRANCE L AIDE AUX ATELIERS D ARTISTES : PROBLÉMATIQUES INDIVIDUELLES, SOLUTIONS COLLECTIVES? DE L ATELIER-LOGEMENT

Plus en détail

3 : «L amitié éternelle» 4 : «L amour» 5 à 11 : Le Dossier 12 : Loisirs 13 : Fin d année en beauté

3 : «L amitié éternelle» 4 : «L amour» 5 à 11 : Le Dossier 12 : Loisirs 13 : Fin d année en beauté L c - 3 : «L mé é» 4 : «L m» 5 à 11 : L D 12 : L 13 : F é bé L J éèv Lycé L P, èm égé éèv, é f é c 2013-2014, D éc ccé à c ; x c ô, c éê vfé qq é. L - émé chz j? C mé év qq, é à c m q... B... c! LC, c.

Plus en détail

RDV E-commerce 2013 Mercredi 6 Mars, Technopark

RDV E-commerce 2013 Mercredi 6 Mars, Technopark RDV E-mm 2013 Md 6 M, Thpk Smm 1 P q E 2 Q x p? 3 Q v? 4 d é d 2 0 1 5 p 2 0 1 3 6 h g 7 d f é 1 Pq E-mm? Pq S E-Cmm? D d d Md IT XCOM gé dp 2009 phé E-mm.m F à mhé p, XCOM h d déd E-mm, Pm éq, E-Mkg Chff

Plus en détail

2012 écoles. International. Graines d artistes. les appelle

2012 écoles. International. Graines d artistes. les appelle L x p j é y 2012 é D q é - pé jx 2011/2012? Déz- é, éx, w, b h, égg, pè, éé p CLEMI. I C? pp p p O., b I p. b p- q J. f R N L J T 15, j 2012, é Chp, P 3 (75) A : Réé P/J Pg é Chp (P 3), L J T pé é q éè

Plus en détail

SAV ET RÉPARATION. Savoir-faire. www.jarltech.fr

SAV ET RÉPARATION. Savoir-faire. www.jarltech.fr i & V : SA E b i i 1 3 2 0 1 Ai 0800 9 h P i iè P i i i i S j C i Si E ) i Ti (i ib i Q,. bq i, FA V k, Pi b h iè i Si b, D Z, P E q Si-i SAV ET RÉPARATION S hiq : E q SSII VAR, i hiq Jh i h 0800 910 231.

Plus en détail

!" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $'

! #$#% #& ' ( &)(*% * $*' )#*(+#%(' $#),)- '(*+.%#'#/* ') $' !" #$#% #"& ' ( &)(*"% * $*' )#""*(+#%(' $#),")- '(*+.%#"'#/* "'") $' &!*#$)'#*&)"$#().*0$#1' '#'((#)"*$$# ' /("("2"(' 3'"1#* "# ),," "*(+$#1' /&"()"2$)'#,, '#' $)'#2)"#2%#"!*&# )' )&&2) -)#( / 2) /$$*%$)'#*+)

Plus en détail

ISAN System: 5 Œuvre à épisodes ou en plusieurs parties

ISAN System: 5 Œuvre à épisodes ou en plusieurs parties sm: 5 Œ à épsds pss ps Wb f B Rs s: E b W B bs d mdè Vs j www.sb. B ss Psfh B 7 T. +4 5 Fx +4 7 EM: f@sb. www.sb. B ss Psfh B 7 T. +4 5 Fx +4 7 EM: f@sb. wzd 5 Œ à épsds pss ps mm: TRODUTO DEMRE. OEXO.

Plus en détail

Bougez, protégez votre liberté!

Bougez, protégez votre liberté! > F a Bgz, pégz v bé! www.a-. CAT.ELB.a240215 - Cé ph : Fa Daz à v p aé N az p a v gâh a v! Aj h, p g évq v ; Pa, p 4 aça q, v, éq qaé v. Ca ax é ç, b pa évé ax p âgé a h a p j. E pè v, h pa épagé. Pa

Plus en détail

ISAN System: 3 Création d un V-ISAN

ISAN System: 3 Création d un V-ISAN sm: é d V Wb f B Rs s: E b W B bs d mdè Vs j www.sb. B ss Psfh B 7 T. +4 5 Fx +4 7 EM: f@sb. www.sb. B ss Psfh B 7 T. +4 5 Fx +4 7 EM: f@sb. wzd é d V mm: TRODUTO DEMRE. OEXO. RETO D U V 4 FORMTO UPPLEMETRE

Plus en détail

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Stéphanie Demonchaux To cite this version: Stéphanie Demonchaux. Étude des formes de pratiques de la gymnastique

Plus en détail

Votre succès notre spécialité!

Votre succès notre spécialité! V ccè pécé! C Cchg Fm Igé Rcm V ccè pécé! L p mbx mché. E MPS I C g démq p ff pé pf d chq c : p é. N Fc: EMPSI Cg éé céé 2010 P Bddd Bchb q pé p d 8 d md d p. I dévpp N cmp xgc d é d. N c pfm mé d q gg

Plus en détail

VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010. -ooo-

VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010. -ooo- VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010 -ooo- La s é a n c e e s t o u v e r t e s o u s l a p r é s i d e n c e d e M o n s i e u r J e a n - P a u l BR E T, M a i r e d e V i l l e u r

Plus en détail

Diane-Gabrielle Tremblay (Dir.) Maryse Larivière

Diane-Gabrielle Tremblay (Dir.) Maryse Larivière Travailler plus longtemps!? L aménagement des fins de carrière en Belgique et au Québec Note de recherche no 2009-1 De l ARUC (Alliances de recherche universités-communautés) Sur la gestion des âges et

Plus en détail

SYSTEME D EXPLOITATION : MS-DOS

SYSTEME D EXPLOITATION : MS-DOS !"# SYSTEME D EXPLOITATION : MS-DOS INTRODUCTION :!"# DEFINITION : # % & ' ( ) # # ) * + # #, #, -",.*",.*"/01- SYSTEME D EXPLOITATION MS-DOS : "%&'(!&"(%) +# -",.*" 2(# "%"&""&"(%) -",.*" 2 #-",.*" 3

Plus en détail

Calendrier des collectes 2015

Calendrier des collectes 2015 N j t t hgé? O! g! Tz, t f! C t 2015 O mégè, mbg, mbt, éht t, t txt, éhtt D pt ptq Ctt bh t p m m tmt à, m pté q j pét tt q m jt hgé mt t. L tâh q m t fé t mpt mx hbtt t pépt mj t pmt é. E t ff à m té

Plus en détail

INFORMATIONS DIVERSES

INFORMATIONS DIVERSES Nom de l'adhérent : N d'adhérent :.. INFORMATIONS DIVERSES Rubrique Nom de la personne à contacter AD Date de début exercice N BA Date de fin exercice N BB Date d'arrêté provisoire BC DECLARATION RECTIFICATIVE

Plus en détail

sommaire Introduction Fiches des 41 soldats disparus Le devoir de mémoire lettre à la mère de Maurice Quemin Glossaire / Sources

sommaire Introduction Fiches des 41 soldats disparus Le devoir de mémoire lettre à la mère de Maurice Quemin Glossaire / Sources a I 4 F 41 a a L L é à a è Ma Q Ga / S 5 46 51 53 55 2 La Ga G a é a a XX è è, a, a aa. E a é a. D a, ï, aa. L a éé a a a a a. N a a é a a a a Ga G, a a aé a a a, a. é E a a, a ê aé a a é, a aé a. A, a-à

Plus en détail

Jeux de caracte res et encodage (par Michel Michaud 2014)

Jeux de caracte res et encodage (par Michel Michaud 2014) Jeux de caracte res et encodage (par Michel Michaud 2014) Les ordinateurs ne traitent que des données numériques. En fait, les codages électriques qu'ils conservent en mémoire centrale ne représentent

Plus en détail

CREDITS BANCAIRES TPE DE MOINS DE 25 000 EUROS

CREDITS BANCAIRES TPE DE MOINS DE 25 000 EUROS SPÉCIAL TPE SPÉCIAL TPE SPÉCIAL TPE SPÉCIAL TPE SPÉCIAL TPE SPÉCIAL TPE Les engagements : CREDITS BANCAIRES TPE DE MOINS DE 25 000 EUROS Une réponse du banquier dans un délai de 15 jours Une motivation

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

MUTATIONS ÉCONOMIQUES DANS LE DOMAINE AUTOMOBILE. Démarche méthodologique et synthèse

MUTATIONS ÉCONOMIQUES DANS LE DOMAINE AUTOMOBILE. Démarche méthodologique et synthèse MUTATIONS ÉCONOMIQUES DANS LE DOMAINE AUTOMOBILE Démarche méthodologique et synthèse AVRIL 2010 Démarche méthodologique et synthèse Premier ministre Ministère de l espace rural et de l aménagement du

Plus en détail

! " #$ % $! & '(# ) (%%

!  #$ % $! & '(# ) (%% " #$ % $ & '(# ) (%% "#$ %&' # ( ) #* +,#*+-),- ). * /. 0),12-3 45 #3 /45 ) 67 #*+ & ) 5 ) #*+ )5 #& #*+ 0 / )5 8 )0 ) 0)12 5+ )& ) )12) 7)0 5 ) 9/ 5 2 ) ) '12 ) /) 5" ) 7) 6 ): 05 2 5 80 7 ) 0,$#- ) &

Plus en détail

%$&$#' "!# $! ## BD0>@6,;2106>+1:+B2.6;;/>0.2106>9*27+2.1/+BB+:/@6>.106>>+;+>1:+>6;*,+/EA,6.+77/7A,6@+7706>>+B79 561,+76.08189:+;61,+8.6>6;0+976>1:+?+>/+7@6,1+;+>1:8A+>:2>1+7:+B21+.C>6B630+:+ 1+.C>6B630=/+FGD+7A06>>23+8.6>6;0=/++1A6B010=/+:2>7B+.)*+,+7A2.+;+1+>:2>3+,B+A61+>10+B

Plus en détail

!" #" $ %& '# $ %& !!""!!#" $ % &

! # $ %& '# $ %& !!!!# $ % & !" #" $ % '# $ %!!""!!#" $ %!#!(!$ '()*+),-.$/*(*',0*1)2, 2 1)2(%,2 ()2+''+34!5"6,7 8+9(+, 1(*:+*)1, - 11/21%, 7 10/'# 8;%(/',7 $18)*+, 9(+, $ ;%1*', 24 1*%?19*1,

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Endroit Texte existant Proposition Observations Index des 30 occurrences

Endroit Texte existant Proposition Observations Index des 30 occurrences Annex 05, page 1 Proposition FR pour éliminer le mot "divers(e, es)" de la version française de la CIB Mai 2003 dans la colonne "Observations" indique que nous sommes d'accord avec la solution proposée

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Documentation SecurBdF

Documentation SecurBdF Documentation SecurBdF SECURBDF V2 Protocole de sécurité de la Banque de France SecurBdF V2 DIRECTION DE L'INFORMATIQUE ET DES TÉLÉCOMMUNICATIONS Sommaire I 1 Contexte... 1 2 Références... 1 3 Cadre...

Plus en détail

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Patrick Ciarlet et Vivette Girault ciarlet@ensta.fr & girault@ann.jussieu.fr ENSTA & Laboratoire Jacques-Louis Lions, Paris 6 Condition

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Les joints Standards COMPOSANTS LEANTEK ET UTILISATIONS. Tous nos joints standards sont disponibles en version ESD. Vis de fixation : S1-S4

Les joints Standards COMPOSANTS LEANTEK ET UTILISATIONS. Tous nos joints standards sont disponibles en version ESD. Vis de fixation : S1-S4 COMPOSANTS LEANTEK ET UTILISATIONS Les joints Standards F-A Joint pour liaison à 90 F-A se combine avec F-B, F-A et F-C 51 mm 51 mm 90 F-B Joint d angle à 90 Il se combine à un autre F-B ou à 2 F-A. 47

Plus en détail

! " # $%& '( ) # %* +, -

!  # $%& '( ) # %* +, - ! " # $%& '( ) # %* +, - 1.! "# $ % &%%'( #)*+,)#-. "/%)0123* 4%5%&!$!% 6)"7 '%%% 48-0 9::!%%% % 79;< "# 8 Ploc la lettre du haïku n 40 page 1 Décembre 2010, Association pour la promotion du haïku =%%)>

Plus en détail

Modélisation des risques

Modélisation des risques 2 Modélisation des risques 2. Introduction L objectif de ce chapitre est de présenter les modèles de base utilisés pour décrire le comportement aléatoire d un risque en actuariat pour une période xe. Les

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Exercices de géométrie

Exercices de géométrie Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Contraintes, particularités. 1. Généralités... 2. 2. Gestion de la mémoire... 2. a. Type des variables et constantes... 2

Contraintes, particularités. 1. Généralités... 2. 2. Gestion de la mémoire... 2. a. Type des variables et constantes... 2 C Embarque Contraintes, particularités 1. Généralités... 2 2. Gestion de la mémoire... 2 a. Type des variables et constantes.... 2 b. Variables locales ou globales... 3 3. Interruptions... 5 4. Imposer

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

VMware ESX : Installation. Hervé Chaudret RSI - Délégation Centre Poitou-Charentes

VMware ESX : Installation. Hervé Chaudret RSI - Délégation Centre Poitou-Charentes VMware ESX : Installation VMware ESX : Installation Créer la Licence ESX 3.0.1 Installation ESX 3.0.1 Outil de management Virtual Infrastructure client 2.0.1 Installation Fonctionnalités Installation Virtual

Plus en détail

Le présentoir virtuel. Paul FABING

Le présentoir virtuel. Paul FABING L préir virl Pl FABING L x L'ffi ri ' viié q pr fibl prpri ri éjr A i 80% r ifri ppr xi à l'ffi ri C ppr v b hz l prir ri 50% Frçi éqipé rph L û xi à ir vi l 3G pr l érgr prhibiif rriir è r ri i ff L'

Plus en détail

DÉCLARATION DES REVENUS 2014

DÉCLARATION DES REVENUS 2014 2042 N 10330 * 19 14 DÉCLARATION DES REVENUS 2014 direction générale des finances publiques Vous déposez une déclaration pour la première fois Cochez > Vous avez déjà déposé une déclaration. Indiquez :

Plus en détail

# $!%$!&$'(!(!()! $(! *)#%!"$'!+!%(!**&%',&-#.*!* /!01+'$*2333

# $!%$!&$'(!(!()! $(! *)#%!$'!+!%(!**&%',&-#.*!* /!01+'$*2333 !" # $!%$!&$'(!(!()! $(! *)#%!"$'!+!%(!**&%',&-#.*!* #$-*!%-!!*!%!#!+!%#'$ /!1+'$*2333 $!)! $(!*!" /4 5 $." 6 $-*(!% 6 '##$! $ 6 '##$! $ 6,'+%'! $ 6,'+%'! $ +!,'+%'! $ 65 %7- !""!# $ %! & '%! "!# (

Plus en détail

Fonctions de plusieurs variables et changements de variables

Fonctions de plusieurs variables et changements de variables Notes du cours d'équations aux Dérivées Partielles de l'isima, première année http://wwwisimafr/leborgne Fonctions de plusieurs variables et changements de variables Gilles Leborgne juin 006 Table des

Plus en détail

RECAPITULATIF PLANS Pour quelle école?

RECAPITULATIF PLANS Pour quelle école? V vz - 90 éèv, v ê céré cmm "p éc" V vz + 90 éèv, v ê céré cmm "gr éc" V ê éc prmr, z vr p : A D V ê éc cr, z vr p : F D V ê éc prmr, z vr p : B, C E V ê éc cr, z vr p : G, H I P gb, z vr p A P gb, z vr

Plus en détail

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4

Plus en détail

l Agence Qui sommes nous?

l Agence Qui sommes nous? l Agence Qui soes nous? Co Justine est une agence counication globale dont la ission est prendre en charge l enseble vos besoins et probléatiques counication. Créée en 2011, Co Justine a rapient investi

Plus en détail

La circulation méconnue de l épargne règlementée en France!

La circulation méconnue de l épargne règlementée en France! La circulation méconnue de l épargne règlementée en France! P. Bouché, E. Decoster et L. Halbert (Université Paris Est, LATTS)! Institut du Monde Arabe, Paris, Rencontres du Fonds d Épargne 31 Mars 2015

Plus en détail

Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure.

Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure Sylvain Meille To cite this version: Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa

Plus en détail

1. GENERALITES... 4 1.1. OBJET DU MARCHE... 4 1.2. DUREE DU MARCHE... 4 1.3. REGLEMENTATION... 4 1.4. SECURITE... 5 1.5. ASTREINTE ET GESTION DES

1. GENERALITES... 4 1.1. OBJET DU MARCHE... 4 1.2. DUREE DU MARCHE... 4 1.3. REGLEMENTATION... 4 1.4. SECURITE... 5 1.5. ASTREINTE ET GESTION DES !"#!$# #"%&&&&' 1. GENERALITES... 4 1.1. OBJET DU MARCHE... 4 1.2. DUREE DU MARCHE... 4 1.3. REGLEMENTATION... 4 1.4. SECURITE... 5 1.5. ASTREINTE ET GESTION DES DEMANDES... 5 1.5.1. Du lundi au vendredi

Plus en détail

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol. LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont

Plus en détail

' ' ' ' ' ' ' ' ' !!!!!!!!!!! !!!!!

' ' ' ' ' ' ' ' ' !!!!!!!!!!! !!!!! "#$%&$()*+*,-.#$*/,"&012"34)*54%6%789:8:;9?8> &)*+*,)#$*/,"&0B"/%#C*DE/ 1 "#$$%&(%)*+,-+..+ Esprits de Faubourg : C est la rentrée F%)*+*,-.#$*/,"&0*G$)H3,%#$I*+*3J)G9%#G+%#G,*KJ%/$)*/+JL%JM"J/C+*NI$4J#*D

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

DOSSIER DE PRESSE : DU NEUF DANS LES ASSURANCES VIE LINXEA

DOSSIER DE PRESSE : DU NEUF DANS LES ASSURANCES VIE LINXEA DOSSIER DE PRESSE : DU NEUF DANS LES ASSURANCES VIE LINXEA Le courtier LinXea annonce l arrivée de nouveaux supports sur ses contrats d assurance vie : LinXea Spirit : Une nouvelle SCPI intègre le contrat

Plus en détail

Temps et thermodynamique quantique

Temps et thermodynamique quantique Temps et thermodynamique quantique Journée Ludwig Boltzmann 1 Ensemble Canonique Distribution de Maxwell-Boltzmann, Ensemble canonique ϕ(a) = Z 1 tr(a e β H ) Z = tr(e β H ) 2 La condition KMS ϕ(x x) 0

Plus en détail

Les intermédiaires privés dans les finances royales espagnoles sous Philippe V et Ferdinand VI

Les intermédiaires privés dans les finances royales espagnoles sous Philippe V et Ferdinand VI Les intermédiaires privés dans les finances royales espagnoles sous Philippe V et Ferdinand VI Jean-Pierre Dedieu To cite this version: Jean-Pierre Dedieu. Les intermédiaires privés dans les finances royales

Plus en détail

Equations différentielles linéaires à coefficients constants

Equations différentielles linéaires à coefficients constants Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

04002-LOR 2004 Mars 2004

04002-LOR 2004 Mars 2004 04002-LOR 2004 LES INTERACTIONS IPSEC/DNS ---ooo--- Abstract :!! "!! $!!! "!! %$ & '( ) * + *, $ $,, $ ---ooo - - *./ 0! 1023224" 4 %- - *5 " 6 " 6 7 6 8./ 0! 1023224" 4 %6 "6 7 5 " - - * Jean-Jacques.Puig@int-evry.fr

Plus en détail

Le son [v] Découpe et colle les images dans la bonne colonne. Prénom : Date : J entends [vi] J entends [va] J entends [vo]

Le son [v] Découpe et colle les images dans la bonne colonne. Prénom : Date : J entends [vi] J entends [va] J entends [vo] Le son [v] Découpe et colle les images dans la bonne colonne. J entends [va] J entends [vo] J entends [vi] J entends [vu] J entends [von] Je n entends pas [v] Le son [v] Ecris O (oui) si tu entends le

Plus en détail

Série BS Réducteur compact roue et vis sans fin

Série BS Réducteur compact roue et vis sans fin Série BS Réducteur compact roue et vis sans fin Technique Jusqu à - 4kW / 315 Nm Réducteur roue et vis sans fin CBS-2.00FR1211 PRODUITS DE A GAMME S appliquant à de nombreux domaines comme l alimentaire,

Plus en détail

Fiche technique. " Cible/Echantillon " Mode de recueil " Dates de terrain

Fiche technique.  Cible/Echantillon  Mode de recueil  Dates de terrain v, r v «L qé d»? q c pr v Sfr dg d é d r Pré TNS Fch chq " Cb/Ech " Md d rc " D d rr 1001 ré cf ccpé Âgé d 18 p I d p TNS Sfr 267 000 dr Frc L rprévé d c éch ré pr méhd d q : âg, x, prf d rvwé, cr d cvé

Plus en détail

Incorporé au 3 e régiment d infanterie coloniale

Incorporé au 3 e régiment d infanterie coloniale Ax 59 : ch u u c u C B L ch u u c u C B 1 N A Fç Adu Eugè Gg [979?] Au C Afd A Luc Lu Augu M Aub Luc Muc Auc Augu E Auc Lu Auy Ru Auz Rhë Mu D u d c Pf Su N 15 cb 1886 à P N 8 b 1879 à P N 13 û 1885 à

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Procédures de tests en réflectométrie. Septembre 2013

Procédures de tests en réflectométrie. Septembre 2013 Procédures de tests en réflectométrie Septembre 2013 Procédure de certification des liaisons optiques avec un réflectomètre Pour les mesures optiques quelques rappels: - Outils calibré et avec le dernier

Plus en détail

Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents

Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents Mercredi 5 novembre 2014 Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents Hervé PETTON, Directeur Territorial 35 ans d expérience professionnelle en collectivités

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Retour d expérience sur le management des processus

Retour d expérience sur le management des processus GSI Gestion des systèmes d information Retour d expérience sur le management des processus Université d été 8-31 août 00 Dijon Guy Rivoire Consultant ELNOR Guy RIVOIRE 30/08/00 / 1 Présentation ELNOR Cabinet

Plus en détail

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879- Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une

Plus en détail

Présentation Bpifrance Prêt Numérique Juin 2015

Présentation Bpifrance Prêt Numérique Juin 2015 Présentation Bpifrance Prêt Numérique Juin 2015 01. Qui nous sommes NÉ EN 2013 Du besoin de simplifier l accès au financement pour les PME, d apporter des réponses globales à leurs besoins financiers,

Plus en détail

Un exemple d étude de cas

Un exemple d étude de cas Un exemple d'étude de cas 1 Un exemple d étude de cas INTRODUCTION Le cas de la Boulangerie Lépine ltée nous permet d exposer ici un type d étude de cas. Le processus utilisé est identique à celui qui

Plus en détail

+, -. / 0 1! " #! $ % % %! &' ( &))*

+, -. / 0 1!  #! $ % % %! &' ( &))* !"#!$%% +,-. /01 %!&'(&))* 23%#!! " # " " " "$! 4 5-6 4! 1! " # - 5! " # 6 3! " # 7! " # " 8! 9 : ; 5 7 4! 1! # 42 5! 5 < 44 3! # " 7! 41 5 8 '9 4! " $ = " > 4!4 *% 43 4!1? 48 4 4!5 $ 9 4!3 4@ 4!7 $ #

Plus en détail

Le Moyen-Orient depuis `1990: carte `1

Le Moyen-Orient depuis `1990: carte `1 Le Moyen-Orient depuis `1990: carte `1 L essentiel de la carte comprend des états membres de la ligue arabe. Au nord, se trouvent des états non membres, en allant d ouest en est: la Turquie, l Iran et

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Fonctions holomorphes

Fonctions holomorphes Université Joseph Fourier, Grenoble Maths en Ligne Fonctions holomorphes Christine Laurent-Thiébaut Ceci est le second volet de l étude des fonctions d une variable complexe, faisant suite au chapitre

Plus en détail

#"$&'$+*" (" ),'-"."'($ %($

#$&'$+* ( ),'-.'($ %($ "#$%&' #(%)*"" (#%*!"!#$"! -!"!#$"!! -!"!#$"!./% -!"!#$"! #"$&'$+*" (" ),'-"."'($ %($ % & % '!#(! "! $#) #!* +,!(")"",#./ & 0!,$#!1!"!#1 $#!* ** +" + 1! 0! $!,#!,! $,! 2! $3! 1! $ 1+4!"$"#)1,##" 56./78#!

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Pilou. Impre rie PEAU

Pilou. Impre rie PEAU M N 4 - EM VN L ENT à 2 9 IS 28 SD i fm i L l Vi 7, : 28 i bli l i P Di ii l D l : i i m L i lx i A F imi i M i i Syl mm i : S i ii l i b A A liq Ag ib i L P Pili i D i M Pi Gill i K Alb i l y S : i i

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

% & Instrument de recherche 13

% & Instrument de recherche 13 ! "#$$ % & Table des matières 2 Introduction 8 Bibliographie indicative 10 1-Jacques Copeau 10 a-généralités 10 b-ecrits de Jacques Copeau 10 Correspondances 10 Registres 10 Journal 11 Quelques écrits

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Informations techniques

Informations techniques Informations techniques Force développée par un vérin Ø du cylindre (mm) Ø de la tige (mm) 12 6 16 6 20 8 25 10 32 12 40 16 50 20 63 20 80 25 100 25 125 32 160 40 200 40 250 50 320 63 ction Surface utile

Plus en détail

Novembre 2006 Antispam sur Messagerie évoluée Completel Guide Utilisateur 1. Antispam individuel pour la Messagerie évoluée.

Novembre 2006 Antispam sur Messagerie évoluée Completel Guide Utilisateur 1. Antispam individuel pour la Messagerie évoluée. Novembre 2006 Antispam sur Messagerie évoluée Completel Guide Utilisateur 1 Antispam individuel pour la Messagerie évoluée Guide Utilisateur SOMMAIRE 1. QU EST-CE QUE LE SPAM?...3 1.1. DEFINITION...3 1.2.

Plus en détail

Office de l harmonisation dans le marché intérieur (OHMI) Indications requises par l OHMI: Référence du déposant/représentant :

Office de l harmonisation dans le marché intérieur (OHMI) Indications requises par l OHMI: Référence du déposant/représentant : Office de l harmonisation dans le marché intérieur (OHMI) Réservé pour l OHMI: Date de réception Nombre de pages Demande d enregistrement international relevant exclusivement du protocole de Madrid OHMI-Form

Plus en détail

MATHEMATIQUES APPLIQUEES Equations aux dérivées partielles Cours et exercices corrigés

MATHEMATIQUES APPLIQUEES Equations aux dérivées partielles Cours et exercices corrigés MATHEMATIQUES APPLIQUEES Equations aux dérivées partielles Cours et exercices corrigés Département GPI 1ère année Avril 2005 INPT-ENSIACET 118 route de Narbonne 31077 Toulouse cedex 4 Mail : Xuan.Meyer@ensiacet.fr

Plus en détail

TEPZZ 568448A_T EP 2 568 448 A1 (19) (11) EP 2 568 448 A1 (12) DEMANDE DE BREVET EUROPEEN. (51) Int Cl.: G07F 7/08 (2006.01) G06K 19/077 (2006.

TEPZZ 568448A_T EP 2 568 448 A1 (19) (11) EP 2 568 448 A1 (12) DEMANDE DE BREVET EUROPEEN. (51) Int Cl.: G07F 7/08 (2006.01) G06K 19/077 (2006. (19) TEPZZ 68448A_T (11) EP 2 68 448 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 13.03.2013 Bulletin 2013/11 (1) Int Cl.: G07F 7/08 (2006.01) G06K 19/077 (2006.01) (21) Numéro de dépôt:

Plus en détail