Optique Géométrique. Lois de l optique géométrique. 1 Nature de la lumière. 1.1 Aspects historiques. Jimmy ROUSSEL - ENSCR (Sept.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Optique Géométrique. Lois de l optique géométrique. 1 Nature de la lumière. 1.1 Aspects historiques. Jimmy ROUSSEL - ENSCR (Sept."

Transcription

1 Optique Géométrique Lois de l optique géométrique Jimmy ROUSSEL - ENSCR (Sept. 2010) Résumé Cette fiche de cours porte sur les bases de l optique géométrique : le rayon lumineux, l indice de réfraction, les lois de la réflexion, de la réfraction et de la dispersion. 1 Nature de la lumière La question de la nature de la lumière fut probablement l une des interrogations les plus fécondes : elle est en quelque sorte l origine des théories géométrique, ondulatoire, électromagnétique, relativiste et quantique de la lumière. 1.1 Aspects historiques La question de la nature de la lumière remonte à l antiquité. PYTHAGORE, DÉMOCRITE, ARISTOTE et les autres avaient déjà construit une théorie de la lumière et la propagation de la lumière en ligne droite était déjà connue d EUCLIDE (300 ans av. J.C.). La chute de l empire romain (475 ap. J.C) a ensuite réduit fortement le progrès scientifique pendant plusieurs siècles. Le 17ème siècle est considéré comme le siècle de la naissance de l optique géométrique tant du point de vue expérimental que du point de vue théorique. NEWTON, père de la mécanique classique, défend une description corpusculaire de la lumière. Pour lui, le phénomène de diffraction de la lumière rapporté dans l ouvrage du père GRIMALDI (publié à titre posthume en 1665) s explique par une inflexion de la lumière par la matière : on voit ici une vision purement mécaniste. Il est évident que le succès des Principia Mathematicae et le rayonnement de NEWTON dans le monde scientifique ont certainement freiné le développement de la théorie ondulatoire défendue à l époque par HUYGENS. Il faudra attendre plus d un siècle pour que les idées d HUYGENS soient reconnues. Voici quelques repères historiques ZACHARIAS JANSSEN invente le microscope GALILEO GALILEI construit une lunette astronomiques avec laquelle il découvrira les taches solaires et 3 satellites de Jupiter (Callisto, Europe, Ganymede) 1611 JOHANNES KEPLER découvre la réflexion totale interne, une loi de la réfraction pour de petits angles et les lois des lentilles minces GALILEO GALILEI démontre la rotation du soleil grâce à l observation des taches solaires L astronome néerlandais WILLEBRÖRD SNELL découvre les lois de la réfraction. 1

2 1.2 Notion de rayon lumineux RENÉ DESCARTES démontre mathématiquement que les angles des arcs-en-ciel primaires et secondaires dépendent de l angle d élévation du soleil PIERRE DE FERMAT introduit le principe du temps minimal en optique Le Père GRIMALDI constate qu au contour des obstacles ou au bord d un trou, la lumière subit un éparpillement, et appelle ce phénomène diffraction L astronome danois OLE RÖMER compile les orbites des lunes de Jupiter pour mesurer la vitesse de la lumière qu il estime à km/s CHRISTIAN HUYGENS introduit le principe de sources de front d ondes ISAAC NEWTON publie Opticks, ouvrage dans lequel il expose une théorie corpusculaire de la lumière. 1.2 Notion de rayon lumineux Postulat de l optique géométrique La lumière (l énergie lumineuse) est décrite par un ensemble de rayons lumineux indépendants. Ces rayons lumineux sont caractérisés par une direction de propagation u et une vitesse de propagation v. Ces rayons lumineux se propagent en ligne droite dans tout milieu homogène à une vitesse qui dépend du milieu. Spectre électromagnétique : Bien que ce cours ne traite pas des aspects ondulatoires de la lumière, il faut rappeler que la lumière est une vibration électromagnétique qui se caractérise par une longueur d onde λ - déplacement de l onde pendant un cycle de vibrations- et par une fréquence f - nombre de cycles par seconde. Toute lumière se propage dans le vide à la vitesse c m.s 1 et la relation entre fréquence et longueur d onde s écrit : λ = c f

3 1.3 Indice de réfraction 3 Le spectre électromagnétique est quasi-totalement invisible par un œil humain, sauf une petite portion dite spectre visible qui s étend du rouge (longueur d onde de 780 nm) au violet (longueur d onde de 380 nm) en passant par toutes les couleurs de l arc-en-ciel (communément divisé en rouge, orange, jaune, vert, bleu, indigo et violet). La couleur de la lumière est avant tout une question de perception par l œil et d interprétation par le cerveau. La lumière peut être polychromatique, elle est alors constituée de plusieurs longueurs d onde, ou monochromatique, elle est alors constituée d une seule longueur d onde. Les sources monochromatiques au sens strict du terme n existent pas, mais certains LASERs produisent une lumière dont le spectre est très étroit. On les considère donc généralement comme des sources monochromatiques. Ainsi, la très grande majorité, sinon la totalité, des phénomènes lumineux qu on observe impliquent une lumière polychromatique. (a) Spectre d une ampoule (b) Spectre d une lampe spectrale (c) Spectre d un LASER Fig. 1: Exemples de Spectres Limitations des lois de l optique géométrique : Les lois de l optique géométrique permettent de traiter la lumière dans un cadre approximatif dans lequel les aspects ondulatoires et quantiques peuvent être négligés. Tant que les propriétés des milieux varient peu à l échelle de la longueur d onde λ, l approximation de l optique géométrique est valide. La notion de rayon est par exemple purement conceptuelle et toute expérience cherchant à isoler un rayon lumineux est vouée à l échec à cause du phénomène de diffraction (voir Fig-2). Fig. 2: Phénomène de diffraction Conditions de validité de l optique géomètrique Si l on note N le nombre de photons mis en jeu dans un phénomène optique, D la dimension caractéristique des obstacles (miroirs, trous, lentilles...) et λ la longueur d onde, l approximation de l optique géométrique est bonne si : N 1 et D λ 1.3 Indice de réfraction Dans le vide, la lumière se propage en ligne droite à la vitesse c. C est en 1676 que RÖMER réussit à estimer cette vitesse grâce aux éclipses de quatre satellites de JUPITER (à différentes périodes de l année : plus la TERRE est éloignée de JUPITER, plus la durée entre deux éclipses successives augmente). Il obtint alors

4 4 environ km/s. Ce résultat astronomique fut confirmé en 1728 par BRADLEY qui utilisa l influence de la vitesse de la TERRE sur son orbite autour du SOLEIL (phénomène d aberration des étoiles qui lui permit, indirectement, d estimer la vitesse de la lumière). Il obtint alors environ km/s. En 1849 FIZEAU obtint environ km/s en utilisant un système mécanique de miroirs et une roue dentée en rotation (la vitesse de la roue était ajustée pour permettre le passage du rayon lumineux à l aller, puis au retour après une réflexion sur un miroir). Ensuite, FOUCAULT reprit le même genre d expérience (la roue dentée fut remplacée par un miroir en rotation) et sa mesure la plus précise, en 1862, s approcha de la valeur actuelle (avec moins de 1 % de différence : soit environ km/s). On retiendra que c m.s 1 ce qui correspond environ à 7,5 circonférences de la Terre parcourues en 1 s! Dans un milieux transparent, homogène et isotrope, la lumière se propage en ligne droite mais à une vitesse v = n c < c. Le scalaire n s appelle l indice de réfraction. Il est caractéristique du milieu. milieu air eau verre diamant indice 1,0003 1,33 1,5-1,8 2,42 Tab. 1: Quelques indices optiques En résumé La vitesse de déplacement de la lumière dépend du milieu dans lequel elle se propage : Dans le vide la lumière se propage à la vitesse c = m.s 1 (constante universelle du Système International). Dans un milieu matériel transparent homogène et isotrope, la vitesse est inférieure à c et vaut v = c n où n désigne l indice de réfraction (sans dimension). Remarque : La lumière est une onde et, à l instar des ondes acoustiques qui ont besoin d un milieu élastique pour se propager, la question du support de propagation s est naturellement posée. Cet hypothétique milieu fut appelé Ether. Deux physiciens, MICHELSON et MORLEY tentèrent de mettre en évidence expérimentalement un mouvement terrestre par rapport à l éther à l aide d un interféromètre. Leurs expériences furent négatives. Peu après, EINSTEIN va s inspirer de ces «expériences négatives» et osera formuler le postulat selon lequel l éther n existe pas et la lumière se propage dans le vide à la vitesse c, ceci quelque soit le référentiel d observation. Ainsi, la vitesse de la lumière dans le vide devient une constante fondamentale de la Physique. 2 Lois de Snell-Descartes 2.1 Réflexion Lorsqu un rayon arrive à l interface entre deux milieux isotropes et homogènes différents, il donne naissance à un rayon réfléchi et à un rayon transmis (réfracté). On distingue deux types de réflexion : La réflexion diffuse est produite par une surface irrégulière. Elle ne produit pas d image discernable. C est cependant cette sorte de réflexion qui nous permet de voir le monde qui nous entoure. La réflexion spéculaire est produite par une surface très lisse (ex. : miroir ou surface d eau très calme). Elle produit une image discernable d un objet. On définit le plan d incidence comme le plan contenant le rayon incident et la normale à l interface (cf. figure 3).

5 2.2 Réfraction 5 Rayon incident Plan d incidence Normale Rayon réfléchi i 1 i1 Surface réfléchissante Fig. 3: Réflexion d un rayon sur une interface. Lois de la réflexion 1. Le rayon réfléchi est dans le plan d incidence. 2. Le rayon réfléchi est symétrique du rayon incident par rapport à la normale : i 1 = i 1 Pouvoir Réflecteur : La lumière réfléchie n emporte pas entièrement l énergie incidente. On définit le pouvoir réflecteur R d une interface comme étant le rapport de l énergie réfléchie sur l énergie incidente. En incidence normale, Å n1 n 2 R = n 1 + n 2 Pour une interface verre-air cela vaut 4%. En déposant une couche mince métallique sur l interface on ramène le pouvoir réflecteur très proche de 100% : on parle alors de miroir. On peut aussi déposer une couche mince de MgF 2 pour réduire le pouvoir réflecteur ; on parle alors de couche anti-reflet 1 ã Réfraction La réfraction est la déviation de la lumière lorsqu elle traverse l interface entre deux milieux transparents d indices optiques différents (voir figure 4). Lois de la réfraction 1. Le rayon réfracté est dans le plan d incidence. 2. Le rayon réfracté est tel que : n 1 sini 1 = n 2 sini 2 Conséquences : Principe du retour inverse de la lumière : tout trajet suivi par la lumière dans un sens peut l être en sens opposé. Réflexion totale : lorsque le milieu 2 est moins réfringent que le milieu 1 (c est-à-dire n 2 < n 1 ), le rayon réfracté s éloigne de la normale. Il existe alors un angle limite d incidence i l tel que sini l = n 2 n 1 et tel que lorsque i > i l le rayon réfracté disparait ; seul le rayon réfléchi existe : on parle alors de réflexion totale car toute l énergie se retrouve dans le rayon réfléchi. 1. Voir cours optique ondulatoire - 2ème année.

6 2.3 Dispersion 6 Rayon incident Plan d incidence Normale Rayon réfracté i 1 i 2 Fig. 4: Réfraction d un rayon lumineux. RÉFRACTION RÉFRACTION LIMITE RÉFLEXION TOTALE angle limite angle limite angle limite 2.3 Dispersion NEWTON réalisa ses fameuses expériences autour de la décomposition de la lumière par un prisme. Lorsque l on envoit un pinceau de lumière blanche à travers un prisme, on voit apparaître en sortie du prisme un faisceau divergeant et irisé. Chaque composante spectrale est déviée différemment ; on dit qu il y a dispersion. Ce phénomène provient du fait que l indice de réfraction dépend de la longueur d onde de la lumière. La relation n(λ) s appelle relation de dispersion. Dans la plupart des milieux transparents, dans le domaine

7 2.3 Dispersion 7 visible, l indice suit la loi de CAUCHY : n(λ)=a + B λ 2 la lumière rouge est plus rapide que la lumière bleue (λ rouge > λ bleu ). Application : l arc-en-ciel L observation d un arc-en-ciel se produit quand le soleil éclaire une zone humide (modélisée par un ensemble de fines goutellettes d eau) et que l observateur se situe entre le soleil et la zone humide. C est Descartes qui le premier a donné une explication satisfaisante du phénomène en s appuyant sur les lois de l optique géométrique et notamment sur les phénomènes de : 1. La réfraction : le soleil envoie des rayons qui -en rentrant dans une goutte d eausont déviés. Cette déviation dépend de l indice de réfraction de l eau, notée n. 2. La réflexion : la lumière -pour une grande part- sort de la goutte mais une partie est réfléchie puis réfractée ce qui permet à l observateur de voir l arc primaire (l arc le plus intense). Une infime partie est réfléchie deux fois avant d être réfractée : c est ce qui produit l arc secondaire (plus difficile à voir). 3. La dispersion : Le fait que l indice de réfraction de l eau dépende de la longueur d onde de la lumière produit des arcs irisés. Simulation :

8 2.4 Interprétations des lois de Snell Descartes Interprétations des lois de Snell Descartes Principe de Fermat Pierre de FERMAT proposa en 1657 que les rayons lumineux répondaient à un principe très général auquel on donna son nom. Le principe de Fermat est un principe variationnel car il fait appel à une grandeur que l on cherche à optimiser. Principe de FERMAT : Le chemin emprunté par la lumière pour se rendre d un point donné à un autre est celui pour lequel le temps de parcours est stationnaire (c est-àdire, minimum, maximum ou stationnaire). Ce seul énoncé permet de retrouver toutes les lois de l optique géométrique : la propagation en ligne droite, le principe du retour inverse et les lois de Snell-Descartes. Point de vue ondulatoire HUYGENS, fervent défenseur de la description ondulatoire de la lumière, énonça un principe qui porte son nom et qui fut le point de départ de la théorie de la diffraction. Principe d Huygens : Les points de la surface d onde (surface où tous les points vibrent en phase) agissent comme des sources secondaires d ondes sphériques qui, par interférence, vont produire une nouvelle surface d onde plus loin, ceci de proche en proche. Illustration du Principe d Huygens Le principe d Huygens permet d interpréter simplement la loi de réfraction. La figure ci-dessous représente les différents plans de phases traversant un milieu transparent. Prenons deux point A et B appartenant au même plan de phase, comme indiqué sur la figure.

9 9 A produit une onde sphérique voyageant à la vitesse v 1 alors que B en produit une à la vitesse v 2. Après une durée t, l onde issue de A arrive en A alors que l onde issue de B arrive en B. A et B forment la nouvelle surface d onde. Les angles d incidence et de réfraction sont tels que : sini1 = v 1t A B sini 2 = v 2t A B d où l on déduit sini 1 = sini 2 v 1 v 2 En miltipliant par c cette relation, on retrouve la loi de réfraction. A Résumé des phénomènes Phénomène réflexion réfraction dispersion diffraction absorption Description Un milieu réfléchissant renvoie une partie de la lumière. La réfraction est la courbure des rayons lumineux lorsqu ils passent d un milieu à un autre. la dépendance de l angle de réfraction avec la longueur d onde implique la dispersion de la lumière Phénomène de déviation des ondes (lumineuses, acoustiques...) lorsqu elles passent au voisinage d un obstacle. l absorption de la lumière se traduit par la diminution de l intensité lumineuse au fur et à mesure du trajet de la lumière dans un milieu matériel absorbant

1LOISDEL OPTIQUEGÉOMÉTRIQUE

1LOISDEL OPTIQUEGÉOMÉTRIQUE 1LOISDEL OPTIQUEGÉOMÉTRIQUE Ce premier chapitre rappelle les bases de l optique géométrique : la notion de rayon lumineux, d indice de réfraction, les lois de la réflexion, de la réfraction et de la dispersion.

Plus en détail

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique.

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique. OPTIQUE GEOMETRIQUE Définitions : L optique est la science qui décrit les propriétés de la propagation de la lumière. La lumière est un concept extrêmement compliqué et dont la réalité physique n est pas

Plus en détail

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20 Sources de lumière Sources naturelles Soleil Étoiles Sources artificielles Bougie Ampoule MR, 2007 Optique 1/20 Origine de la lumière Incandescence La lumière provient d un corps chauffé à température

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE

CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE I Qu est-ce que la lumière? Historique : théorie ondulatoire et théorie corpusculaire II Aspect ondulatoire Figure 1-1 : (a) Onde plane électromagnétique

Plus en détail

Chapitre 5 - Réfraction et dispersion de la lumière

Chapitre 5 - Réfraction et dispersion de la lumière I. Réfraction de la lumière A. Mise en évidence expérimentale 1. Expérience 2. Observation - Dans l air et dans l eau, la lumière se propage en ligne droite. C est le phénomène de propagation rectiligne

Plus en détail

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident OPTIQUE Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident AIR rayon réfléchi EAU rayon réfracté A l'interface entre les deux milieux, une partie

Plus en détail

La lumière est une onde électromagnétique transversale visible par l être humain.

La lumière est une onde électromagnétique transversale visible par l être humain. 3 LES ONDES LUMINEUSES La lumière est une onde électromagnétique transversale visible par l être humain. Caractéristiques : les ondes lumineuses se propagent en ligne droite; lorsqu elles rencontrent un

Plus en détail

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction :

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction : Cours Physique Interaction onde-matière classe : 4 ème Maths 3+Tech I- Introduction : En laissant l œil semi-ouvert lors de la réception de la lumière on observe des annaux alternativement brillants et

Plus en détail

Chapitre 6 La lumière des étoiles Physique

Chapitre 6 La lumière des étoiles Physique Chapitre 6 La lumière des étoiles Physique Introduction : On ne peut ni aller sur les étoiles, ni envoyer directement des sondes pour les analyser, en revanche on les voit, ce qui signifie qu'on reçoit

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

Sommaire. Chapitre 1 Généralités sur la lumière. Chapitre 2 Lois et principes de l optique géométrique. Chapitre 3 Formation des images

Sommaire. Chapitre 1 Généralités sur la lumière. Chapitre 2 Lois et principes de l optique géométrique. Chapitre 3 Formation des images Sommaire Chapitre 1 Généralités sur la lumière A. Qu est ce que l optique aujourd hui?..................................... 8 B. Généralités sur la lumière.............................................

Plus en détail

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr Licence IOVIS 2011/2012 Optique géométrique Lucile Veissier lucile.veissier@spectro.jussieu.fr Table des matières 1 Systèmes centrés 2 1.1 Vergence................................ 2 1.2 Eléments cardinaux..........................

Plus en détail

Cours de physique appliqué Terminale STI électronique epix@fr.st. L optique (Chap 3)

Cours de physique appliqué Terminale STI électronique epix@fr.st. L optique (Chap 3) L optique (Chap 3)! Révisé et compris! Chapitre à retravaillé! Chapitre incompris 1. La lumière : La lumière est une onde électromagnétique, caractérisé par sa fréquence f. Les ondes électromagnétiques

Plus en détail

De la lentille au miroir.

De la lentille au miroir. De la lentille au miroir. De la lentille au miroir. Qu est ce qu un objectif, qu il soit réfracteur ou réflecteur? De la lentille au miroir. Qu est ce qu un objectif, qu il soit réfracteur ou réflecteur?

Plus en détail

L œil ; un système optique

L œil ; un système optique Première L/ES - AP SPC 1 L œil ; un système optique 1/ Des notions à avoir bien comprises Propagation de la lumière : dans un milieu homogène (même propriété en tous points), la lumière se propage en ligne

Plus en détail

CPGE MPSI Programme de khôlle. Programme de khôlle. - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique

CPGE MPSI Programme de khôlle. Programme de khôlle. - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique Programme de khôlle - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique 1. Savoir que la lumière est une onde électromagnétique, se propagent de manière omnidirectionnelle à partir d une

Plus en détail

Plan. Physique - Optique et applications pour la Synthèse d Images. IUT StDié. Introduction. 1. Nature et propagation i. de La la lumière lumière

Plan. Physique - Optique et applications pour la Synthèse d Images. IUT StDié. Introduction. 1. Nature et propagation i. de La la lumière lumière Physique - Optique et applications pour la Synthèse d Images IUT StDié Cours niveau Licence Optique v.2005-10-05 Stéphane Gobron Plan Introduction 2. Image, réflexion et réfraction 4. Interférences et

Plus en détail

La spectrophotométrie

La spectrophotométrie Chapitre 2 Document de cours La spectrophotométrie 1 Comment interpréter la couleur d une solution? 1.1 Décomposition de la lumière blanche En 1666, Isaac Newton réalise une expérience cruciale sur la

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

Lumière et couleurs CRDP de Poitou-Charentes

Lumière et couleurs CRDP de Poitou-Charentes Lumière et couleurs CRDP de Poitou-Charentes Les ondes colorées de la lumière blanche La lumière est un rayonnement composé d ondes électromagnétiques qui se propagent dans le vide à la vitesse de 299

Plus en détail

La Composition de la lumière De quoi est composée la lumière Blanche?

La Composition de la lumière De quoi est composée la lumière Blanche? La Composition de la lumière De quoi est composée la lumière Blanche? Introduction de dossier : Newton, dans sa vision de la blancheur de la lumière solaire résultant de toutes les 3 couleurs primaire

Plus en détail

DEVOIR SURVEILLE N 1

DEVOIR SURVEILLE N 1 Année 2011/2012 - PCSI-2 DS 01 : Optique 1 DEVOIR SURVEILLE N 1 Samedi 24 Septembre 2011 Durée 3h00 Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Plus en détail

Chapitre «Couleur des objets»

Chapitre «Couleur des objets» Lycée Joliot Curie à 7 PHYSIQUE - Chapitre II Classe de 1 ère S Chapitre «Couleur des objets» La sensation de couleur que nous avons en regardant un objet dépend de nombreux paramètres. Elle dépend, entre

Plus en détail

Capsule théorique sur l optique géométrique (destinée au personnel)

Capsule théorique sur l optique géométrique (destinée au personnel) Capsule théorique sur l optique géométrique (destinée au personnel) Octobre 2014 Table des matières Spectre électromagnétique... 3 Rayons lumineux... 3 Réflexion... 3 Réfraction... 3 Lentilles convergentes...

Plus en détail

Introduction aux aberrations optiques

Introduction aux aberrations optiques Introduction aux aberrations optiques 1 Aberrations Les aberrations sont les défauts d'un système optique simple qui font que l'image d'un point ou d'un objet étendu obtenu par l'intermédiaire de ce système

Plus en détail

Son et Lumière. L optique géométrique

Son et Lumière. L optique géométrique Son et Lumière Leçon N 3 L optique géométrique Introdution Nous allons au cours de cette leçon poser les bases de l optique géométrique en en rappelant les principes fondamentaux pour ensuite nous concentrer

Plus en détail

1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant

1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant CHABOU Moulley Charaf Ecole Nationale Polytechnique Département Génie Minier Cours - - 1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant 1.1. Généralités sur la lumière La lumière

Plus en détail

Fente Lumière blanche. Fente Laser rouge. 2 Prisme

Fente Lumière blanche. Fente Laser rouge. 2 Prisme 1L : Représentation visuelle du monde Activité.4 : Lumières colorées I. Décomposition de la lumière blanche Newton (dès 1766) a décomposé la lumière solaire avec un prisme. 1. Expériences au bureau : 1

Plus en détail

1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles

1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles II.2 ptique 1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles 1.1) Définitions 1.1.1) Rayons et faisceaux lumineux

Plus en détail

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION - 1 - Expérience no 21 1. INTRODUCTION ELEMENTS D OPTIQUE Dans cette expérience les principes de l optique géométrique sont applicables car les obstacles traversés par la lumière sont beaucoup plus grands

Plus en détail

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php 3LESLENTILLESMINCES Cette fiche de cours porte sur les lentilles minces. L approche est essentiellement descriptive et repose sur la maîtrise de la construction des rayons lumineux. Ce chapitre est accessible

Plus en détail

Chapitre 4 Les lentilles minces

Chapitre 4 Les lentilles minces Chapitre 4 Les lentilles minces Sidi M. Khefif Département de Physique EPST Tlemcen 10 février 2013 1. Généralités 1.1. Description Définition : Une lentille est un milieu transparent limité par deux dioptres,

Plus en détail

TROISIÈME LOI DE KÉPLER : VÉRIFICATIONS ET APPLICATIONS DANS LE SYSTÈME SOLAIRE

TROISIÈME LOI DE KÉPLER : VÉRIFICATIONS ET APPLICATIONS DANS LE SYSTÈME SOLAIRE Gabriel Scherer TS3 TROISIÈME LOI DE KÉPLER : VÉRIFICATIONS ET APPLICATIONS DANS LE SYSTÈME SOLAIRE TPP4.odt 1/6 Rappels : 1 U.A. = 1,497.10 11 m Constante de gravitation universelle G = 6,67.10 11 u.s.i.

Plus en détail

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices

Plus en détail

TP n 4 : Lumière et couleurs

TP n 4 : Lumière et couleurs TP n 4 : Lumière et couleurs Plan I. Lumières colorées : 1- Dispersion de la lumière par un prisme ou par un CD-rom : 2- Composition de la lumière blanche : 3- Lumières polychromatiques et monochromatiques

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

TP Diffraction et Interférence DIFFRACTIONS ET INTERFERENCES

TP Diffraction et Interférence DIFFRACTIONS ET INTERFERENCES OBJECTIFS Observation de la diffraction. Observation des interférences. I ) DIFFRACTION D ONDES A LA SURFACE DE L EAU Sur la photographie ci-dessous, on observe que les vagues, initialement rectilignes,

Plus en détail

Lentilles Détermination de distances focales

Lentilles Détermination de distances focales Lentilles Détermination de distances focales Résumé Les lentilles sont capables de faire converger ou diverger un faisceau lumineux. La distance focale f d une lentille caractérise cette convergence ou

Plus en détail

Comprendre l Univers grâce aux messages de la lumière

Comprendre l Univers grâce aux messages de la lumière Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,

Plus en détail

Organisation des appareils et des systèmes: Le domaine de l optique

Organisation des appareils et des systèmes: Le domaine de l optique Université Bordeaux Segalen Organisation des appareils et des systèmes: Bases physiques des méthodes d exploration UE 3A Le domaine de l optique Dr JC DELAUNAY PACES- année 2011/2012 OPTIQUE GEOMETRIQUE

Plus en détail

Les couleurs embellissent notre environnement. La couleur d un objet change avec la lumière utilisée pour l éclairer. Comment expliquer ce phénomène?

Les couleurs embellissent notre environnement. La couleur d un objet change avec la lumière utilisée pour l éclairer. Comment expliquer ce phénomène? Chapitre 2 : LA COULEUR DES CORPS Les couleurs embellissent notre environnement. La couleur d un objet change avec la lumière utilisée pour l éclairer. Comment expliquer ce phénomène? 1-) La lumière blanche.

Plus en détail

Chap.3 Lentilles minces sphériques

Chap.3 Lentilles minces sphériques Chap.3 Lentilles minces sphériques 1. Les différents types de lentilles minces sphériques 1.1. Les différentes formes de lentilles sphériques 1.2. Lentilles minces Centre optique 1.3. Lentille convergente

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

Opt 3 : LENTILLES SPHERIQUES MINCES DANS LES

Opt 3 : LENTILLES SPHERIQUES MINCES DANS LES Opt 3 : LENTILLES SPHERIQUES MINCES DNS LES CONDITIONS D PPROXIMTION DE GUSS. Les lentilles sont des systèmes optiques destinés à former des images par transmission et non par réflexion (contrairement

Plus en détail

Cours d optique O11-Lois de l optique géométrique

Cours d optique O11-Lois de l optique géométrique Cours d optique O11-Lois de l optique géométrique Table des matières 1 Introduction 2 2 Histoire de l optique géométrique 2 2.1 Les anciens, la lumière, la vision... 2 2.2 Le fondateur de l optique...

Plus en détail

Sciences Physiques 1ES S. Zayyani. Fiche de Cours

Sciences Physiques 1ES S. Zayyani. Fiche de Cours Sciences Physiques 1ES S. Zayyani Fiche de Cours Unité : Représentation visuelle Chapitre: Chapitre 1 L œil Voir un objet Pour que l on puisse «voir un objet», il faut certaines conditions. Il faut surtout

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

Physique 51421. Module 3 Lumière et optique géométrique. Rappel : les ondes. Caractéristiques des ondes. Vitesse de la lumière

Physique 51421. Module 3 Lumière et optique géométrique. Rappel : les ondes. Caractéristiques des ondes. Vitesse de la lumière Physique 51421 Module 3 Lumière et optique géométrique Rappel : les ondes Il existe deux types d ondes : Ondes transversale : les déformations sont perpendiculaire au déplacement de l onde. (ex : lumière)

Plus en détail

Approche documentaire n 1 : autour de l appareil photographique numérique

Approche documentaire n 1 : autour de l appareil photographique numérique Approche documentaire n 1 : autour de l appareil photographique numérique But : «En comparant des images produites par un appareil photographique numérique, discuter l influence de la focale, de la durée

Plus en détail

Histoire de l optique Optique géométrique (version historique) 2005-2006

Histoire de l optique Optique géométrique (version historique) 2005-2006 Histoire de l optique Optique géométrique (version historique) 2005-2006 1. Propagation rectiligne de la lumière (Euclide, ~300 av. J.-C. - ~260av. J.-C.) Durée : environ 1h00 en classe Construction d

Plus en détail

Module de Physique OPTIQUE GEOMETRIQUE OPTIQUE GEOMETRIQUE LENTILLES. Professeur M. CHEREF. Faculté de Médecine Alger I Université d Alger

Module de Physique OPTIQUE GEOMETRIQUE OPTIQUE GEOMETRIQUE LENTILLES. Professeur M. CHEREF. Faculté de Médecine Alger I Université d Alger Module de Physique OPTIQUE GEOMETRIQUE OPTIQUE GEOMETRIQUE LENTILLES Professeur M. CHEREF Faculté de Médecine Alger I Université d Alger I- Les Lentilles (1) : Généralités (1) Lentille : définition MILIEU

Plus en détail

1 L FORMATION DES IMAGES OPTIQUES. 1. Rappels sur la lumière. 2. Les lentilles

1 L FORMATION DES IMAGES OPTIQUES. 1. Rappels sur la lumière. 2. Les lentilles L RMTIN DES IMGES PTIQUES Représentation visuelle du monde et 2 Compétences exigibles au C : Reconnaître une lentille convergente ou divergente par une méthode au choix : par la déviation produite sur

Plus en détail

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Quebec PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Direction de la formation générale

Plus en détail

Les ondes lumineuses. http://plateforme.sillages.info

Les ondes lumineuses. http://plateforme.sillages.info Les ondes lumineuses 1 Les ondes lumineuses I) Préliminaires : 1 Quelques notions qualitatives sur l optique ondulatoire * Rappels d optique géométrique : * Traversée de rayons à travers une lentille CV

Plus en détail

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente Lentilles I - UT DE L MNIPULTIN La manipulation consiste à déterminer, par différentes méthodes, la distance focale f d'une lentille mince convergente (on admettra que la lentille est utilisée dans les

Plus en détail

Table des matières. Chapitre 1. Introduction à l optique géométrique...1. Chapitre 2. Formation des images... 13. Chapitre 3

Table des matières. Chapitre 1. Introduction à l optique géométrique...1. Chapitre 2. Formation des images... 13. Chapitre 3 Cours d'optique non linéaire Table des matières Chapitre 1 Introduction à l optique géométrique...1 Chapitre 2 Formation des images... 13 Chapitre 3 Lentilles minces sphériques... 21 1. Propagation de

Plus en détail

L'apport de la physique au diagnostic médical

L'apport de la physique au diagnostic médical L'apport de la physique au diagnostic médical L'application des découvertes de la physique à l'exploration du corps humain fournit aux médecins des informations essentielles pour leurs diagnostics. Ils

Plus en détail

PARCOURS Ombre et lumière. Sébastien Giroux rou

PARCOURS Ombre et lumière. Sébastien Giroux rou PARCOURS Ombre et lumière Sébastien Giroux Saïd Baouch,, Didier MérouM rou 0. Introduction Mes coordonnées : - sebastien.giroux@univ-lorraine.fr Parcours : - Google : «lamap grand nancy» - http://espe.univ-lorraine.fr/lamap/index.php

Plus en détail

Exercices. Sirius 1 re S - Livre du professeur Chapitre 1. Œil, lentilles minces et images. Exercices d application. 5 minutes chrono!

Exercices. Sirius 1 re S - Livre du professeur Chapitre 1. Œil, lentilles minces et images. Exercices d application. 5 minutes chrono! Exercices Exercices d application 5 minutes chrono!. Mots manquants a. transparents ; rétine b. le centre optique c. à l'axe optique d. le foyer objet e. OF ' f. l'ensemble des milieux transparents; la

Plus en détail

Optique : applications Introduction

Optique : applications Introduction Optique : applications Introduction I. Introduction Au premier semestre nous avons abordés l'optique géométrique, nous avons vu les lois de Snell Descartes qui décrivent comment la lumière est réfléchie

Plus en détail

O2 FORMATION DES IMAGES & APPROXIMATION DE GAUSS

O2 FORMATION DES IMAGES & APPROXIMATION DE GAUSS O2 FORMATION DES IMAGES & APPROXIMATION DE GAUSS Objectifs de cette leçon : Définitions d un objet, d une image et d un système optique. Notions d objets et d images étendues Notions d objets et d images

Plus en détail

DIFFRACTion des ondes

DIFFRACTion des ondes DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène

Plus en détail

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière.

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière. 31 O1 OPTIQUE GEOMETRIQUE I.- INTRODUCTION L optique est une partie de la physique qui étudie la propagation de la lumière. La lumière visible est une onde électromagnétique (EM) dans le domaine de longueur

Plus en détail

Chapitre II-3 La dioptrique

Chapitre II-3 La dioptrique Chapitre II-3 La dioptrique A- Introduction Quelques phénomènes causés par la réfraction de la lumière : quelqu'un dans une piscine semble plus petit... un règle en partie immergée semble brisée... un

Plus en détail

Chapitre III : lentilles minces

Chapitre III : lentilles minces Chapitre III : lentilles minces Les lentilles minces sont les systèmes optiques les plus utilisés, du fait de leur utilité pour la confection d instruments d optique tels que microscopes, télescopes ou

Plus en détail

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente Première S Chapitre mages formées par les systèmes optiques.. mage donnée par un miroir.. Lois de la réflexion Soit un rayon lumineux issu dun point lumineux S et qui rencontre en le miroir plan M. l donne,

Plus en détail

Force de tension d une corde

Force de tension d une corde Force de tension d une corde 1.a. Deux façons de répondre à la question : 25 images 1 seconde 1 image T T = 1/25 = 0,04 s. 25 images par seconde représente la fréquence de prise de vue. Or T = 1/f donc

Plus en détail

COFFRET D OPTIQUE OEB. CLASSE DE 8 ème

COFFRET D OPTIQUE OEB. CLASSE DE 8 ème COFFRET D OPTIQUE OEB Contenu Toutes les expériences présentées dans les pages suivantes ont été faites avec ce matériel. CLASSE DE 8 ème CH 6-1 Propagation de la lumière I Propagation de la lumière p

Plus en détail

Chapitre 2 LUMIÈRES COLORÉES ET COULEUR DES OBJETS

Chapitre 2 LUMIÈRES COLORÉES ET COULEUR DES OBJETS Chapitre 2 LUMIÈRES COLORÉES ET COULEUR DES OBJETS Compétence(s) requise(s) : Les sources de lumières, primaires et secondaires. La propagation rectiligne de la lumière et les faisceaux de lumière. Objectif(s)

Plus en détail

Chap 1: Formation des images

Chap 1: Formation des images Chap 1: Formation des images Plan I- Conceptions historiques de la vision II- Voir un objet III- Les lentilles IV- Les lentilles convergentes I-Conceptions historiques de la vision 1 ) Pendant l Antiquité.

Plus en détail

La couleur des étoiles (La loi de Wien)

La couleur des étoiles (La loi de Wien) FICHE 1 Fiche à destination des enseignants 1S 6 La couleur des étoiles (La loi de Wien) Type d'activité Activité documentaire et utilisation de TIC Notions et contenus du programme de 1 ère S Largeur

Plus en détail

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Surface sphérique : Miroir, dioptre et lentille Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Définition : Les miroirs sphériques Un miroir sphérique est une

Plus en détail

UE3 Analyse des Images Optique : géométrie et formation d'image

UE3 Analyse des Images Optique : géométrie et formation d'image UE3 Analyse des Images Optique : géométrie et formation d'image Plan du cours 1 Optique géométrique principes, loi de Snell Descartes stigmatisme, image réelle et virtuelle 2 Formation d'une image formation

Plus en détail

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE I LE PHENOMENE DE DISPERSION 1 Expérience 2 Observation La lumière émise par la source traverse le prisme, on observe sur l'écran le spectre de la lumière blanche.

Plus en détail

La fibre optique. L'essentiel. L'Internet de demain

La fibre optique. L'essentiel. L'Internet de demain La fibre optique L'essentiel L'Internet de demain Alben21 - Tous droits réservés - Edition 2012 Constituée d'un cœur entouré d'une gaine réfléchissante, la fibre optique est un "tuyau" très fin dans lequel

Plus en détail

O3 COULEUR DES OBJETS

O3 COULEUR DES OBJETS O3 COULEUR DES OBJETS Prévoir le résultat de la superposition de lumières colorées et l effet d un ou plusieurs filtres colorés sur une lumière incidente. Utiliser les notions de couleur blanche et de

Plus en détail

ETUDE DES LENTILLES MINCES

ETUDE DES LENTILLES MINCES ETUDE DES LENTILLES MINCES I ) Définitions Une lentille est un milieu transparent limité par deux surfaces dont l une au moins n est pas plane. Parmi les lentilles minces, on distingue deux catégories

Plus en détail

Application à l astrophysique ACTIVITE

Application à l astrophysique ACTIVITE Application à l astrophysique Seconde ACTIVITE I ) But : Le but de l activité est de donner quelques exemples d'utilisations pratiques de l analyse spectrale permettant de connaître un peu mieux les étoiles.

Plus en détail

Comment mesure-t-on la masse des planètes?

Comment mesure-t-on la masse des planètes? Comment mesure-t-on la masse des planètes? Evidemment, les planètes ne sont pas mises sur une balance. Ce sont les mathématiques et les lois physiques qui nous permettent de connaître leur masse. Encore

Plus en détail

TD : les lois de Kepler et la détermination de la masse de Jupiter. 1. Les lois de la mécanique céleste dans le système solaire :

TD : les lois de Kepler et la détermination de la masse de Jupiter. 1. Les lois de la mécanique céleste dans le système solaire : TD : les lois de Kepler et la détermination de la masse de Jupiter Objectif : calculer la masse de Jupiter en observant le mouvement de ses satellites et en utilisant la 3ème loi de Kepler 1. Les lois

Plus en détail

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION

LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION LE SPECTROSCOPE À PRISME. ANALYSE DES SPECTRES D ÉMISSION ET D ABSORBTION 1. Le but du travail 1.1. Mise en evidence du phénomène de dispersion de la lumière par l observation des spectres d émission et

Plus en détail

Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques.

Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques. Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques. Notions et contenus : Transferts quantiques d énergie Émission et absorption quantiques.

Plus en détail

Chapitre 3 : Dynamique du point matériel

Chapitre 3 : Dynamique du point matériel Cours de Mécanique du Point matériel Chapitre 3 : Dynamique SMPC1 Chapitre 3 : Dynamique du point matériel I Lois fondamentales de la dynamiques I.1)- Définitions Le Référentiel de Copernic: Le référentiel

Plus en détail

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation Photométrie d un rétroprojecteur Doc. OPT-TP-02A (14.0) Date : 13 octobre 2014 TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur 1 But de l expérience Le but de ce TP est de : 1. comprendre le

Plus en détail

EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale

EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale Automne 2011 Nom : Chaque question à choix multiples vaut 3 points 1. Une lentille convergente dont l indice de réfraction est de 1,5 initialement

Plus en détail

1 Lentilles sphériques minces

1 Lentilles sphériques minces Lentilles sphériques minces et miroirs Lentilles sphériques minces. Définition Définition : Une lentille sphérique est une portion de MHT I limitée par deux dioptres sphériques ou une dioptre sphérique

Plus en détail

Niveau 2 nde THEME : L UNIVERS. Programme : BO n 4 du 29 avril 2010

Niveau 2 nde THEME : L UNIVERS. Programme : BO n 4 du 29 avril 2010 Document du professeur 1/13 Niveau 2 nde THEME : L UNIVERS Physique Chimie LA REFRACTION : LOIS DE SNELL- DESCARTES Programme : BO n 4 du 29 avril 2010 L UNIVERS NOTIONS ET CONTENUS COMPETENCES ATTENDUES

Plus en détail

La Lune, satellite naturel de la Terre, est une source secondaire de lumière. Selon sa position, l image que l on perçoit d elle est différente.

La Lune, satellite naturel de la Terre, est une source secondaire de lumière. Selon sa position, l image que l on perçoit d elle est différente. LES PHASES DE LA LUNE - LES ÉCLIPSES La Lune, satellite naturel de la Terre, est une source secondaire de lumière. Selon sa position, l image que l on perçoit d elle est différente. La rotation de la Lune

Plus en détail

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé.

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé. TP focométrie Ce TP est évalué à l'aide du compte-rendu pré-imprimé. Objectifs : déterminer la distance focale de divers lentilles minces par plusieurs méthodes. 1 Rappels 1.1 Lentilles... Une lentille

Plus en détail

Collège des Soeurs des Saints Coeurs Classe : EB9 ( A B ) Bauchrieh Date : mercredi 24 novembre 2010. Durée : 60 min. Physique

Collège des Soeurs des Saints Coeurs Classe : EB9 ( A B ) Bauchrieh Date : mercredi 24 novembre 2010. Durée : 60 min. Physique Collège des Soeurs des Saints Coeurs Classe : EB9 ( A B ) Bauchrieh Date : mercredi 24 novembre 2010. Durée : 60 min. Physique Nom et numéro d ordre :. I. Réfraction de la lumière. ( 5 pts ) On donne :

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Sources - Techniques de projection - Lentilles

Sources - Techniques de projection - Lentilles TPC2 TP - Sciences Physiques Sources - Techniques de projection - Lentilles Objectifs généraux de formation Formation disciplinaire - Capacités exigibles Caractériser une source lumineuse par son spectre.

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa - I. Limites de la mécanique de Newton : Au niveau macroscopique : un satellite peut graviter à une distance quelconque d un

Plus en détail

Corrigés de la séance 16 Chap 27: Optique ondulatoire

Corrigés de la séance 16 Chap 27: Optique ondulatoire Corrigés de la séance 16 Chap 27: Optique ondulatoire Questions pour réfléchir : Q. p.10. Une onde de lumière naturelle tombe sur une vitre plate sous un angle de 5 o. Décrivez l état de polarisation du

Plus en détail

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique

Plus en détail

Chapitre 2 : VISION ET COULEUR

Chapitre 2 : VISION ET COULEUR Chapitre 2 : VISION ET COULEUR Rappel : Un prisme ou un réseau permettent de décomposer la lumière. On obtient alors un spectre. Dans le cas de la lumière blanche, ce spectre est continu et constitué par

Plus en détail

Propriétés optiques des matériaux : absorption, réflexion, réfraction, dispersion

Propriétés optiques des matériaux : absorption, réflexion, réfraction, dispersion Propriétés optiques des matériaux : absorption, réflexion, réfraction, dispersion Les matériaux utilisés pour réaliser des composants optiques sont ± absorbants (pertes énergétiques selon le trajet Flux

Plus en détail

FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE

FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE André Grandchamps Astronome Planétarium de Montréal Source: Nasa DOCUMENT DE TRAVAIL 2005 Planétarium de Montréal. Tous droits réservés. 1 est

Plus en détail