CAPES EXTERNE. Partie I : Première approche de la constante d Euler

Dimension: px
Commencer à balayer dès la page:

Download "CAPES EXTERNE. Partie I : Première approche de la constante d Euler"

Transcription

1 SESSION 2 CAPES EXTERNE MATHÉMATIQUES Prie I : Preière roche de l cose d Euler Soi N L focio es coiue e décroisse sur ],+ [ e doc sur [,+] Doc our ou réel de [,+], o + D rès l iéglié, o O e dédui que d + d + N, + 2 Soi N S soe élescoique + + Aisi, our ou eier urel o ul, S e doc l suie S N es jorée D ure r, our N S + S + Doc l suie S N es croise E jorée r, cee suie coverge vers u réel oé γ Puisque N, S, r ssge à l liie qud ed vers +, o obie γ 3 Soi N E os x +, o obie + x dx + d d + Soi 2 Pour ou réel de [,], o < + + e doc l iégrle, o e dédui que d + d 4 Soie e deux eiers urels els que > Alors S S our + 2, 2 obie + d + d + + Pr croissce de D rès l quesio récédee, + 2 E ddiio ebre à ebre ces ecdrees, o S S , soes élescoiques E fis edre vers + à fixé, o obie γ S

2 5 Pr suie, our, que li 2γ S ou ecoreγ S e doc N, 2+2 γ S 2 + 2γ S Coe li H l++s l+l + l+γ+ 2 +o 6 Soi D rès l quesio 4, 7 Soi γ S γ T < ou efi γ S + γ +o 2, le héorèe des gedres ere d ffirer 2 +o Mie,S H l+ H l+γ+ 2 +o 2+2 γ T 2 Aisi, T 7 es ue vleur rochée de γ à 2 rès e doc e doc 2+2 γ T l+γ+ 2 +o 2+ < 2 + > l8 γ < l8+ 2 Ceci fouri ecore,575 < γ <, e doc,57 < γ <,59 ou ecore γ,58 à 2 rès Ce derier ecdree es s d liude 2 is fouri ue vleur rochée de γ à 2 rès Prie II : Deux reréseios iégrles de l cose d Euler L focio e e es coiue sur [,+ [ De lus, e + o 2 O e dédui que l iégrle e + e e e riculier, e e + e d es ue iégrle bsolue covergee e doc covergee e es coiue sur [,+ [ e égligeble e + dev 2 Pr suie, l iégrle e De êe, l focio e es ue iégrle bsolue covergee e doc covergee Mis lors l iégrle e e d b Qud ed vers r vleurs suérieures, e o 2 2 +o Doc li + e d es ue iégrle covergee O e dédui que li 2 +e 2 +o e o d

3 c Aisi, l focio e e es coiue sur ],] e se rologe r coiuié e Pr suie, l iégrle e e d d es ue iégrle covergee Puisque les iégrles e e d d e e e d d so des iégrles covergees, e e d d es ue iégrle covergee 2 Soie x e deux réels sricee osiifs Les focios e e e b so coiues sur [x, ] Doc, chcue des iégrles roosées exise E os u ds l reière iégrle de sore que d du e v b ds l deuxièe iégrle, o obie u e e b e e b e u b d d d x x x x u du e v bx bx v dv e b e d d x b Soie e b deux réels els que < b e z u réel el que z > Alors < z bz Esuie, our ou réel de [z,bz], e bz e e z Pr croissce de l iégrle, o e dédui que b bz e bz z x b e bz e bz e z e bz l d d z z b c Qud x ed vers r vleurs suérieures, e bx l e e x l bx e b gedres ere d ffirer que li d l x + D ure r, our ou >, b li + e d d e l b b e coe b b ede vers l Le héorèe des d e z l li + e l Qud < b, e fis edrexversuisvers+ ds l églié de l quesio, o obie b l Cee églié rese vrie si > b e échge les rôles de e b e o doc oré que,b ],+ [ 2, e e b d l b b, o e dédui que e e b d 3 Ue reière reréseio iégrle de l cose d Euler Soi > O si que our ou réel q de l iervlle ],[, Soi N N N + e e + e q q e doc, uisque e ],[ ],[, e e + e N+ soe élescoique Mie, li N + e N+ cr > O e dédui que l série uérique de ere géérl e e +, N, coverge e que uis que + e e + e e + b Mis lors e + e e e e + e + e + e +2

4 c L focio e es deux fois dérivble sur R e s dérivée secode à svoir l focio e es osiive sur R Doc l focio e es covexe sur R Pr suie, so grhe es u-dessus de s gee e so oi d bscisse ou ecore R, e Si de lus >, o successivee e uis e rès divisio des deux ebres r le réel sricee osiif d Pour >, osos u e e e our > e N, osos u e + e + e +2 Chque focio u, N, es coiue r orceux sur ],+ [ De lus, d rès l quesio récédee, our N e >, u e + e Doc chque focio u, N, es osiive sur ],+ [ L série de focios de ere géérl u, N, coverge silee sur ],+ [ vers l focio u d rès l quesio 3b e l focio u es coiue r orceux sur ],+ [ Soi N u d e + e + e +2 d d +2 + l + d rès + + l quesio 2c Pr suie, our N, u d + S + D rès l rie I, l série uérique de ere géérl u d, N, coverge e our soe γ D rès le héorèe dis r l éocé e débu de deuxièe rie, o e dédui que l focio u es iégrble sur ], + [ e que γ u d u d γ e e d 4 Ue deuxièe reréseio iégrle de l cose d Euler Soi > O vu à l quesio II que l iégrle Mis lors, qud ed vers, l+ e d coverge De lus, e e e d [ l e ] + li + l e l e l e e e d l l e l e Doc li l+ d + e b Soi > D rès l quesio 3d, e γ+ d e e e e e e e d+ d+ d+ l +o e d e e e d e e c Pr suie, γ+l+ d e e d+ Puisque e e d coverge e, o e dédui que li e d rès l quesio, li l+ d e filee l+ + e d e e l+o o e d+ d e d D ure r,

5 e li γ+l+ + d d L focio e l es coiue sur ],+ [ e égligeble e + dev d rès u héorèe de croissces 2 corées Doc l focio e l es iégrble sur [,+ [ Qud ed vers r vleurs suérieures, e l l o ],] uisque 2 < e doc l focio e l es iégrble sur ],] Filee l focio e l es iégrble sur ],+ [ O si que l focio es iégrble sur Soie e A deux réels els que < < A Les deux focios e e l so de clsse C sur le sege [,A] O eu doc effecuer ue iégrio r ries e o obie A e l d [ e l ] A + A e A d e l e A e la+ d Qud A ed vers +, o obie e l+ e l d li + e Soi > γ+ e l d D rès l quesio c, li + e e l d e l + d e d Qud ed vers, o obie e γ+l+ d + e l d e e l d +e l l γ+l+ e d D rès l quesio d, li e l d e l + Efi, qud ed vers r vleurs suérieures, e doc li l l Filee, li γ+ +e + e d e l l e l l, γ e l d ou ecore e l d Prie III : Pour ue vleur rochée de l cose d Euler D rès l quesio II4, Doc, e d e e e d e e d l e D ure r, [ l l e ] l e li +l e e d l e e b D rès l quesio II3d e u vu de l covergece de chcue des iégrles cosidérées, γ e e d e e d+ e e d+ e e e d d e e d+ e e e e e d d e l e e e d d d rès l quesio récédee

6 γ e e d d 2 Pour ou eier, H!! O e dédui que l série eière de soe F u ro de! covergece ifii e e riculier F es défiie e dérivble sur R De lus, l dérivée de F s obie r dérivio ere à ere b Pour ou réel x >, Fx F x Fx+ H! x cr H e doc H! x c Soi x > D rès ce qui récède, x +! Fx+ x H + x! H + x! + x + +! Fx+ x x e x F x e x F x Fx e x x! Fx+ ex x Mie, l focio e es coiue sur ],x] e rologeble r coiuié e Cee focio es doc iégrble sur ],x] E iégr sur ],x], o obie Filee, x e d x e F d e x Fx e F e x Fx H e x Fx x >, Fx e x x e d 3 Soi x > γ+lx e e x Fx e d e x d d e x x + d e d e x Fx e x e + d+ d x x d e d d x >, γ+lx e x Fx e x d 4 Soi + Alors H + H! +!!! +! e!h +!!!! } {{ } + +!!! + + +! cr < + e e 2π 2π 2π

7 γ+l e e F d e H! +e + H + e! d, e doc γ+l e H! e + H + e! e e + 2π d e + e d e e 2π 6 O red e riculier 3 e o obie our ou eier, 3 H γ+l e! 3 e 3 2 6π e e + 3 L chie fouri γ à rès 3 2 6π e 2 2 e e 2 2 < e doc e 2 63 H + e! + d e + H! 2 l2 es ue vleur rochée de Prie IV : L cose d Euler soe de l série de Vcc 9 Soi N v b Soi N v σ 2j 2j+ 2 2j< j+< j 2 2j+ 2 j j2 j2 j σ σ j h j2 h2 σ +σ h2 h σ + σ σ j2 2j σ σ c Soi N σ 2 + h h2 2 h h H d v σ σ H H + H 2 H H + + H + l2 +γ l+ +γ l γ +o l2 l2+γ+o γ+o Doc l série uérique de ere géérl v,, coverge e v γ 2 Posos v [log 2] Pour, > e doc our ou eier urel o ul, 2 2 2

8 L suie v N es doc s décroisse à rir d u ceri rg e o e eu s liquer le crière sécil des séries lerées b Soie e deux eiers urels els que + < +2 Puisque l suie es décroisse, o si que l vleur bsolue de l soe N vleur bsolue de so reier ere à svoir Doc Pour + < +2, o + log 2 < +2 e doc [log 2 ] + Pr suie, u 2 es jorée r l c Soie u eier urel suérieur ou égl à 4 Soi l eier urel el que + < +2 c es-à-dire [log 2 ] Alors u + u + + u u v + + u Mis lors u v + u [log 2 ] 2 log 2 [log 2 ] 2 log 2 2 4log 2 D rès u héorèe de croissces corées, 4log 2 ed vers qud ed vers + e d rès l quesio d, [log 2 ] v v ed vers γ qud ed vers + O e dédui que l suie u coverge vers γ N u γ 3 Soi N Puisque l suie ed vers e décroiss, r exise d rès le crière sécil ux séries lerées De lus, o si que l vleur bsolue de r es jorée r l vleur bsolue du reier ere de l soe égle à r e doc r 2 Aisi, our ou eier urel, r e doc l série de ere géérl r es bsolue covergee 2 + b Soi N v j j j2 v r r + Soi lors N r r + + r r r r + vec r + e doc li 2+r + E e coe de v, o doc r v γ γ + j j, +j

9 Pr suie, li u l cr si, es u obre ir e doc 2 +j j Prie V : L forule de Goser 972 x F, x Id F x Tx e doc Id F T Soi lors N, x F e N Puisque les edoorhises Id F e T coue, l forule du biôe de Newo ere d écrire x[] Id F T x[] T x[] x + 2 Soi N Pour +! +! Coe li! d rès u héorèe de croissces corées, o e dédui que li 2 b Soi ε > Il exise N el que, u < ε es dorév fixé Pour, 2 u < u u + u + ε 2 Mie, d rès l quesio,,, u + li u + ε 2 ε 2 u u e doc li obre fixe de suies de liies ulles Pr suie, il exise el que, Pour, o lors u < ε 2 + ε 2 ε O oré que ε >, N/ N, u < ε e doc u + ε 2 + li u soe d u u < ε 2 u c Suosos ie que l suie u N coverge vers u ceri réel l Alors l suie v N u l N coverge vers D rès l quesio b, il e es de êe de l suie v Mie, our N, v u l u + l N u l u l

10 3 Soi N N V N N N N x[] N + U U U cr U e + N N N N N b Posos S N N 2 N+ + + x d rès l quesio V N + U N U + + U + U N N + + U + N+ U + + N N N, V N + cr U + U U + + N+ 2 N+ + 2 U soe élescoique + N x li U j Pour ou eier urel N, j + x[] + V N 2 N+ N N+ U + 2 N+ x[] + N+ N+ Puisque li + U S, l quesio 2c ere d ffirer que l suie li N + 2 N+ N+ N+ U 2 N+ 2 N+ N+ N+ N+ N+ U U coverge e que N N U S ou ecore l série uérique de ere géérl x[] +, N, coverge e x[] + x 4 Soi N Pour N, x[] + x 2 + dx x 2 x dx 2!! +! +!!! + x 2 x d rès le résul dis r l éocé dx N, N, x[] +

11 b Soi N Puisque l suie x j j N coverge vers e décroiss, l série de ere géérl j x j +j j N coverge d rès le crière sécil ux séries lerées Mis lors l quesio récédee ere d ffirer que l série de ere géérl [x] 2 +, N coverge e que j j +j j x j j Mis lors l quesio IV3b ere d ffirer que γ c Pr suie, l suie double osiive γ [x] , γ es soble e

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

Intégrales dépendant d un paramètre

Intégrales dépendant d un paramètre [hp://mp.cpgedupuydelome.fr] édié le 3 avril 5 Eocés Iégrales dépeda d u paramère Covergece domiée Exercice [ 9 ] [correcio] Calculer les limies des suies do les ermes gééraux so les suivas : a) u = π/4

Plus en détail

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois) LES GRANDS THÈMES DE L ITB Les iérês simples e les iérês composés RAPPELS THÉORIQUES Les iérês simples : l'iérê «I» es focio de la durée «D» (jour, quizaie, mois, rimesre, semesre, aée) de l'opéraio (placeme

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Développement en Série de Fourier

Développement en Série de Fourier F-IRIS-5.ex Développeme e Série de Fourier Développer e série de Fourier les focios de période T défiies aisi : a b { f impaire T = f = si ] ; { f paire T = f = si ; ] Faire das chaque cas ue représeaio

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Déroulement de l épreuve de mathématiques

Déroulement de l épreuve de mathématiques Dérouleet de l épreuve de thétiques MATHÉMATIQUES Extrit de l ote de service 2012-029 du 24 février 2012 (BOEN 13 du 29-3-2012) Durée de l épreuve : 2 heures Nture de l épreuve : écrite pr le socle cou

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état) oqe V oqe Cor e ere foco de rfer e repréeo dé d èe fore coqe de l repréeo dé SI Coe oqe! Irodco! e ere le dfféree decrpo d èe! Pge odèle dé " foco de rfer # C d èe oovrle # C d èe lvrle! Pge foco de rfer

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16 ÉO TUIT FOULS TUILLS SU TT Probbé ouo 3 dfféré4 ee gère be à ere échu 5 ee gère be à ere échu ueur fo d ée 6 ee gère à ere be d ce7 ee gère à ere be d ce ueur fo d ée8 urce décè 9 urce décè à c rbe cro

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Compression Compression par dictionnaires

Compression Compression par dictionnaires Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une

Plus en détail

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol. LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Commande par calculateur Introduction à la représentation d état

Commande par calculateur Introduction à la représentation d état Commd r clclr Irodcio à l rrésio d é SIRE Chir I CNDUIE DE PRCESSUS PR CCUEUR. Prici d commd.. Schém d rici.. Echillog, qificio rolio d'ordr.3. Schéms fociols. scs mérils.. Covrissr mériq logiq.. Covrissr

Plus en détail

Chapitre 3: TESTS DE SPECIFICATION

Chapitre 3: TESTS DE SPECIFICATION Chapitre 3: TESTS DE SPECIFICATION Rappel d u c h api t r e pr é c é d en t : l i de n t i f i c a t i o n e t l e s t i m a t i o n de s y s t è m e s d é q u a t i o n s s i m u lt a n é e s r e p o

Plus en détail

«Trop de chats en refuge : Aidons-les!»

«Trop de chats en refuge : Aidons-les!» q io iific bo ch Mlic g f! l o h c To i? co cio collboio vc Pl 5899 ch 7398 ch y éé boé C l ob félié qi, chq jo, o cibl joi fg Blgiq! 4641 ch l o l chc ov i à l g l fg fill i foy ê à l hx! C qlq chiff

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

AVEC LE HORS NORMES, vous assurez... ... nous aussi! E U R S. G i 2 A A H O R S E U R S. G i 2 A CGCA H O R S N O R M E N O R M E SOCIÉTÉS APRIL GROUP

AVEC LE HORS NORMES, vous assurez... ... nous aussi! E U R S. G i 2 A A H O R S E U R S. G i 2 A CGCA H O R S N O R M E N O R M E SOCIÉTÉS APRIL GROUP L, vous assurez... www.gi2a.com / www.cgca.fr ÉÉ L G... nous aussi! G i 2 G G i 2 G ÉD L assurance hors normes : notre vocation hers partenaires, pécialistes du «hors normes» depuis plus de 20 ans, nous

Plus en détail

SAV ET RÉPARATION. Savoir-faire. www.jarltech.fr

SAV ET RÉPARATION. Savoir-faire. www.jarltech.fr i & V : SA E b i i 1 3 2 0 1 Ai 0800 9 h P i iè P i i i i S j C i Si E ) i Ti (i ib i Q,. bq i, FA V k, Pi b h iè i Si b, D Z, P E q Si-i SAV ET RÉPARATION S hiq : E q SSII VAR, i hiq Jh i h 0800 910 231.

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Centre de Récupération de SoftThinks

Centre de Récupération de SoftThinks Centre de Récupération de SoftThinks Table des matières Révisions... 1 Table des matières... 2 Introduction... 3 Quel est l objectif du Centre de Récupération de SoftThinks?... 3 Que pourrez-vous trouver

Plus en détail

a g c d n d e s e s m b

a g c d n d e s e s m b PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Université de Caen. Relativité générale. C. LONGUEMARE Applications version 2.0. 4 mars 2014

Université de Caen. Relativité générale. C. LONGUEMARE Applications version 2.0. 4 mars 2014 Université de Caen LMNO Relativité générale C. LONGUEMARE Applications version.0 4 mars 014 Plan 1. Rappels de dynamique classique La force de Coulomb Le principe de moindre action : lagrangien, hamiltonien

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Trading de Volatilité

Trading de Volatilité M émoire moire d Eude d Approfodisseme Tradig de Volailié Chrisia DIDION & Thomas JANNAUD Valdo DURRLEMAN Ecole Polyechique Sommaire Iroducio. Modèle de Blac-Scholes. Iroducio 44. Modèle de Blac & Scholes..5

Plus en détail

huguesleclair@yahoo.ca - copyright SACEM Allant q = 63 SOPRANO ALTO TENOR BARYTON BASSE Bar. Que tout le long mes pas me por - tent

huguesleclair@yahoo.ca - copyright SACEM Allant q = 63 SOPRANO ALTO TENOR BARYTON BASSE Bar. Que tout le long mes pas me por - tent Poè Navajo SOPRANO ALTO TENOR BARYTON BASSE Alnt q = 6 à mémoire de JeanPaul Rioelle s as or s as or tout le long s as or Hugues Lecir 4 s as or t(ent)à cha re tour des sai sons Pour Pour re re 7 vien

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition

Plus en détail

l Agence Qui sommes nous?

l Agence Qui sommes nous? l Agence Qui soes nous? Co Justine est une agence counication globale dont la ission est prendre en charge l enseble vos besoins et probléatiques counication. Créée en 2011, Co Justine a rapient investi

Plus en détail

Un exemple d étude de cas

Un exemple d étude de cas Un exemple d'étude de cas 1 Un exemple d étude de cas INTRODUCTION Le cas de la Boulangerie Lépine ltée nous permet d exposer ici un type d étude de cas. Le processus utilisé est identique à celui qui

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

c dur Leçon 8 S c i e c v m C s c d f M a c u n S C r t V C o coton café classe carotte sac tricot Sa si ca la co lu cu ra ac cre

c dur Leçon 8 S c i e c v m C s c d f M a c u n S C r t V C o coton café classe carotte sac tricot Sa si ca la co lu cu ra ac cre C est en tricotant que l on fait du tricot. 1 Trouver le son commun à toutes ces images. 2 Encercler les C et c. S c i e c v m C s c d f M a c u n S C r t V C o Sa si ca la co lu cu ra ac cre coton café

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

A11 : La représentation chaînée (1ère partie)

A11 : La représentation chaînée (1ère partie) A11 : L représettio chîée (1ère prtie) - Défiitio et schéms de cosulttio - Schéms de mise à jour (isertio, suppressio) - Exemples J-P. Peyri - L représettio chîée (première prtie) 0 Pricipe de l représettio

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Elargissez l horizon de votre gestion. www.mercator.eu

Elargissez l horizon de votre gestion. www.mercator.eu www.mercator.eu Elargissez l horizon de votre gestion Mercator se profile comme la solution de gestion commerciale et de comptabilité alliant simultanément les avantages de la solution informatique standard

Plus en détail

ANNEXES. André de Palma et Cédric Fontan. Thema Transport & Réseaux. Le 26 octobre 2000

ANNEXES. André de Palma et Cédric Fontan. Thema Transport & Réseaux. Le 26 octobre 2000 Enquêe MADDIF : Mulimoif Adpée à l Dynmique des comporemens de Déplcemen en Ile-de-Frnce ANNEXES André de Plm e Cédric Fonn Them Trnspor & Réseux Le 26 ocobre 2000 Lere de commnde N 99MT20 DRAST Minisère

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

L'important C'est la rose

L'important C'est la rose L'important 'est la rose Gilbert ecaud rr: M. de Leon opista: Felix Vela 200 Xiulit c / m F m m 7 9. /. m...... J 1 F m.... m7 ro - se. rois - ro - se. rois - ro - se. rois - ro - se. rois - oi qui oi

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.alternativesjournal.ca/people-and-profiles/web-exclusive-ela-alumni-make-splash

Voyez la réponse à cette question dans ce chapitre. www.alternativesjournal.ca/people-and-profiles/web-exclusive-ela-alumni-make-splash Une personne de 60 kg est à gauche d un canoë de 5 de long et ayant une asse de 90 kg. Il se déplace ensuite pour aller à droite du canoë. Dans les deux cas, il est à 60 c de l extréité du canoë. De cobien

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010. -ooo-

VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010. -ooo- VILLE DE VILLEURBANNE CONSEIL MUNICIPAL 5 JUILLET 2010 -ooo- La s é a n c e e s t o u v e r t e s o u s l a p r é s i d e n c e d e M o n s i e u r J e a n - P a u l BR E T, M a i r e d e V i l l e u r

Plus en détail

Processus géométrique généralisé et applications en fiabilité

Processus géométrique généralisé et applications en fiabilité Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR

Plus en détail

Examen d informatique première session 2004

Examen d informatique première session 2004 Examen d informatique première session 2004 Le chiffre à côté du titre de la question indique le nombre de points sur 40. I) Lentille électrostatique à fente (14) Le problème étudié est à deux dimensions.

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents

Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents Mercredi 5 novembre 2014 Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents Hervé PETTON, Directeur Territorial 35 ans d expérience professionnelle en collectivités

Plus en détail

Guide d utilisation pour W.access - Client

Guide d utilisation pour W.access - Client 1. Inscription en ligne : Guide d utilisation pour W.access - Client Aller à l adresse suivante : http://www.micasf.com; Cliquer sur «Zone Clients» en haut à droite de la page, ensuite sur «OUVREZ VOTRE

Plus en détail