Le Modèle de taux de Ho-Lee - Pricing d obligation

Dimension: px
Commencer à balayer dès la page:

Download "Le Modèle de taux de Ho-Lee - Pricing d obligation"

Transcription

1 Le Modèle de taux de Ho-Lee - Pricing d obligation Le modèle de Thomas S. Y. Ho et Sang-bin Lee [1] est un modèle simple de fluctuation de taux d intérêts. Il est utilisé sous l hypothèse d absence d opportunité d arbitrage et sur la base d un modèle binomial. En ce sens il peut être vu comme l analogue du modèle de Cox-Ross-Rubinstein (modèle pour actions et leurs dérivés ) appliqué à l évaluation d actifs et d actifs dérivés sur taux d intérêts. [1] : Thomas S.Y. Ho and Sang B. Lee, Term Structure Movements and Pricing Interest Rate Contingent Claims, Journal of Finance (1986). 1 Modèle à une période 1.1 Définitions On considère un marché financier en temps discret construit sur un espace probabilisé (Ω, F, P) dans lequel les flux ne sont échangés qu aux dates 1, 2,..., N où N est un entier strictement positif. Par la suite on munit (Ω, F) d une filtration (F k, k N) supposée complète et vérifiant F 0 = {Ω, φ}, F N = F. Definition 1.1. Un zéro coupon de maturité N et de nominal 1 est un produit financier qui paie à son acheteur un unique flux de 1 en N (dans la journée du N-ème jour). On note P k (N) son prix à la date k N. Question 1.2. Que vaut P N (N)? Remarque 1.3. L investissement dans un zéro coupon d échéance courte est sans risque, car il est en général calculé au taux en cours. Mais lorsque l échéance est lointaine, l évolution des taux peut rendre l investissement aléatoire. Par exemple, si le taux annuel en cours est de 3%, l investissement sur un zéro-coupon à taux annuel de 3% sur un an ou six mois n est pas très risqué, mais si l échéance est de 20 ans et que d ici là, les taux pratiqués usuellement passent à des valeurs comme 6%, l investissement se révélera mauvais. Si, par contre, les taux usuels pratiqués passent à 1%, l investissement se révèle meilleur. On peut ainsi considérer (P k (N), k N) comme un processus stochastique adapté à la filtration (F k, k N). On suppose qu il existe un processus adapté strictement positif (r k, k N) et un actif financier, appelé actif sans risque, tel que 1 euro investi à la date k (le soir du k-ème jour) rapporte e r k euros à la date k + 1 (dans la journée du k + 1ème jour). Remarque 1.4. On a r k = log P k (k + 1), c est un taux d intérêt sans risque entre les périodes k et k + 1 mais risqué sur le plus long terme. Question 1.5. Si les (r j, j N) étaient déterministes (fixés à la date k=0), à quoi serait égal le produit P k (m)p m (n), pour tout k < m < n N? 1.2 La dynamique Ho et Lee supposent que d un instant k à l instant k + 1 le prix du zero-coupon peut augmenter ou baisser en fonction d une variable qui dépend de différents facteurs économiques inconnus. On 1

2 notera donc η k (N k) cette variable, elle vaudra u k (N k) si le prix monte et d k (N k) sinon. On peut donc écrire la dynamique (aléatoire récurrente) pour P de la façon suivante P k+1 (N) = à comparer avec l expression obtenue dans la Question??. P k(n) P k (k + 1) η k(n k 1), (1) Definition 1.6. On appellera cash account et on notera (B k, k N), le montant capitalisé à la date k d un investissement de 1 à la date 0. Il s écrit B k+1 = B k /P k (k + 1), 1 k N 1; B 0 = 1. Question ) B est-il prévisile (i.e. B k est-il F k 1 mesurable)? 2) Ecrire B k en fonction des (r k, k N). Hypothèses 1) u k (m) d k (m) > 0 2) On suppose qu il n y a pas de dépendance en k, u k (m) = u(m) et d k (m) = d(m) 3) u(0) = d(0) = Absence d opportunité d arbitrage On va considérer un portefeuille Π := (β k, γ k, k N), dont la valeur à l instant k N est donnée par : := β k B k + γ k P k (N). X Π k On le supposera autofinancé, c est à dire β k B k + γ k P k (N) = β k+1 B k + γ k+1 P k (N). Definition 1.8. Soit (S k, k N) un processus adapté, et ( S k := S k /B k, k N) sa valeur actualisée, une mesure de probabilité P est appelée probabilité risque neutre si P est équivalente à P et si ( S k, k N) est une martingale sous P. On a le théorème suivant Théorème 1.9. Etant donné un zéro coupon de prix à l instant k donné par P k (N). Il y a équivalence entre l absence d opportunité d arbitrage et l existence d une probabilité risque neutre P pour (P k (N), k N). Question Montrer que l existence de P implique l A.O.A. 1.4 Détermination de la probabilité risque neutre On supposera que le marché est complet, et également que la valeur d un actif est unique. Théorème Le processus de prix (P k (N), k N) est sans opportunité d arbitrage si et seulement si les propriétés suivantes sont satisfaites : 1) Pour tout k, k + 1 N, on a u(n k) > 1 > d(n k) 2) Il existe 0 < q < 1, tel que pour tout k, N k + 1, q = Question Montrer ce théorème. 1 d(n k) u(n k) d(n k) Remarque En l absence d opportunité d arbitrage, tout modèle binomial à une période est caractérisé par la relation : pour tout k et N k + 1 qu(n k) + (1 q)d(n k) = 1. 2

3 1.5 Dérivés sur taux d intérêts On va prendre l exemple d une option de type européenne sur une obligation (O k (N), k N) dont la dynamique est la même que pour P (mais qui n est pas un zéro-coupon). Le payoff f d un call sur l obligation O d échéance N à la date k est donné par f(o k (N)) := (O k (N) K) +. On notera C k le prix de cette option à la date k, C + k+1 (resp. C k+1 ) le prix de l option à l instant k + 1 si le prix du sous-jacent est monté (resp. a baissé) entre les instants k et k + 1. Question ) Montrer une relation entre C k, C + k+1 et C k+1. 2) Montrer que ( C k, k) est une martingale sous P ( C k, est la valeur actualisé de C k ), en déduire une expression de C k (sous forme d une espérance conditionnelle). 2 Modèle multi-périodes On suppose maintenant que la valeur du zéro coupon peut évoluer entre deux dates quelconques successives k et k + 1, ceci ayant pour but de rendre le modèle plus réaliste. On note alors M le nombre de pas entre l instant 0 et N, n le nombre de pas entre l instant 0 et k, et δ = 1/n. F k est la tribu des événements comportant les n fluctuations du marchés (hausses ou baisses) entre les instants 0 et k. Definition 2.1. Le prix d un zéro coupon à l instant k de maturité N et d état s, P k (N, s), est défini par { u(n k)pk δk (N, s 1)/P P k (N, s) = k δk (k, s 1) en cas de hausse, d(n k)p k δk (N, s)/p k δk (k, s) en cas de baisse. (2) u(n k) et d(n k) étant F k δk -mesurable. Remarque 2.2. On peut aussi écrire pour tout s, l évolution du zéro-coupon entre l instant k et k + δk de la façon suivante P k (N, s) P k+δk (N, s + 1) = u(n k δk)p k (N, s)/p k (k + δk, s) P k+δk (N, s) = d(n k δk)p k (N, s)/p k (k + δk, s) en cas de hausse, en cas de baisse. et s désigne la hausse maximale de l actif à l instant k, ainsi 0 s n. Partant de P k (N, s), à l instant k + δk la valeur du zéro coupon vaut soit P k+δk (N, s + 1) avec une certaine probabilité p et P k+δk (N, s + 1) avec une probabilité 1 p. 2.1 Arbres recombinants On fait une hypothèse supplémentaire sur l évolution des prix de P : Definition 2.3. On dira qu un arbre formant le processus de prix P est re-combinant si pour tout k, une hausse entre les instants k et k + 1 et une baisse entre entre les instants k + 1 et k + 2, équivaut à une baisse entre les instants k et k + 1 et une hausse entre entre les instants k + 1 et k + 2 Question 2.4. Faire une représentation graphique de l évolution du prix de P entre les instants k et k + 2δ en partant de la valeur initiale P k (N, s). En déduire une relation entre P k+δk (N, s + 1) et P k+δk (N, s). 3

4 Pour tout k, on posera P k (k + δk, s + 1)/P k (k + δk, s) = u(δk)/d(δk). u(δk) et d(δk) étant des constantes déterminées à l instant initial. Notons λ := P k (k + δk, s + 1)/P k (k + δk, s), λ est une constante appelée volatilité. Question 2.5. Montrer qu il existe une relation entre u et d à deux instants successifs. En déduire une expression, en fonction de λ, de u(n k)/d(n k) et de P k+δk (N, s + 1)/P k+δk (N, s). 2.2 A.O.A. On admettra le résultat suivant : Proposition 2.6. Il y a équivalence entre absence d opportunité d arbitrage et absence d opportunité d arbitrage sur une période. en déduire le résultat suivant Proposition 2.7. Il y a A.O.A pour le modèle binomiale de Ho-Lee à multi-période si et seulement si il existe une probabilité risque neutre q tel que pour tout k, N k + kδ, où u(n k) > 1 > d(n k). q = 1 d(n k) u(n k) d(n k), Question 2.8. Si q existe, montrer que pour tout s, la valeur actualisée du zéro coupon ( P k (N) := P k (N, s)/b k (s), k) est une martingale sous P définit par q. On remarquera que P k (N, s) = P k (k + δk, s)(qp k+δk (N, s + 1) + (1 q)p k+δk (N, s)). 2.3 Prix de l obligation dans le modèle de Ho-Lee On va montrer le résultat suivant : Théorème 2.9. Prix du zéro coupon dans le modèle binomiale (de Ho-Lee). On a : n 1 P k (N, s) = λ s(m n) m=0 1 q + qλ n (k+1) 1 q + qλ M (k+1) P 0 (N) P 0 (k). Pour tout m, P 0 (m) est le prix forward du zéro-coupon d échéance m (à l instant initiale s = 0, on ne le fait donc pas apparaître). Question Ecrire d(n k) et u(n k) en fonction de λ et q. Question Montrer le Théorème??. 2.4 AOA Question Calculer P k (k + δk, s) en déduire une condition nécessaire sur λ pour qu il y est A.O.A. 2.5 Différents taux d intérêts issus du modèle de Ho-Lee Taux forward instantané On définit le taux forward instantané f(k, N, N + δk, s) par f(k, N, N + δk, s) := log P k(n + δk, s) log P k (N, s) δk Question Donner une expression du taux forward instantané en fonction de q et λ. 4

5 Le taux court On définit le taux court r(k, s) par : r(k, s) := log P k(k + δk) δk Question Donner une expression du taux court. Le taux spot On définit le taux court y(k, N, s) par : y(k, N, s) := log P k(n, s) N k Question Donner une expression du taux spot. 2.6 Dérivés sur taux d intérêts On reprend l exemple d une option de type européenne sur une obligation (O k (N), k N) dont la dynamique est la même que pour P (mais qui n est pas un zéro-coupon). Le payoff f d un call sur l obligation O d échéance N à la date k est donné par f(o k (N, s)) := (O k (N, s) K) +. On notera C k (s) le prix de cette option à la date k, C k+1 (s) (resp. C k+1 (s + 1)) le prix de l option à l instant k + 1 si le prix du sous-jacent est monté (resp. a baissé) entre les instants k et k + 1. Question ) Montrer une relation entre C k (s) et C k+1 (s) et C k+1 (s + 1). 2) Montrer que ( C k, k) est une martingale sous P ( C k, est la valeur actualisé de C k ), en déduire une expression de C k (sous forme d une espérance conditionnelle). 3) Donner l expression de C 0. 4) Montrer une relation de parité call/put à la date k (on notera P k, le prix du put de même caractéristique que C k ). 5

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

LISTE D EXERCICES 2 (à la maison)

LISTE D EXERCICES 2 (à la maison) Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros

Plus en détail

Options, Futures, Parité call put

Options, Futures, Parité call put Département de Mathématiques TD Finance / Mathématiques Financières Options, Futures, Parité call put Exercice 1 Quelle est la différence entre (a) prendre une position longue sur un forward avec un prix

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

Dérivés Financiers Options

Dérivés Financiers Options Stratégies à base d options Dérivés Financiers Options 1) Supposons que vous vendiez un put avec un prix d exercice de 40 et une date d expiration dans 3 mois. Le prix actuel de l action est 41 et le contrat

Plus en détail

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines Ensimag - 2éme année Mai 2010 TRAVAIL D ETUDE ET DE RECHERCHE Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire AURIAULT 1/48 2/48 Cadre de l Étude Cette étude a été

Plus en détail

QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE

QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE Le présent document est un recueil de questions, la plupart techniques, posées à des candidats généralement jeunes diplômés, issus d école d ingénieurs, de commerce

Plus en détail

Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA

Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA Contents 1 Introduction aux marchés financiers 2 1.1 Rôle des marchés financiers......................... 2 1.2 Les différents

Plus en détail

Options et Volatilité (introduction)

Options et Volatilité (introduction) SECONDE PARTIE Options et Volatilité (introduction) Avril 2013 Licence Paris Dauphine 2013 SECONDE PARTIE Philippe GIORDAN Head of Investment Consulting +377 92 16 55 65 philippe.giordan@kblmonaco.com

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012

Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Pierre Andreoletti pierre.andreoletti@univ-orleans.fr Bureau E15 1 / 20 Objectifs du cours Définition

Plus en détail

INTRODUCTION INTRODUCTION

INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION Les options sont des actifs financiers conditionnels qui donnent le droit mais pas l'obligation d'effectuer des transactions sur des actifs supports. Leur intérêt réside dans

Plus en détail

Prix et couverture d une option d achat

Prix et couverture d une option d achat Chapitre 1 Prix et couverture d une option d achat Dans cette première leçon, on explique comment on peut calculer le prix d un contrat d option en évaluant celui d un portefeuille de couverture de cette

Plus en détail

Calcul Stochastique pour la finance. Romuald ELIE

Calcul Stochastique pour la finance. Romuald ELIE Calcul Stochastique pour la finance Romuald ELIE 2 Nota : Ces notes de cours sont librement inspirées de différentes manuels, polycopiés, notes de cours ou ouvrages. Citons en particulier ceux de Francis

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone...

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone... Liste des notes techniques.................... xxi Liste des encadrés....................... xxiii Préface à l édition internationale.................. xxv Préface à l édition francophone..................

Plus en détail

Introduction aux Mathématiques Financières. Ecole Centrale Paris. Lionel Gabet, Frédéric Abergel, Ioane Muni Toke

Introduction aux Mathématiques Financières. Ecole Centrale Paris. Lionel Gabet, Frédéric Abergel, Ioane Muni Toke Introduction aux Mathématiques Financières Ecole Centrale Paris Deuxième année, S3 Lionel Gabet, Frédéric Abergel, Ioane Muni Toke Version 2010 Introduction aux mathématiques financières 2 Table des matières

Plus en détail

Les techniques des marchés financiers

Les techniques des marchés financiers Les techniques des marchés financiers Corrigé des exercices supplémentaires Christine Lambert éditions Ellipses Exercice 1 : le suivi d une position de change... 2 Exercice 2 : les titres de taux... 3

Plus en détail

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+ ERRATA ET AJOUTS Chapitre, p. 64, l équation se lit comme suit : 008, Taux effectif = 1+ 0 0816 =, Chapitre 3, p. 84, l équation se lit comme suit : 0, 075 1 000 C = = 37, 50$ Chapitre 4, p. 108, note

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Problèmes de crédit et coûts de financement

Problèmes de crédit et coûts de financement Chapitre 9 Problèmes de crédit et coûts de financement Ce chapitre aborde un ensemble de préoccupations devenues essentielles sur les marchés dedérivésdecréditdepuislacriseducréditde2007.lapremièredecespréoccupations

Plus en détail

Théorie Financière 2. Valeur actuelle Evaluation d obligations

Théorie Financière 2. Valeur actuelle Evaluation d obligations Théorie Financière 2. Valeur actuelle Evaluation d obligations Objectifs de la session. Comprendre les calculs de Valeur Actuelle (VA, Present Value, PV) Formule générale, facteur d actualisation (discount

Plus en détail

Petite introduction aux mathématiques des dérivés financiers (notes de cours, version provisoire)

Petite introduction aux mathématiques des dérivés financiers (notes de cours, version provisoire) Petite introduction aux mathématiques des dérivés financiers notes de cours, version provisoire Michel Miniconi Département de Mathématiques Laboratoire Jean-Alexandre Dieudonné Université de Nice Sophia-Antipolis

Plus en détail

Qu est-ce-qu un Warrant?

Qu est-ce-qu un Warrant? Qu est-ce-qu un Warrant? L epargne est investi dans une multitude d instruments financiers Comptes d epargne Titres Conditionnel= le detenteur à un droit Inconditionnel= le detenteur a une obligation Obligations

Plus en détail

2- Comment les traders gèrent les risques

2- Comment les traders gèrent les risques 2- Comment les traders gèrent les risques front office middle office back office trading échange d'actifs financiers contrôle des risques, calcul du capital requis enregistrement des opérations traitement

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Produits structurés. Sacha Duparc, Développement & Trading Produits Structurés 20.12.2013

Produits structurés. Sacha Duparc, Développement & Trading Produits Structurés 20.12.2013 Produits structurés Sacha Duparc, Développement & Trading Produits Structurés 20.12.2013 Importance du marché des produits structurés en Suisse Les produits structurés constituent une catégorie d investissement

Plus en détail

Présentation Salle des marchés. Centrale Lille Octobre 2007. Contacts: Matthieu MONLUN Responsable de la salle des marchés

Présentation Salle des marchés. Centrale Lille Octobre 2007. Contacts: Matthieu MONLUN Responsable de la salle des marchés Présentation Salle des marchés Centrale Lille Octobre 2007 Contacts: Matthieu MONLUN Responsable de la salle des marchés Jérôme CHANE Sales Fixed Income Tel: 03.20.57.50.00 Email: prenom.nom@calyon.com

Plus en détail

Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible»

Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Quand la trésorerie d une entreprise est positive, le trésorier cherche le meilleur placement pour placer les excédents.

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Options exotiques. April 18, 2000

Options exotiques. April 18, 2000 Options exotiques Nicole El Karoui, Monique Jeanblanc April 18, 2000 1 Introduction Les options exotiques sont des produits complexes, qui constituent un marché d une réelle importance depuis les années

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

MARTINGALES POUR LA FINANCE

MARTINGALES POUR LA FINANCE MARTINGALES POUR LA FINANCE une introduction aux mathématiques financières Christophe Giraud Cours et Exercices corrigés. Table des matières I Le Cours 7 0 Introduction 8 0.1 Les produits dérivés...............................

Plus en détail

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques financières Année universitaire 2010-11 1 Version Septembre 2010 1 Responsable du cours: Marie-Amélie Morlais 2 0.1 Plan sommaire du cours

Plus en détail

Le multicurving et l importance du spread de base dans l évaluation actuelle des swaps de taux. Alexandre Nakhle

Le multicurving et l importance du spread de base dans l évaluation actuelle des swaps de taux. Alexandre Nakhle Le multicurving et l importance du spread de base dans l évaluation actuelle des swaps de taux d intérêt Alexandre Nakhle 19 décembre 2012 Remerciements Je tiens à remercier toutes les personnes suivantes

Plus en détail

TURBOS WARRANTS CERTIFICATS. Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital.

TURBOS WARRANTS CERTIFICATS. Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital. TURBOS WARRANTS CERTIFICATS Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital. 2 LES TURBOS 1. Introduction Que sont les Turbos? Les Turbos sont des produits

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Les Obligations Convertibles (introduction)

Les Obligations Convertibles (introduction) TROISIEME PARTIE Les Obligations Convertibles (introduction) Avril 2011 Licence Paris Dauphine 2011 Sommaire LES OBLIGATIONS CONVERTIBLES Sect 1 Présentation, définitions Sect 2 Eléments d analyse et typologie

Plus en détail

Pratique des options Grecs et stratégies de trading. F. Wellers

Pratique des options Grecs et stratégies de trading. F. Wellers Pratique des options Grecs et stratégies de trading F. Wellers Plan de la conférence 0 Philosophie et structure du cours 1 Définitions des grecs 2 Propriétés des grecs 3 Qu est ce que la volatilité? 4

Plus en détail

Ask : Back office : Bar-chart : Bear : Bid : Blue chip : Bond/Junk Bond : Bull : Call : Call warrant/put warrant :

Ask : Back office : Bar-chart : Bear : Bid : Blue chip : Bond/Junk Bond : Bull : Call : Call warrant/put warrant : Parlons Trading Ask : prix d offre ; c est le prix auquel un «market maker» vend un titre et le prix auquel l investisseur achète le titre. Le prix du marché correspond au prix le plus intéressant parmi

Plus en détail

LES MARCHÉS DÉRIVÉS DE CHANGE. Finance internationale 9éme ed. Y. Simon & D. Lautier

LES MARCHÉS DÉRIVÉS DE CHANGE. Finance internationale 9éme ed. Y. Simon & D. Lautier LES MARCHÉS DÉRIVÉS DE CHANGE 1 Section 1. Les instruments dérivés de change négociés sur le marché interbancaire Section 2. Les instruments dérivés de change négociés sur les marchés boursiers organisés

Plus en détail

Calibration de Modèles et Couverture de Produits Dérivés

Calibration de Modèles et Couverture de Produits Dérivés Calibration de Modèles et Couverture de Produits Dérivés Peter TANKOV Université Paris VII tankov@math.jussieu.fr Edition 28, dernière m.à.j. le 1 mars 28 La dernière version de ce document est disponible

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

CARACTERISTIQUES ET EVALUATION DES CONTRATS D OPTION. Finance internationale, 9ème éd. Y. Simon & D. Lautier

CARACTERISTIQUES ET EVALUATION DES CONTRATS D OPTION. Finance internationale, 9ème éd. Y. Simon & D. Lautier CARACTERISTIQUES ET EVALUATION DES CONTRATS D OPTION 1 Section 1. La définition et les caractéristiques d une option Section 2. Les déterminants de la valeur d une option Section 3. Les quatre opérations

Plus en détail

Pratique des produits dérivés P3 : futures, forwards

Pratique des produits dérivés P3 : futures, forwards Pratique des produits dérivés P3 : futures, forwards Olivier Brandouy Université de Bordeaux 2014 2015 Diapo 1/60 Olivier Brandouy Master 2 Métiers de la Banque (CPA) Plan 1 Introduction Futures et Forwards

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 1. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 1. Philippe PRIAULET MODELES DE LA COURBE DES TAUX D INTERET UNIVERSITE d EVRY Séance 1 Philippe PRIAULET Plan du Cours Introduction Définition de la courbe des taux La multitude de courbes des taux Pourquoi utiliser un modèle

Plus en détail

Total Sélection Période de souscription : Durée d investissement conseillée Éligibilité

Total Sélection Période de souscription : Durée d investissement conseillée  Éligibilité Total Sélection Instrument financier émis par Natixis SA (Moody s : A2, Fitch : A, Standard & Poor s : A au 20 novembre 2014) dont l investisseur supporte le risque de crédit. Total Sélection est une alternative

Plus en détail

Bien investir sur les marchés financiers

Bien investir sur les marchés financiers Bien investir sur les marchés financiers avec les CFD Bien investir sur les marchés financiers IG 1 Qu est-ce qu un CFD (Contrat pour la Différence)? Produit dérivé accessible aux investisseurs particuliers,

Plus en détail

CONSERVATEUR OPPORTUNITÉ TAUX US 2

CONSERVATEUR OPPORTUNITÉ TAUX US 2 Placements financiers CONSERVATEUR OPPORTUNITÉ TAUX US 2 Profitez de la hausse potentielle des taux de l économie américaine et d une possible appréciation du dollar américain (1). (1) Le support Conservateur

Plus en détail

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors

Plus en détail

un environnement économique et politique

un environnement économique et politique Vision d un économiste sur le risque agricole et sa gestion un sol un climat un environnement économique et politique Jean Cordier Professeur Agrocampus Ouest Séminaire GIS GC HP2E Prise en compte du risque

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Introduction à la théorie des options financières

Introduction à la théorie des options financières Introduction à la théorie des options financières Christophe Chorro (christophe.chorro@gmail.com) ESC REIMS Le 16 Janvier 2008 hristophe Chorro (christophe.chorro@gmail.com) (ESC REIMS) Théorie des options

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

FORMATIONS FINANCIÈRES RÉALISÉES

FORMATIONS FINANCIÈRES RÉALISÉES FORMATIONS FINANCIÈRES RÉALISÉES l'ensemble de ces sujets de formations ont été construits sur mesure à la demande de nos clients SOMMAIRE LES MARCHÉS 3 LES MARCHÉS FINANCIERS NIVEAU 1 4 LES MARCHÉS FINANCIERS

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

GUIDE DES WARRANTS. Donnez du levier à votre portefeuille!

GUIDE DES WARRANTS. Donnez du levier à votre portefeuille! GUIDE DES WARRANTS Donnez du levier à votre portefeuille! Instrument dérivé au sens du Règlement Européen 809/2004 du 29 avril 2004 Produits non garantis en capital à effet de levier EN SAVOIR PLUS? www.listedproducts.cib.bnpparibas.be

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

LA GESTION DU RISQUE DE CHANGE. Finance internationale, 9 ème édition Y. Simon et D. Lautier

LA GESTION DU RISQUE DE CHANGE. Finance internationale, 9 ème édition Y. Simon et D. Lautier LA GESTION DU RISQUE DE CHANGE 2 Section 1. Problématique de la gestion du risque de change Section 2. La réduction de l exposition de l entreprise au risque de change Section 3. La gestion du risque de

Plus en détail

CIRCULAIRE AUX INTERMEDIAIRES AGREES N 2007-27

CIRCULAIRE AUX INTERMEDIAIRES AGREES N 2007-27 Tunis, le 18 décembre 2007 CIRCULAIRE AUX INTERMEDIAIRES AGREES N 2007-27 OBJET : Circulaire aux Intermédiaires Agréés n 2001-11 du 4 mai 2001 relative au Marché des changes et instruments de couverture

Plus en détail

Les Turbos. Guide Pédagogique. Produits à effet de levier avec barrière désactivante. Produits présentant un risque de perte en capital

Les Turbos. Guide Pédagogique. Produits à effet de levier avec barrière désactivante. Produits présentant un risque de perte en capital Les Turbos Guide Pédagogique Produits à effet de levier avec barrière désactivante Produits présentant un risque de perte en capital Les Turbos 2 Sommaire Introduction : Que sont les Turbos? 1. Les caractéristiques

Plus en détail

Estimation du coût de l incessibilité des BSA

Estimation du coût de l incessibilité des BSA Estimation du coût de l incessibilité des BSA Jean-Michel Moinade Oddo Corporate Finance 22 Juin 2012 Incessibilité des BSA Pas de méthode académique reconnue Plusieurs méthodes «pratiques», dont une usuelle

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

table des matières PARtie i introduction Notations courantes... XXIII Les auteurs... XXV Avant-propos... XXVII Remerciements...

table des matières PARtie i introduction Notations courantes... XXIII Les auteurs... XXV Avant-propos... XXVII Remerciements... table des matières Notations courantes............................................................... XXIII Les auteurs......................................................................... XXV Avant-propos.......................................................................

Plus en détail

4. Les options Une option donne à son propriétaire le droit d acheter ou de vendre un contrat à terme à un prix et une échéance prédéterminés.

4. Les options Une option donne à son propriétaire le droit d acheter ou de vendre un contrat à terme à un prix et une échéance prédéterminés. 4. Les options Une option donne à son propriétaire le droit d acheter ou de vendre un contrat à terme à un prix et une échéance prédéterminés. C est un droit et non une obligation. L acheteur d une option

Plus en détail

Chapitre 2 : l évaluation des obligations

Chapitre 2 : l évaluation des obligations Chapitre 2 : l évaluation des obligations 11.10.2013 Plan du cours Flux monétaires, prix et rentabilité Bibliographie: caractéristiques générales Berk, DeMarzo: ch. 8 obligations zéro-coupon obligations

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Introduction au pricing d option en finance

Introduction au pricing d option en finance Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés

Plus en détail

Génération de scénarios économiques

Génération de scénarios économiques Modélisation des taux d intérêt Pierre-E. Thérond ptherond@galea-associes.eu pierre@therond.fr Galea & Associés ISFA - Université Lyon 1 22 novembre 2013 Motivation La modélisation des taux d intérêt est

Plus en détail

Dérivés Financiers Futures et Contrats à Terme

Dérivés Financiers Futures et Contrats à Terme Dérivés Financiers Futures et Contrats à Terme Owen Williams Grenoble Ecole de Management > 2 Introduction Les forwards et futures sont des engagements à acheter ou vendre un actif à une date future donnée,

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Question 1: Analyse et évaluation des obligations / Gestion de portefeuille

Question 1: Analyse et évaluation des obligations / Gestion de portefeuille Question 1: Analyse et évaluation des obligations / Gestion de portefeuille (33 points) Monsieur X est un gérant de fonds obligataire qui a repris la responsabilité de gestion du portefeuille obligataire

Plus en détail

LES OPTIONS DE CHANGE DE SECONDE GÉNÉRATION : UN APERÇU

LES OPTIONS DE CHANGE DE SECONDE GÉNÉRATION : UN APERÇU LES OPTIONS DE CHANGE DE SECONDE GÉNÉRATION : UN APERÇU En forte croissance depuis le début des années quatre-vingt, le marché des options sur devises s est enrichi, au début des années quatre-vingt-dix,

Plus en détail

Finance, Navier-Stokes, et la calibration

Finance, Navier-Stokes, et la calibration Finance, Navier-Stokes, et la calibration non linéarités en finance 1 1 www.crimere.com/blog Avril 2013 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

Le call 6 mois strike 35 coûte 6 EUR ; le call 6 mois strike 40 coûte 4 EUR. L action sous-jacente cote 37.50 EUR.

Le call 6 mois strike 35 coûte 6 EUR ; le call 6 mois strike 40 coûte 4 EUR. L action sous-jacente cote 37.50 EUR. Exercice 09/02 #3 Le call 6 mois strike 35 coûte 6 EUR ; le call 6 mois strike 40 coûte 4 EUR. L action sous-jacente cote 37.50 EUR. a) Comment créer un bull spread avec ces calls? b) Quel est le gain,

Plus en détail

CONSEIL NATIONAL DE LA COMPTABILITÉ. 1.4 - Remplacement d instruments

CONSEIL NATIONAL DE LA COMPTABILITÉ. 1.4 - Remplacement d instruments CONSEIL NATIONAL DE LA COMPTABILITÉ Réponse aux questions pratiques liées à l application du règlement CRC n 2002-09 relatif à la comptabilisation des instruments financiers à terme par les entreprises

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Gestion économique du produit agricole, dossier 3, Arnaud Diemer, IHEDREA, MCF Clermont-Ferrand LES MARCHES A TERME

Gestion économique du produit agricole, dossier 3, Arnaud Diemer, IHEDREA, MCF Clermont-Ferrand LES MARCHES A TERME LES MARCHES A TERME Institut des Hautes Etudes en Droit Rural et Economie Agricole 1 PLAN I ) CARACTERISTIQUES DES MARCHES A ) Objectifs B ) Fonctions C ) Conditions d existence D ) Types d intervention

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Chapitre 1 : principes d actualisation

Chapitre 1 : principes d actualisation Chapitre 1 : principes d actualisation 27.09.2013 Plan du cours Principes valeur actuelle arbitrage loi du prix unique Valeur temps valeur actuelle et valeur future valeur actuelle nette (VAN) annuités

Plus en détail

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement...

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement... III Table des matières Avant-propos Remerciements................................. Les auteurs..................................... Chapitre 1 L intérêt............................. 1 1. Mise en situation...........................

Plus en détail

Comprendre les produits structurés

Comprendre les produits structurés Comprendre les produits structurés Sommaire Page 3 Introduction Page 4 Qu est-ce qu un produit structuré? Quels sont les avantages des produits structurés? Comment est construit un produit structuré? Page

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

DESS INGENIERIE FINANCIERE

DESS INGENIERIE FINANCIERE DESS INGENIERIE FINANCIERE Mercredi 27 mars 2005 Philippe TESTIER - CFCM Brest 1 SOMMAIRE Le Change au comptant (spot) ; Le Change à Terme (termes secs, swaps de change) ; Les Options de Change ; Les Options

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

TURBOS JOUR : DES EFFETS DE LEVIER DE x20, x50, x100 jusqu à x300!

TURBOS JOUR : DES EFFETS DE LEVIER DE x20, x50, x100 jusqu à x300! TURBOS Jour TURBOS JOUR : DES EFFETS DE LEVIER DE x20, x50, x100 jusqu à x300! PRODUITS À EFFET DE LEVIER PRéSENTANT UN RISQUE DE PERTE DU CAPITAL Société Générale propose une nouvelle génération de Turbos,

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail