Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS.

Dimension: px
Commencer à balayer dès la page:

Download "Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS."

Transcription

1 A la fin de ce chapitre vous devez être capable de : connaître différents procédés pour établir une divisibilité : utilisation de la définition, utilisation d identités remarquables, disjonction des cas, raisonnement par récurrence. connaître l unicité de l écriture de la division euclidienne ; connaître l écriture d un entier relatif en fonction de ses restes possibles dans sa division par l entier naturel b ; déterminer, en fonction de l entier naturel n, le reste dans une division euclidienne où le dividende et le diviseur sont des entiers fonctions de n ; connaître la technique de l algorithme d Euclide ; utiliser les propriétés du PGCD pour déterminer le PGCD de deux entiers dépendants de n. déterminer l ensemble des diviseurs communs à deux entiers ; utiliser les propriétés de congruences ; utiliser les nombres négatifs pour faciliter le calcul des congruences. I. Divisibilité dans. a) Multiples et diviseurs d un entier relatif. Définition 1: Soit a et b deux entiers relatifs. b divise a signifie qu il existe un entier k tel que a = kb On note b a. Dans ces conditions, on dit que a est un multiple de b et b est un diviseur de a. Exemples : -3 divise 6, car. -3 (-2) = 6 pour tout entier n, n + 1 divise n² - 1 car (n + 1) (n 1) = n² - 1. Remarques : 0 est multiple de tout entier, mais 0 a un seul multiple : 0 = 0 n et 0 0 = 0 Tout entier non nul n a pour diviseurs 1 ; -1 ; n et n. Il y a un nombre fini de diviseurs tous compris entre n et n. En revanche, un entier non nul a une infinité de multiples. Diviseurs de 1 ou -1 Propriété 1 : Les seuls diviseurs de 1 ou de -1 dans sont 1 et -1. : 1 et -1 sont bien des diviseurs de 1 et de -1, car 1 = (-1) (-1) = 1 1 et -1 = (-1) 1. Si pour deux entiers a et b non nuls, on a b = 1 ou a b = -1, alors par passage aux valeurs absolues, on a : a b = 1 avec a 1 et b 1. Avec b 1, on peut déduire, grâce aux propriétés de l ordre dans, que a b a 1. On a donc 1 a ; donc a = 1 ou a = -1 (car a est un entier naturel non nul) Le même raisonnement permet également d obtenir b = 1 ou b = -1. b) Propriétés de la divisibilité dans. Propriété 2 : Soit a, b et c des entiers relatifs tels que a 0 et b 0. Si a divise b et b divise c, alors a divise c. 1

2 : Si a b et b c alors il existe deux entiers k et k tels que b = ka et c =k b Donc c = (kk )a et par suite a c. Propriété 3 : Soit a et b des entiers relatifs non nuls. a b et b a équivaut à a = b ou a = -b : Si a b et b a alors il existe deux entiers k et k tels que b = ka et a =k b. D où : ab = kk ab Donc kk = 1 car ab 0. k et k sont ainsi des diviseurs de 1 ; ils sont donc égaux à 1 ou -1 (d après la propriété 1). On a donc a = b ou a = -b. Réciproquement, si a = b ou a = -b, alors, par définition a b et b a. Propriété 4 : Soit a, b et c des entiers relatifs non nuls et α et β deux entiers relatifs. Si c a et c b, alors c (αa + βb) : Si c a et c b alors il existe deux entiers k et k tels que a = kc et b =k c. αa + βb = αkc + βk c = (αk + βk )c où (αk + βk ) est un entier. Donc c (αa + βb) Attention : La réciproque est fausse : mais 2 ne divise pas 3. II. Division euclidienne a) Division euclidienne dans Propriété 5 : Soit a un entier naturel et b un entier naturel non nul. Il existe un unique couple (q ;r) d entiers naturels tels que : a = bq + r et 0 r < b. q est le quotient et r le reste de la division euclidienne de a par b. (a est appelé le dividende). : Soit a et b dans avec b 0. Existence de q et r Propriété d Archimède dans : Soit b un entier naturel non nul. Alors, quel que soit l entier naturel a, il existe un entier naturel n tel que a < nb. D après la propriété d Archimède dans, l ensemble des entiers naturels n, tels que a < nb n est pas vide. Il possède donc un plus petit élément k 0. k 1 est aussi un entier naturel et (k 1)b a < kb On pose alors q = k 1 et on obtient : qb a < (q+1)b. 2

3 En retranchant qb, on obtient 0 a qb < b En posant r = a bq, on conclut que a = bq + r et 0 r < b. Unicité de q et r On suppose a = bq 1 + r 1 = bq 2 + r 2 avec 0 r 1 < b et 0 r 2 < b. On en déduit que b < r 2 r 1 < b et que r 2 r 1 = b(q 1 q 2 ). Ainsi, r 2 r 1 est un multiple de b strictement compris entre b et b. On a donc r 2 r 1 = 0, d où r 2 = r 1. On en déduit alors, du fait que b 0, que q 1 = q 2. D où l unicité annoncée dans la propriété. Remarque : q est le quotient de la division euclidienne de a par b si, et seulement si, on a : bq a <b(q + 1) Interprétation graphique : On encadre a par deux multiples consécutifs de b. Attention : Il y a de multiples écritures de a sous la forme bq + r mais une seule est la division euclidienne de a par b. Par exemple 103 = mais aussi 103 = Seule l égalité 103 = est la relation de la division euclidienne de 103 par 13 car 12 < 13. Exemples : a = 356 ; b = 17 : 356 = Donc q = 20 et r = 16 b) Divisibilité Propriété Soit a et b deux entiers naturels avec b 0. On a : b divise a, si, et seulement si, le reste de la division euclidienne de a par b est nul. c) Division euclidienne dans Théorème 1: Soit a et b deux entiers relatifs avec b 0. Il existe un unique couple (q ;r) d entiers relatifs tels que : a = bq + r et 0 r < b. q est le quotient et r le reste de la division euclidienne de a par b. Remarque : Si a et b sont des entiers naturels, les couples obtenus dans la division euclidienne de a et b dans ou dans sont bien sûr confondus! 3

4 III. Plus grand diviseur commun de deux entiers a) PGCD de deux entiers naturels Définition 3 : Soit a et b deux entiers naturels non nuls, avec a b. Un entier naturel qui divise à la fois a et b est appelé diviseur commun à a et b. L ensemble des diviseurs communs à a et b possède un plus grand élément que l on nomme le plus grand diviseur commun de a et b. On le note PGCD(a ;b). b) Algorithme d Euclide Lemme d Euclide : Soit a, b, q et r des entiers naturels. Si a = bq + r alors PGCD(a ;b) = PGCD(b ;r). Si d est un diviseur commun à a et b alors il divise aussi a et bq. Il divise donc aussi r = a bq Donc d est un diviseur commun à b et r. Si d est un diviseur commun à b et r alors il divise aussi bq et r. Il divise donc aussi a = bq + r Donc d est un diviseur commun à a et b. Conclusion : L ensemble des diviseurs communs à a et b et l ensemble des diviseurs communs à b et r ont les mêmes éléments et donc le même plus grand élément. On a donc bien PGCD(a ;b) = PGCD(b ;r). Propriété 6: Soit a et b deux entiers naturels non nuls, avec a b. On définit la suite (r n ) d entiers naturels de la façon suivante : r 0 = b ; r 1 est le reste de la division euclidienne de a par b ; Pour n 1 : si r n = 0, alors r n+1 = 0 ; Si r n 0, alors r n+1 est le reste de la division euclidienne de r n-1 par r n Alors il existe un entier p tel que r p 0 et, pour tout n > p, r n = 0. On a alors r p = PGCD(a ;b) ; La division euclidienne de a par b s écrit a = bq 1 + r 1, avec 0 r 1 < b. Si b a, alors r 1 = 0 et donc le processus s arrête avec p = 0. Si b ne divise pas a, la division euclidienne de b par r 1 s écrit : b = r 1 q 2 + r 2 avec 0 r 2 < r 1 Si r 2 = 0, le processus s arrête avec p = 1. Sinon : on suppose que pour tout entier n, r n 0, alors r n-1 = r n q n+1 + r n+1 avec 0 r n+1 < r n. La suite (r n ) est donc une suite d entiers naturels strictement décroissante. De plus, r n+1 < r n r n+1 r n 1 et r n r n-1 1 r n+1 r n-1 2 Par suite, r n+1 r n-2 3 Montrons, par récurrence, que r n+1 b (n + 1). Soit P n la proposition : pour tout n entier naturel, r n+1 b (n + 1) 4

5 Initialisation : P 0 est vraie car : r 1 < r 0 ; donc r 1 r 0 1 soit r 1 b - 1 Hérédité : Supposons P n vraie. r n+2 < r n+1 Donc r n+2 r n+1-1 r 0 (n + 1) 1 en utilisant l'hypothèse de récurrence Donc r n+2 r 0 (n + 2) Soit r n+2 b (n + 2) Donc d après le principe de récurrence, P n est vraie pour tout n. On a alors pour n = b, r b+1 b (b + 1) -1, ce qui est absurde car r n, pour tout n. Donc, la supposition r n 0 pour tout n était absurde. Nécessairement, au bout d un nombre fini de divisions (au maximum b), on obtiendra un reste nul. Soit r p le dernier reste non nul. Le lemme d Euclide permet d écrire : PGCD(a ;b) = PGCD(b ;r 1 ) = PGCD(r 1 ;r 2 ) =. = PGCD(r p-2 ;r p-1 ) = PGCD(r p-1 ;r p ) = r p car r p+1 = 0 donc r p divise r p-1. Finalement, on vient de prouver que l algorithme d Euclide permettait de déterminer le PGCD de a et b : c est le dernier reste non nul dans la succession des divisions euclidiennes définies par cet algorithme. Exemple : calculer le PGCD de 494 et 143. Éta pes A b r a = bq + r = (1 ère étape) = (2 ème étape) = (3 ème étape) Donc PGCD(494 ; 143) = 13 c) PGCD de deux entiers relatifs Définition 4 : Soit a et b deux entiers relatifs non nuls. Le plus grand diviseur commun à a et b est l unique entier naturel δ vérifiant : δ = PGCD( a ; b ) Remarque : Le lemme d'euclide reste vrai pour des entiers relatifs. 5

6 d) Propriétés du PGCD Propriété 7 : Les diviseurs communs à deux entiers relatifs non nuls a et b sont les diviseurs du PGCD de a et b. Lorsque a *, b * et a > b, dans les divisions euclidiennes successives de l algorithme d Euclide, les diviseurs communs à a et b sont les diviseurs communs à b et r 0, à r 0 et r 1,, à r p-1 et r p. Or r p divise r p-1, donc les diviseurs communs à r p-1 et r p sont ceux de r p ; c'est-à-dire de PGCD(a ;b). Lorsque a * oub *, le résultat est identique car PGCD(a ;b) = PGCD( a ; b ). Propriétés 8 et 9 : Soit a, b et k des entiers relatifs non nuls. Si b divise a, alors PGCD(a ;b) = b PGCD(ka ;kb) = k PGCD(a ;b) de : PGCD(ka ;kb) = k PGCD(a ;b) dans le cas où a, b et k sont des entiers naturels. Si a = bq + r avec 0 r < b, alors ka = kbq + kr avec 0 kr < kb (car k ). Donc kr est le reste de la division euclidienne de ka par kb d après l unicité de l écriture. Avec les notations utilisées dans la démonstration sur l algorithme d Euclide et en multipliant chaque membre des égalités par k, on obtient : PGCD(ka ;kb) = PGCD(kb ;kr 0 ) = = kr p = k PGCD(a ;b) Conséquence : Si k est un entier naturel non nul, diviseur commun à a et b, alors : PGCD a k ; b k = 1 PGCD(a ;b) k : Ceci découle de la propriété précédente en écrivant a = k a k et b = k b k. e) Nombres premiers entre eux Définition 5 : Dire que deux entiers relatifs non nuls a et b sont premiers entre eux signifie que PGCD(a ;b) = 1. Exemple : 45 et 34 sont premiers entre eux car leur seul diviseur commun positif est 1. Propriété 10 : quotient de deux entiers par leur PGCD Soit a et b deux entiers relatifs non nuls. Soit d le PGCD de a et b. Alors il existe deux entiers relatifs a et b premiers entre eux tels que a=da et b=db. d = PGCD(a ;b) : donc d divise a et d divise b. Il existe donc deux entiers relatifs a et b tels que a = da et b = db. d = PGCD(a ;b) = PGCD(da ;db ) = d PGCD(a ;b ) D où PGCD(a ;b ) = 1 car d 0. 6

7 V. Congruences dans. a) Définition et propriétés Définition 6 Soit un entier naturel n 2, a et b deux entiers relatifs. On dit que a et b sont congrus modulo n, et on note a b [n ] ou a b (n) ou a b (mod. n), si les divisions euclidiennes de a et de b par n ont le même reste. Exemples 11 = et 7= , donc 7 11 [4]. De même : 25 1 [12] ; [7] [5] [10] Si l on compte de 6 en 6 à partir de 5, on obtient des entiers congrus à 5 modulo 6 : 5 ;11 ;17 ;23 ;29 ;. ; puis -1 ;-7 ;-13 ;-19 ;-25. Propriétés 11, 12 et 13 Soit un entier naturel n 2, a et b deux entiers relatifs. On a : 1. a b [n] n (a b) 2. a 0 [n] n a 3. Si n 2 est un entier et si n n, alors : a b [n] a b [n ] s 1) Si a b [n] alors il existe trois entiers q, q et r tels que : a = nq + r et b = nq + r On a donc a b = n(q q ) et donc n (a b) Réciproquement, si n (b a), alors il existe un entier k tel que a b = kn, soit a = b + kn. Si b = nq + r est la division euclidienne de a par n, on a donc 0 r < n et, en substituant : a = nq + r + kn = n(q + k) + r avec toujours 0 r < n. On obtient ainsi la division euclidienne de a par n dont le reste est aussi r. On a donc bien a b [n]. 2) C est un cas particulier de 1) avec b = 0 3) Si a b [n] alors n (a b) et n n, donc n (a b), c'est-à-dire a b [n ] b) Congruences et division euclidienne Propriété 14 : Soit n un entier supérieur ou égal à 2. Tout entier relatif a est congru modulo n à un unique entier r tel que 0 r n 1 A l aide de la division euclidienne de a par n, on sait qu il existe un unique entier r {0 ;1 ;.. ;n-1} tel que a = nq + r. Le reste r est donc l unique entier compris entre 0 et n 1 vérifiant a r [n]. 7

8 c) Congruences et opérations Théorème 2 : Soit n un entier supérieur ou égal à 2. La relation de congruence modulo n est compatible avec l addition et la multiplication dans. Autrement dit, a, a, b et b étant des entiers relatifs quelconques, on a : Si a a [n] et b b [n] alors a + b a + b [n] et ab a b [n] Si a a [n] et b b [n], alors n divise a a et b b ; donc n divise la somme (a a ) + (b b ). On en déduit que n divise (a + b) (a + b ). On en conclut que a + b a + b [n]. De même, n divise a a et b b ; donc il existe deux entiers k et k tels que : a = a + kn et b = b + k n Alors en effectuant le produit, on a : ab = a b + a k n + b kn + kk n² = a b + n(a k + b k + kk n) Il existe ainsi un entier K (K = a k + b k + kk n) tel que ab a b = nk. Donc n divise ab a b et ab a b [n]. Conséquence : Soit n un entier supérieur ou égal à 2 et a et a deux entiers quelconques. On a : pour tout entier k, si a a [n] alors ka ka [n] ; pour tout entier naturel p non nul, si a a [n] alors a p a p [n] On a k k [n] et a a [n] ; d où par multiplication, avec la propriété précédente : ka ka [n]. On suppose que a a [n] et on réalise une démonstration par récurrence sur p. Initialisation : pour p = 1, la propriété est vraie par hypothèse. On suppose que la propriété est vraie pour un entier k 1 : a k b k [n]. On a par hypothèse, a a [n], et, donc, par multiplication, avec le théorème précédent : a k a a k a [n], c'est-à-dire : a k+1 a k+1 [n]. La propriété est donc héréditaire à partir du rang 1. On a ainsi établi la propriété recherchée pour tout entier naturel p 1. Attention : on ne peut pas simplifier une congruence comme une égalité : 2a 2b[n] n implique pas a b[n]. Par exemple, 16 20[4] mais 8 et 10 ne sont pas congrus modulo 4. 8

9 d) Quelques critères de divisibilité des entiers Le calcul des congruences permet d obtenir de nombreux critères de divisibilité ; voici les principaux. Propriétés 15 : 1. Un entier est divisible par 10 s il se termine par 0 2. Un entier est divisible par 2 s il se termine par un chiffre pair. 3. Un entier est divisible par 5 s il se termine par 0 ou Un entier est divisible par 3 si la somme des chiffres qui le composent est divisible par Un entier est divisible par 9 si la somme des chiffres qui le composent est divisible par Un entier n est divisible par 4 si le nombre formé par les deux derniers chiffres de n est divisible par 4. Soit N = a n a n-1 a 2 a 1 a 0 = a n 10 n + a n-1 10 n a a a 0 Divisibilité par [10], d où 10 p 0 [10] pour p entier compris entre 1 et n. Donc N a 0 [10] N est divisible par 10 si et seulement si a 0 est divisible par 10, c'est-à-dire si a 0 est nul. Divisibilité par [2], d où 10 p 0 [2] pour p entier compris entre 1 et n. Donc N a 0 [2] N est divisible par 2 si et seulement si a 0 est divisible par 2, c'est-à-dire si a 0 est égal à 0, 2, 4, 6 ou 8. Divisibilité par [5], d où 10 p 0 [5] pour p entier compris entre 1 et n. Donc N a 0 [5] N est divisible par 5 si et seulement si a 0 est divisible par 5, c'est-à-dire si a 0 est égal à 0 ou 5. Divisibilité par [3], d où 10 p 1 [3] pour p entier compris entre 1 et n. Donc N a n + a n a 2 + a 1 + a 0 [3] Cela montre le résultat annoncé car a n + a n a 2 + a 1 + a 0 est bien la somme des chiffres de N. Divisibilité par [9], d où 10 p 1 [9] pour p entier compris entre 1 et n. Donc N a n + a n a 2 + a 1 + a 0 [9] Cela montre le résultat annoncé car a n + a n a 2 + a 1 + a 0 est bien la somme des chiffres de N. 9

10 Divisibilité par 4 Pour p 2, 10 p 0 [4] ; donc N 10a 1 + a 0 [4] Or 10a 1 + a 0 = a 1 a 0 Donc N est divisible par 4 si, et seulement si, a 1 a 0 est divisible par 4. Exemple : est divisible par 3 car = 30, entier divisible par 3. En revanche, il n est pas divisible par 9, car 30 ne l est pas. 10

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

1 Définition et premières propriétés des congruences

1 Définition et premières propriétés des congruences Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon

Plus en détail

Cours d arithmétique Première partie

Cours d arithmétique Première partie Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

FONDEMENTS DES MATHÉMATIQUES

FONDEMENTS DES MATHÉMATIQUES FONDEMENTS DES MATHÉMATIQUES AYBERK ZEYTİN 1. DIVISIBILITÉ Comment on peut écrire un entier naturel comme un produit des petits entiers? Cette question a une infinitude d interconnexions entre les nombres

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1

UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1 UNIVERSITE IBN ZOHR Faculté des sciences Agadir Filière SMA & SMI Semestre 1 Module : Algèbre 1 Année universitaire : 011-01 A. Redouani & E. Elqorachi 1 Contenu du Module : Chapitre 1 : Introduction Logique

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient par un nombre entier I La division euclidienne : le quotient est entier Faire l activité division. Exemple Sur une étagère de 4mm de large, combien peut on ranger de livres de mm d épaisseur? La question

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro. Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

108y= 1 où x et y sont des entiers

108y= 1 où x et y sont des entiers Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Algorithmes récursifs

Algorithmes récursifs Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Compter à Babylone. L écriture des nombres

Compter à Babylone. L écriture des nombres Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Triangle de Pascal dans Z/pZ avec p premier

Triangle de Pascal dans Z/pZ avec p premier Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Premiers exercices d Algèbre. Anne-Marie Simon

Premiers exercices d Algèbre. Anne-Marie Simon Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Quelques tests de primalité

Quelques tests de primalité Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest Jean-Marc.Couveignes@u-bordeaux.fr École de printemps C2 Mars

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2 éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

D'UN THÉORÈME NOUVEAU

D'UN THÉORÈME NOUVEAU DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles) 1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail

Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels.

Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. Cette partie est consacrée aux nombres. Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. L aperçu historique vous permettra

Plus en détail

Fibonacci et les paquerettes

Fibonacci et les paquerettes Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Taux d évolution moyen.

Taux d évolution moyen. Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

Mathématiques Algèbre et géométrie

Mathématiques Algèbre et géométrie Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

THEME : CLES DE CONTROLE. Division euclidienne

THEME : CLES DE CONTROLE. Division euclidienne THEME : CLES DE CONTROLE Division euclidienne Soit à diviser 12 par 3. Nous pouvons écrire : 12 12 : 3 = 4 ou 12 3 = 4 ou = 4 3 Si par contre, il est demandé de calculer le quotient de 12 par 7, la division

Plus en détail

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

Algorithme. Table des matières

Algorithme. Table des matières 1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

Chapitre 7. Récurrences

Chapitre 7. Récurrences Chapitre 7 Récurrences 333 Plan 1. Introduction 2. Applications 3. Classification des récurrences 4. Résolution de récurrences 5. Résumé et comparaisons Lectures conseillées : I MCS, chapitre 20. I Rosen,

Plus en détail