BURE ARX : RIJR SAINT-ROl s, On reçoit les Aboonerrmnts et les Aft:oonees

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "BURE ARX : RIJR SAINT-ROl s, On reçoit les Aboonerrmnts et les Aft:oonees"

Transcription

1 ER 2 URE RX : RR RO OEE O ç : OUE : U ; 2 ; 2 U 2 R ; V x O R V : O» R O 5 x ` x : x k x V 2 :HO%RHE OE 5 x O OU 25 V H! V O H x " 5 x ; x R! ç R VU! â 2 E wk 8 V 2 ; 2 : 2 5 5! 5U è U x ÉÊHE É ÉRE^ E R WRER ) :k OUOUE R R : z x R ; UxR ; UU 22 RO ; 2 ; R OURE E R U 2 EERE 52! 2 O ; è x x ô è 2 O x! ï! : ; E 2! R " 2 O O V 8 : V 2 ) K â : E ) ; E : + ^ kê : [!! V Î è! [ " ; z " E K!" Î :!» V " [ x K Â " K û ^ U "" E û! E : V U! / "" U V! è " ; 28 î : R H Vz 5; ^ " ^ ) ù E x E K E "";" O + [ x» OURE E OUOUE 2 x

2 V UUO; x! < "" x } x R " x > > [ z z H " 5 [ x " «Ç ^ 2 " " E > [ : x x! = Q x [ è ; x x< O " w! k >/ "! è : [ x )! %è U O : xk " x 2 : [ < +:! } R ; w 5 ï x 5 [ E î 2 ù K [ â E U Z = k ê x [ x " " Q [ " E Q x U ; O x! è Q E z z x: è 5 x z z z U Oè 8 [ ô : x! x è } ù è ; x ; [ ë x ; ï : = x E : k k : è H " k `K ` U " + OU :! ; w ` " x > x V : x ï è : w ü K x x " k ê } K è! è x k )

3 R : R ; : ;! ^ 55 " > z H ; < ; V 2 k } " OU R â > ; : : è : H U ù " + H : O V : > OH : x! R 5?zz[ ` 8?" 55 ;! 2 52 Î : 5 : : ; : " : : " :! ; z z 5 ç! " W " "" w W: < V ") ; WO z O k x " è ü : ô Q " [ 5 è O : H R è R z :! & : Î ; ` ô 8 ; : : [ : z 5 ": 5 w : x R x : = > z V H O 5 5 " 8 x

4 O R =R OO : `! E û U : 5 w : R w ï U V Ç : ç è è \ E } ) OE OE ER : V â$ ^ VÉÈ E U 2 2 " [! [ R;û E ê U z ê R è ; â û x E U ü U O è E ô ; x! ; 8 E } ç k : = x ; è è! O x O :R ; OR: V E O V è V Q è : û: ) è E? E E w! : î è : ; z Q ) ç : V Kk Q x W O O ; E ; H! W w z w k " U ""; O wk " ç V! k ê? E Î V k : O? E ) V U V x : V EO O H H " R REOE E Ü`? O è x z z ûx U V " 2z ; ô x > " R È è û W R â W ü O [ x : : ù : ï Î [ U U 5 U H ) W R 5 V O H z O k ô z U è ù x 5 R ü Ô U R[O "! \ \ VERE : \ ER URVEÉ OV R À E` W R\ [ 2 R < Ex " / ) è EE ) \ \ U R " O ERE O : U K RR ` O 5 5 : 5 U \xe è! \ + x% H x O

5 OUR E OUOUE 2 2 EQUÊE E E E x x E REE Q : Uü ; ; \ : 2 k x x x! " > 5 :: ü:x x + R x è x O! ^ ê O E k O «x 8 k x? Ê x " 2 x w x û " ê è : Q è E Rz 5 x W x Vz k 2 k 5 x ê ; " w x x x : z U [ " Q Ex O Q û : x " " x 2 ko ` O 2 O R } \+ î } 5 x x! ` " : : x } x " ; R ) x x z è zâ ê x è z x x E Q x x Q è } ; z " x : OUE " O ê è x x â x R x " } x \ : Î W > z O O \ : RE RE ; x x "" ù ; [ ô ; x 8 } ; " 5 2/ R O V ü V z R x x â z k } x E E ; " ` R 8 [ x E w x x "" è x [ O x ) x x x ; 5 x x

6 x E U x x ê W ^UUU ) " O R E E 8 ` Î x "` U : 8 2 x 8 E U k x x O 22 ü w /"""" ô 2 : x U 2Q ) Q x "! [ : / } V R \ ; V xî V ; k 55 :? : [ ï [ " " " RO x U [ R! x V / Î O ; O " O Q ` 8R ); OURREE E ROOE x U Rô : è O Î " V ; R U \ E 8 ` K [ : " < R Q 8) " \ \ ô ê O ) } [ [ 2 : ` ) O x O 2 O! O 8 ) " > = : " " x: / : ` ) E x OO 2 U ) û O O } V R» " kè U 8 )5 E ; " z O 5 x E ; U R R O V â è ; É U è ) 8 [ z Q 5 Î U V : : ) [ V V V x U " ) V O " U O < VUX ü )2 ù O ê Q ; O : ` U? R R Q U U ; V E x x ; ) U R R x E â E ) 5 è â V O 8 V» è x 5 Q [ "? 8 ) E x82 x U î w E Uè 5 5 O? Q Û H î x O x /! x ; ê O / U 5 R x 2ï " V x x x x R z ) V 8 kè 2 R x R " kè Q O k 25? : x Q U : x è è? : è " ; 5) V

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Patrick Ciarlet et Vivette Girault ciarlet@ensta.fr & girault@ann.jussieu.fr ENSTA & Laboratoire Jacques-Louis Lions, Paris 6 Condition

Plus en détail

Ê ÙÐ Ø ÓÒ Ö Ò Ð Ý Ø Ñ ØÖ Ù Ö Ø ØÙÖ Ø Ð ÓÖ Ø Ñ Ö Ö Ï ÙØ Ð Ø ÙÐØ ÆÓØÖ ¹ Ñ Ä È Ü Æ ÑÙÖ Ð ÕÙ Û ÙØ Ð Ò Óº ÙÒ Ôº º Ê ÙÑ º ij ÑÔÓÖØ Ò Ð ÓÖ Ø Ñ Ö Ô ÖØ Ø ÓÒ Ö Ò Ð Ý Ø Ñ ØÖ Ù Ò³ Ø ÔÐÙ ÑÓÒØÖ Öº Ò Ø Ð Ó Ü ³ÙÒ ØÝÔ

Plus en détail

STATUTS DE L ASSOCIATION. Association régie par par la Loi du 1 er juillet 1901

STATUTS DE L ASSOCIATION. Association régie par par la Loi du 1 er juillet 1901 STATUTS DE L ASSOCIATION Association régie par par la Loi du 1 er juillet 1901 Statuts adoptés par l Assemblée Générale Extraordinaire du dimanche 1 er avril 2007 ËØ ØÙØ Ð³ Ó Ø ÓÒ ÖØ Ð ÔÖ Ñ Ö¹ ÒÓÑ Ò Ø

Plus en détail

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16

ANNEXES...16 Notation...16 Rente financière certaine...16. Mémo d Actuariat - Sophie Terrier @ 2004 1/16 ÉO TUIT FOULS TUILLS SU TT Probbé ouo 3 dfféré4 ee gère be à ere échu 5 ee gère be à ere échu ueur fo d ée 6 ee gère à ere be d ce7 ee gère à ere be d ce ueur fo d ée8 urce décè 9 urce décè à c rbe cro

Plus en détail

Onveutetudierl'equationdierentiellesuivante

Onveutetudierl'equationdierentiellesuivante Quelques resultats sur l'equation des ondes Onveutetudierl'equationdierentiellesuivante (Ondes) @tu xu=f surr Rd: C'est dratique une equation +jj designature(;d).cettenoteestorganiseedela hyperbolique

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Quelles solutions pour des établissements de santé à consommation d énergie annuelle inférieure à

Quelles solutions pour des établissements de santé à consommation d énergie annuelle inférieure à Quelles solutions pour des établissements de santé à consommation d énergie annuelle inférieure à 100 kwh/m²? Rapport final Convention ADEME 04 07 C0043 Référence ARMINES 41204 Référence CSTB DDD/PEB -

Plus en détail

ÍÒ Ú Ö Ø ÅÓÒØÖ Ð ÍÒ ÑÓ Ð ÙÒ ÓÖÑ ÔÓÙÖ Ð ÑÓ Ð Ø ÓÒ Ø Ð Ñ Ø ÑÓ Ð Ø ÓÒ ³ÙÒ Ñ ÑÓ Ö ³ ÒØÖ ÔÖ Ô Ö ÇÐ Ú Ö Ö Ô ÖØ Ñ ÒØ ³ Ò ÓÖÑ Ø ÕÙ Ø Ö Ö ÓÔ Ö Ø ÓÒÒ ÐÐ ÙÐØ ÖØ Ø Ò Ì ÔÖ ÒØ Ð ÙÐØ ØÙ ÙÔ Ö ÙÖ Ò ÚÙ Ð³Ó Ø ÒØ ÓÒ Ù Ö È

Plus en détail

ÇÆ ÈÌÁÇÆ Ì Ê ÄÁË ÌÁÇÆ ³ÍÆ ÈÈÄÁ ÌÁÇÆ ËÌÁÇÆ Ê Ë Í Ë ÇÅÈÇË ÆÌË Ê È ÊÌÁË Ô Ö ÅÓ Ñ Ö Þ Ñ ÑÓ Ö ÔÖ ÒØ Ù Ô ÖØ Ñ ÒØ Ñ Ø Ñ Ø ÕÙ Ø ³ Ò ÓÖÑ Ø ÕÙ Ò ÚÙ Ð³Ó Ø ÒØ ÓÒ Ù Ö Ñ ØÖ Ò ÅºËºµ ÍÄÌ Ë Ë Á Æ Ë ÍÆÁÎ ÊËÁÌ ËÀ Ê ÊÇÇÃ

Plus en détail

Î ÐÙ Ø Ê Ñ ÙÖ Ô Ø Ð ÓÒÓÑ ÕÙ µ Ð Ê ÓÙÐ Ø ² Ì ÖÖÝ ÊÓÒ ÐÐ ÖÓÙÔ Ê Ö ÇÔ Ö Ø ÓÒÒ ÐÐ Ö Ø ÄÝÓÒÒ Ñ Ð ÐºÖ ÓÙÐ ØÖ ØÐÝÓÒÒ º Ö Ø ÖÖݺÖÓÒ ÐÐ Ö ØÐÝÓÒÒ º Ö ÈÐ Ò Ð³ ÒØ ÖÚ ÒØ ÓÒ ½º ÁÒØÖÓ ÙØ ÓÒ ÓÒ ÔÖÓÔÖ Ø Î ÐÙ ¹ Ø¹Ê Ä Ü

Plus en détail

DELIBERATION N CP 13-639

DELIBERATION N CP 13-639 CONSEIL REGIONAL D ILE DE FRANCE 1 CP 13-639 DELIBERATION N CP 13-639 DU 17 OCTOBRE 2013 La politique sociale régionale La politique régionale pour les personnes en situation de handicap Cinquième affectation

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Complétez, signez la Convention ci-après et paraphez les conditions générales,

Complétez, signez la Convention ci-après et paraphez les conditions générales, Réservé à la vente à distance C o m m e n tt s o u s c rr i rr e? Si vous n êtes pas déjà client du Crédit Coopératif 1 2 3 4 complétez la demande d'ouverture de compte veillez à bien remplir toutes les

Plus en détail

Ì ÖÖÝ ÅÓÝ ÙÜ ÖÓÙÔ Å Ë ÂÙ ÐÐ Ø ¾¼¼¾ Ì Ò ÕÙ ÑÙÐØ ÒØ ÔÓÙÖ Ð Ö ÙØ ÓÒ Ð³ ÑÔÐ Ø ÓÒ Ð Ñ Ò Ò ÙÒ Ò ÐÓ Ø ÕÙ ÔÔÐ Ø ÓÒ Ð³ Ò Ù ØÖ ÓÖ Ø Ö Ö Ø ÙÖ ÈÖÓ º Ö Ñ ¹ Ö Ó¹ Ö Ø ÙÖ ÈÖÓ º ËÓÔ ³ ÑÓÙÖ ÈÖÓ º ÖÒ Ö Ô Ò ÈÖÓÔÓ Ø ÓÒ Ø ÓØÓÖ

Plus en détail

ÓÐ ÓØÓÖ Ð Å Ø Ñ Ø ÕÙ Ë Ò Ø Ì ÒÓÐÓ Ð³ÁÒ ÓÖÑ Ø ÓÒ ÁÒ ÓÖÑ Ø ÕÙ Í Ê ÁÅ ÓÖÑ Ð Ø ÓÒ ÓÒÒ Ò ÓÙÑ ÒØ Ö Ø ÓÒÒ Ò ÓÒ ÔØÙ ÐРг ³ÓÒØÓÐÓ ÔÔÐ Ø ÓÒ Ð Ö ÔØ ÓÒ ÓÙÑ ÒØ Ù ÓÚ Ù Ð ÌÀ Ë ÔÖ ÒØ Ø ÓÙØ ÒÙ ÔÙ Ð ÕÙ Ñ ÒØ Ð Å Ö ¾¼¼ ÔÓÙÖ

Plus en détail

ÍÒ Ú Ö Ø ËØÖ ÓÙÖ Á ÙÐØ Ë Ò ÓÒÓÑ ÕÙ Î ÄÍ ÌÁÇÆ ÅÈÁÊÁÉÍ Ë Å ÆÁËÅ Ë ÌÊ ÆËÅÁËËÁÇÆ Ë ÀÇ Ë ÇÆ Å ÆÌ Í Ì ÆÇÆ ÇÆ Å ÆÌ Í Î ÊË Ä Ë Å Ê À Ë ÇÍÊËÁ ÊË Ì ÔÖ ÒØ ÔÓÙÖ Ð³Ó Ø ÒØ ÓÒ Ù Ø ØÖ ÓØ ÙÖ Ä³ÍÒ Ú Ö Ø ËØÖ ÓÙÖ Á ÈÖ ÒØ

Plus en détail

Ï Í Å Ò Ò ÁÒØ Ö¹Ë Ø Ò ÐÝ Ù ÓÑÔÓÖØ Ñ ÒØ ÍØ Ð Ø ÙÖ ÁÑÔ Ø ÁÑÑ Ø ÁÒØ Ö Ø Ï Í Å Ò Ò Í Ö Ú ÓÙÖ Ò ÐÝ Û Ø ÁÑÑ Ø ÁÑÔ Ø º Å Ð ½ ¾µ ź Ì Ö ½µ Ⱥ ÈÓÒ Ð Ø ½µ ½µ ÄÁÊÅÅ ÍÅÊ ÆÊË ¼ ½ ½ ÊÙ ¾ ÅÓÒØÔ ÐÐ Ö Ü Ö Ò ¾µ Ä ÓÖ ØÓ

Plus en détail

Chapitre 3: TESTS DE SPECIFICATION

Chapitre 3: TESTS DE SPECIFICATION Chapitre 3: TESTS DE SPECIFICATION Rappel d u c h api t r e pr é c é d en t : l i de n t i f i c a t i o n e t l e s t i m a t i o n de s y s t è m e s d é q u a t i o n s s i m u lt a n é e s r e p o

Plus en détail

FICHE DE RENSEIGNEMENTS SAISON 2013 2014

FICHE DE RENSEIGNEMENTS SAISON 2013 2014 USC BASKET Salle S. Chénedé Rue Sainte Croix 35410 CHATEAUGIRON Tél. 02.99.37.89.89 Site : www.chateaugiron-basket.com FICHE DE RENSEIGNEMENTS SAISON 2013 2014 Mme M. Nom et prénom de l adhérent : Adresse

Plus en détail

ÍÒ Ú Ö Ø Ö ÒÓ Ê Ð ÌÓÙÖ ÓÐ ÓØÓÖ Ð Ë ÒØ Ë Ò Ø Ì ÒÓÐÓ ÒÒ ÍÒ Ú Ö Ø Ö ¾¼¼¾¹¾¼¼ BLOIS CHINON ÌÀ Ë ÈÇÍÊ Ç Ì ÆÁÊ Ä Ê Ç Ì ÍÊ Ä³ÍÆÁÎ ÊËÁÌ ÌÇÍÊË ÔÐ Ò ÁÒ ÓÖÑ Ø ÕÙ ÔÖ ÒØ Ø ÓÙØ ÒÙ ÔÙ Ð ÕÙ Ñ ÒØ Ô Ö Æ ÓÐ Ä ÊÇ À Ð Ñ Ö

Plus en détail

MASTER DROIT-ECONOMIE-GESTION Co-diplômation Mentions «Droit Public» et «Science politique»

MASTER DROIT-ECONOMIE-GESTION Co-diplômation Mentions «Droit Public» et «Science politique» Mai 0 U.F.R. Droit et Science Politique MASTER DROIT-EONOMIE-GESTION o-diplômation Mentions «Droit Public» et «Science politique» Spécialité recherche et professionnelle (M) Métiers de l administration

Plus en détail

Le Processus Unifié de Rational

Le Processus Unifié de Rational Le Processus Unifié de Rational Laurent Henocque http://laurent.henocque.free.fr/ Enseignant Chercheur ESIL/INFO France http://laurent.henocque.perso.esil.univmed.fr/ mis à jour en Novembre 2006 Licence

Plus en détail

Ê ÔÔÓÖØ Ø Ù ÐÐ ÙÑ Î Ð ÓÒ ¾ Ù Ò ¾¼¼¼ Ì Ð Ñ Ø Ö Á ÓÖ Ð ÓÑÑÙÒ Ø ÓÒ ½ ÈÖ ÒØ Ø ÓÒ Ð Ó Ø ¾ Ä ÓÑ Ò ³ Ø Ú Ø ¾º½ Ñ Ò ØÖ Ø ÓÒ Ý Ø Ñ Ð³ Ò ÓÖÑ Ø ÓÒ º º º º º º º º º º º ¾º¾ Ö Ø ØÙÖ Ö ÙÜ ÓÑÑÙÒ Ø ÓÒ º º º º º º º º

Plus en détail

accident du travail ou maladie professionnelle du

accident du travail ou maladie professionnelle du accidents travail et maladies définis et prescrits par le en avec le médecin conseil volet 1 à conserver par le médecin traitant nom de naissance (suivi s'il y a lieu nom d'usage)-prénom accident travail

Plus en détail

Société X 3 Rue des Eglantines 69003 LYON 04 37 10 20 30

Société X 3 Rue des Eglantines 69003 LYON 04 37 10 20 30 286, rue Garibaldi 69003 LYON 33 (0)4 37 48 98 47 contact@cabinet-baud.com Société X 3 Rue des Eglantines 69003 LYON 04 37 10 20 30 AA ll l aa t t ee nn t iii oo nn dd ee MM oo nn ss iii ee uu rr DD RR

Plus en détail

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4

Plus en détail

YASHKA STEINER GRAPHIC DESIGN +41 079 340 19 41 +41 022 732 78 00. www.yashka.ch

YASHKA STEINER GRAPHIC DESIGN +41 079 340 19 41 +41 022 732 78 00. www.yashka.ch YASHKA STEINER GRAPHIC DESIGN 53, Rue de Lausanne 1202 Genève-CH +41 079 340 19 41 +41 022 732 78 00 www.yashka.ch steiner@yashka.ch MULTIMEDIA QUICKMEUBLE.CH SITE INTERNET OKONOMI FILM PROMOTIONNEL OKONOMI

Plus en détail

MUTATIONS ÉCONOMIQUES DANS LE DOMAINE AUTOMOBILE. Démarche méthodologique et synthèse

MUTATIONS ÉCONOMIQUES DANS LE DOMAINE AUTOMOBILE. Démarche méthodologique et synthèse MUTATIONS ÉCONOMIQUES DANS LE DOMAINE AUTOMOBILE Démarche méthodologique et synthèse AVRIL 2010 Démarche méthodologique et synthèse Premier ministre Ministère de l espace rural et de l aménagement du

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Ä Ù Ù ÊÇÇÌ Ö ÔÓÙÖ Ä ÒÙÜ Ö ÙÑ Ö º ÙÑ Ä ÒÙܺ ͺÇÖ Ö º ÙÑ Ö Ò ÜºÓÖ Î Ö ÓÒ ¾º ¾½ Ë ÔØ Ñ Ö ½ Ì Ð Ñ Ø Ö ½ ÈÖ Ñ ÙÐ ½ ½º½ À ØÓ Ö Ù º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Plus en détail

RECAPITULATIF PLANS Pour quelle école?

RECAPITULATIF PLANS Pour quelle école? V vz - 90 éèv, v ê céré cmm "p éc" V vz + 90 éèv, v ê céré cmm "gr éc" V ê éc prmr, z vr p : A D V ê éc cr, z vr p : F D V ê éc prmr, z vr p : B, C E V ê éc cr, z vr p : G, H I P gb, z vr p A P gb, z vr

Plus en détail

Exercices de géométrie

Exercices de géométrie Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

POUR ATTEINDRE VOS OBJECTIFS D AFFAIRES

POUR ATTEINDRE VOS OBJECTIFS D AFFAIRES LE RÔLE DU MARKETING STRATÉGIQUE SIX ÉTAPES POUR ATTEINDRE VOS OBJECTIFS D AFFAIRES POUR QU UNE ENTREPRISE ATTEIGNE SES OBJECTIFS D AFFAIRES, ELLE DOIT ÉQUILIBRER SA STRATÉGIE MARKETING. Une saveur unique

Plus en détail

Raisonnement distribué dans un environnement de type Pair-à-Pair

Raisonnement distribué dans un environnement de type Pair-à-Pair Actes JNPC 04 Raisonnement distribué dans un environnement de type Pair-à-Pair P. Adjiman P. Chatalic F. Goasdoué M.-C. Rousset L. Simon adjiman,chatalic,fg,mcr,simon @lri.fr Résumé Dans un système d inférence

Plus en détail

sommaire Introduction Fiches des 41 soldats disparus Le devoir de mémoire lettre à la mère de Maurice Quemin Glossaire / Sources

sommaire Introduction Fiches des 41 soldats disparus Le devoir de mémoire lettre à la mère de Maurice Quemin Glossaire / Sources a I 4 F 41 a a L L é à a è Ma Q Ga / S 5 46 51 53 55 2 La Ga G a é a a XX è è, a, a aa. E a é a. D a, ï, aa. L a éé a a a a a. N a a é a a a a Ga G, a a aé a a a, a. é E a a, a ê aé a a é, a aé a. A, a-à

Plus en détail

«Trop de chats en refuge : Aidons-les!»

«Trop de chats en refuge : Aidons-les!» q io iific bo ch Mlic g f! l o h c To i? co cio collboio vc Pl 5899 ch 7398 ch y éé boé C l ob félié qi, chq jo, o cibl joi fg Blgiq! 4641 ch l o l chc ov i à l g l fg fill i foy ê à l hx! C qlq chiff

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Accueil Events, l accueil personnalisé des touristes d affaires Informations, bonnes adresses, réservations et découvertes!

Accueil Events, l accueil personnalisé des touristes d affaires Informations, bonnes adresses, réservations et découvertes! Lyon City Card 1 jour 2 jours 3 jours Ta xis et M inibus - Tarifs forfaitaires Jour : 7h - 19h Nuit : 19h - 7h Lyon/ Villeurbanne - Aéroport St Exupéry 59 81 Lyon 5ème et 9ème excentrés - Aéroport St Exupéry

Plus en détail

Cloud pour applications PC SOFT Tarification

Cloud pour applications PC SOFT Tarification Cloud pour applications PC SOFT Tarification Date d entrée en vigueur de cette tarifi cation : 26 mai 2014 16:44 Présentation Le Cloud pour applications PC SOFT met à votre disposition des plateformes

Plus en détail

TSM EVOLUTION > SYSTÈME DE DÉTECTION INCENDIE ADRESSABLE ET CONVENTIONNEL ADR

TSM EVOLUTION > SYSTÈME DE DÉTECTION INCENDIE ADRESSABLE ET CONVENTIONNEL ADR SYSTÈME DE SÉCURITÉ INCENDIE www.marque-nf.com ADR > SYSTÈME DE DÉTECTION INCENDIE ADRESSABLE ET CONVENTIONNEL TSM EVOLUTION LA SOLUTION ÉVOLU > 3 versions pré-équipées d ECS (Equipement de Contrôle et

Plus en détail

&RQVHLO5pJLRQDO 1RUG± 3DVGH&DODLV

&RQVHLO5pJLRQDO 1RUG± 3DVGH&DODLV SRXU &RQVHLO5pJLRQDO 1RUG± 3DVGH&DODLV (WXGH GHIDLVDELOLWpG XQHILOLqUHUpJLRQDOHLQIRUPDWLTXH HQ 2SHQ6RXUFH ª 6RPPDLUH / REMHWGHO pwxgh /HVSURMHWVHWDSSOLFDWLRQVHQ13'& /HVDWRXWVHWIDLEOHVVHVGHODUpJLRQ /HVFRQVWDWV

Plus en détail

Année Universitaire 2013-2014. 1 ère année de Master Droit Mention Droit Privé 1 er semestre. 1 er SEMESTRE 8 matières CM TD COEFF ECTS.

Année Universitaire 2013-2014. 1 ère année de Master Droit Mention Droit Privé 1 er semestre. 1 er SEMESTRE 8 matières CM TD COEFF ECTS. Année Universitaire 201-2014 1 ère année de Master Droit Mention Droit Privé 1 er semestre 1 er SEMESTRE 8 matières CM TD COEFF ECTS Unité 1 1 TD obligatoire Droit civil (les Sûretés) Unité 2-1 TD au choix

Plus en détail

Budget Constrained Resource Allocation for Non-Deterministic Workflows on a IaaS Cloud

Budget Constrained Resource Allocation for Non-Deterministic Workflows on a IaaS Cloud Budget Constrained Resource Allocation for Non-Deterministic Workflows on a IaaS Cloud Eddy Caron, Frédéric Desprez, Adrian Muresan, Frédéric Suter To cite this version: Eddy Caron, Frédéric Desprez, Adrian

Plus en détail

Examen d informatique première session 2004

Examen d informatique première session 2004 Examen d informatique première session 2004 Le chiffre à côté du titre de la question indique le nombre de points sur 40. I) Lentille électrostatique à fente (14) Le problème étudié est à deux dimensions.

Plus en détail

DOCUMENTS A RETOURNER OBLIGATOIREMENT pour l ouverture d un compte-chèques Crédit Coopératif

DOCUMENTS A RETOURNER OBLIGATOIREMENT pour l ouverture d un compte-chèques Crédit Coopératif DOCUMENTS A RETOURNER OBLIGATOIREMENT pour l ouverture d un compte-chèques Crédit Coopératif La demande d ouverture de compte et de souscription de produits et services associés en 2 exemplaires, La photocopie,

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

Programme Prélavage vapeur. Nettoyage automatique du tambour Permet de nettoyer automatiquement le tambour.

Programme Prélavage vapeur. Nettoyage automatique du tambour Permet de nettoyer automatiquement le tambour. Ó ² ¼ù ² «½ ±² ¼«Ô ª»óÔ ²¹» ÓßÒËÛÔ Üù ÒÍÌÎËÝÌ ÑÒÍ ÜÉÝóÔÝïîïïÍ ñ ÜÉÜóÔÜïìïÕÝÍ Verrouillage enfant Le système de verrouillage enfant empêche que les enfants appuient sur un bouton et modifient le programme

Plus en détail

Analyse du temps de réponse des systèmes temps réel

Analyse du temps de réponse des systèmes temps réel Analyse du temps de réponse des systèmes temps réel Pascal Richard Laboratoire d Informatique Scientifique et Industrielle, ENSMA BP 40198 Téléport 2 F-86960 Futuroscope pascal.richard@ensma.fr RÉSUMÉ.

Plus en détail

ISAN System: 5 Œuvre à épisodes ou en plusieurs parties

ISAN System: 5 Œuvre à épisodes ou en plusieurs parties sm: 5 Œ à épsds pss ps Wb f B Rs s: E b W B bs d mdè Vs j www.sb. B ss Psfh B 7 T. +4 5 Fx +4 7 EM: f@sb. www.sb. B ss Psfh B 7 T. +4 5 Fx +4 7 EM: f@sb. wzd 5 Œ à épsds pss ps mm: TRODUTO DEMRE. OEXO.

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Girafe & Cie, compagnie d assurance-vie

Girafe & Cie, compagnie d assurance-vie Girafe & Cie, compagnie d assurance-vie Régime d épargne-études Détails de votre plan Numéro de contrat Nom(s) du ou des souscripteurs Dates de naissance du ou des souscripteurs Date d entrée en vigueur

Plus en détail

Un exemple d étude de cas

Un exemple d étude de cas Un exemple d'étude de cas 1 Un exemple d étude de cas INTRODUCTION Le cas de la Boulangerie Lépine ltée nous permet d exposer ici un type d étude de cas. Le processus utilisé est identique à celui qui

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état) oqe V oqe Cor e ere foco de rfer e repréeo dé d èe fore coqe de l repréeo dé SI Coe oqe! Irodco! e ere le dfféree decrpo d èe! Pge odèle dé " foco de rfer # C d èe oovrle # C d èe lvrle! Pge foco de rfer

Plus en détail

Introduction au pricing d option en finance

Introduction au pricing d option en finance Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés

Plus en détail

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol. LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont

Plus en détail

Premier réseau social rugby

Premier réseau social rugby Premier réseau social rugby Rugbygeneration.com est le premier site de la communauté autour de Rugby. Dédié à tous les fans de rugby et les amateurs de toutes générations. Rugby? Échanger, rester en contact,

Plus en détail

Modélisation des risques

Modélisation des risques 2 Modélisation des risques 2. Introduction L objectif de ce chapitre est de présenter les modèles de base utilisés pour décrire le comportement aléatoire d un risque en actuariat pour une période xe. Les

Plus en détail

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse page 8 AGREGATIN de MATHEMATIQUES: 1991 1/5 externeanalyse concours externe de recrutement de professeurs agreg6s composition d analyse NTATINS ET DGFINITINS Dans tout le problème, R+ désigne l intervalle

Plus en détail

Journées Thématiques 2004

Journées Thématiques 2004 Qualité énergétique, environnementale et sanitaire : Qualité énergétique, environnementale et sanitaire préparer le Bâtiment à l'horizon 2010 âââ Journées Thématiques 2004 Enveloppe du Bâtiment, Paris

Plus en détail

Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé

Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé 1 TGR Modélisation intégrée des écoulements pour la gestion en temps réel d'un bassin versant anthropisé Simon Munier Institut des Sciences et Industries du Vivant et de l'environnement (AgroParisTech)

Plus en détail

Courtage de détail. en valeurs mobilières au Québec INSTITUT DE LA STATISTIQUE DU QUÉBEC. Premier trimestre 2015. ÉCONOMIE // Finance.

Courtage de détail. en valeurs mobilières au Québec INSTITUT DE LA STATISTIQUE DU QUÉBEC. Premier trimestre 2015. ÉCONOMIE // Finance. ÉCONOMIE // Finance INSTITUT DE LA STATISTIQUE DU QUÉBEC Courtage détail en valeurs mobilières au Québec Juin 2015 Premier trimestre 2015 L Enquête sur le courtage détail en valeurs mobilières au Québec,

Plus en détail

Guide pour gérer les aspects juridiques du Web 2.0 en milieu scolaire

Guide pour gérer les aspects juridiques du Web 2.0 en milieu scolaire Guide pour gérer les aspects juridiques du Web 2.0 en milieu scolaire Pierre TRUDEL et France ABRAN Équipe de recherche Cynthia Gaudette François Joli-Coeur Annie Lagueux Geneviève Normand Jean-François

Plus en détail

P etit pat hw o rk de ombinatoire énumérative Mireille Bousquet-Mélou, CNRS, LaBRI, Bo rdeaux http://www.lab ri.fr/ b ousquet

P etit pat hw o rk de ombinatoire énumérative Mireille Bousquet-Mélou, CNRS, LaBRI, Bo rdeaux http://www.lab ri.fr/ b ousquet Ô Ø ÛÓÖ È Ø Ø ÓÑ Ò ØÓ Ö ÒÙÑ Ö Ø Ú Å Ö ÐÐ ÓÙ Õ٠عŠÐÓÙ ÆÊË Ä ÊÁ ÓÖ ÙÜ ØØÔ»»ÛÛÛºÐ Ö º Ö» ÓÙ ÕÙ Ø Ä ÓÑ Ò ØÓ Ö ÒÙÑ Ö Ø Ú ººº ³ ØÕÙÓ ÈÓÙÖÕÙÓ ÓÑÑ ÒØ ÇÅÈÌ Ê κ ij ÖØ ÓÑÔØ Ö Ô Ðغ Ø Ð ÖÐ ÒÓÑ Ö Ö Ö ÒÓÑ Ö Ö ÒÓÑ

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle

Plus en détail

Procédures de tests en réflectométrie. Septembre 2013

Procédures de tests en réflectométrie. Septembre 2013 Procédures de tests en réflectométrie Septembre 2013 Procédure de certification des liaisons optiques avec un réflectomètre Pour les mesures optiques quelques rappels: - Outils calibré et avec le dernier

Plus en détail

Personnels ITRF de catégorie C (A.D.T.R.F. - A.G.T.R.F. - A.S.T.R.F.) Postes offerts à la mutation au 01/09/2007

Personnels ITRF de catégorie C (A.D.T.R.F. - A.G.T.R.F. - A.S.T.R.F.) Postes offerts à la mutation au 01/09/2007 AIX MARSEILLE Université de la méditerranée Aix- Marseille II ADT WB0338 I I5X01 aide en gestion scientifique et technique Marseille 5ème V 01/09/2007 ADT O7926R A A5B01 Préparateur en biologie Marseille

Plus en détail

formation expérience professionnelle logiciels

formation expérience professionnelle logiciels DA, création, retouche numérique, éxécution, connaissance de la chaîne graphique, maîtrise de la Creative Suite CS5, de l environnement Mac, gestion d automatisation de documents (catalogues, annuaires...).

Plus en détail

Table des matières. Partie I : La nouvelle déduction pour la propre et unique habitation

Table des matières. Partie I : La nouvelle déduction pour la propre et unique habitation Table des matières Partie I : La nouvelle déduction pour la propre et unique habitation 1. Conditions liées à l emprunt 1.1. Aperçu des différentes conditions...3 1.2. Commentaire de ces différentes conditions...3

Plus en détail

Offres prépayées rechargeables avec différentes recharges. Voir «Conditions de rechargement» ci-dessous

Offres prépayées rechargeables avec différentes recharges. Voir «Conditions de rechargement» ci-dessous bicarte vous en donne plus Offre valable du 09 juillet au 07 octobre 2015 Les offres bicarte sont des offres prépayées disponibles avec l ensemble des couvertures réseaux d Orange GSM / GPRS / EDGE / 3G

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

Le présentoir virtuel. Paul FABING

Le présentoir virtuel. Paul FABING L préir virl Pl FABING L x L'ffi ri ' viié q pr fibl prpri ri éjr A i 80% r ifri ppr xi à l'ffi ri C ppr v b hz l prir ri 50% Frçi éqipé rph L û xi à ir vi l 3G pr l érgr prhibiif rriir è r ri i ff L'

Plus en détail

Elargissez l horizon de votre gestion. www.mercator.eu

Elargissez l horizon de votre gestion. www.mercator.eu www.mercator.eu Elargissez l horizon de votre gestion Mercator se profile comme la solution de gestion commerciale et de comptabilité alliant simultanément les avantages de la solution informatique standard

Plus en détail

COMITÉ ADMINISTRATIF ET JURIDIQUE. Quarante-huitième session Genève, 20 et 21 octobre 2003

COMITÉ ADMINISTRATIF ET JURIDIQUE. Quarante-huitième session Genève, 20 et 21 octobre 2003 ORIGINAL : anglais DATE : 18 juillet 2003 F UNION INTERNATIONALE POUR LA PROTECTION DES OBTENTIONS VÉGÉTALES GENÈVE COMITÉ ADMINISTRATIF ET JURIDIQUE Quarante-huitième session Genève, 20 et 21 octobre

Plus en détail

Manuel d utilisation. ShareCenter Quattro DNS-345 VeRsion 1.0

Manuel d utilisation. ShareCenter Quattro DNS-345 VeRsion 1.0 Manuel d utilisation ShareCenter Quattro DNS-345 VeRsion 1.0 Table des matières Table des matières introduction...1 Pré-requis...2 Coniguration système requise...2 Présentation du produit...3 Contenu de

Plus en détail

JOURNAL RÉGIONAL QUOTIDIEN. ras-ige aps rrraces, NANCY. 97. Rue RicheUea. et 5 iiî, Boulevard des ItiUea»

JOURNAL RÉGIONAL QUOTIDIEN. ras-ige aps rrraces, NANCY. 97. Rue RicheUea. et 5 iiî, Boulevard des ItiUea» 2g é 95 éépho w Vog o u ép RO O Z o X O pu g ç 2 > u ou vo bo g qué o pou og hb ou o qu o o Cux pè b ouv g pô u vu v p éé qu î pô u pô p O ou hg o p o vg p ou qu ouv o obuo u p ou o D O p x qu o pô u vu

Plus en détail

MON 1ER JEU-CONCOURS SUR FACEBOOK

MON 1ER JEU-CONCOURS SUR FACEBOOK MON 1ER JEU-CONCOURS SUR FACEBOOK La mécanique du jeu-concours est la plus répandue sur Facebook. Simple et efficace, elle permet de recruter des nouveaux fans et collecter des données de manière efficace.

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven

ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven IL If I L S V Ey G Khk U L 13/02/02 pé? xp qé xp pz à pz p héhq pé p à q z p à p héhq fé à p à q pz xp q 'p (è) f, '-à- p. x. ' é ff. N xp à py qq' q z b ( f) P xp pô pp L p - pé pz ': z qq', q -? Bj,

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

MECANIQUE DU POINT. y e y. z e z. ] est le trièdre de référence. e z. où [O, e r. r est la distance à l'axe, θ l'angle polaire et z la côte

MECANIQUE DU POINT. y e y. z e z. ] est le trièdre de référence. e z. où [O, e r. r est la distance à l'axe, θ l'angle polaire et z la côte I) Cinématique du point matériel: 1) Référentiel: MECANIQUE DU POINT L ensemble de tous les systèmes d axes de coordonnées liés à un même solide de référence S constitue un repère Soit une horloge permettant

Plus en détail

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD. L UTBM de A à Z

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD. L UTBM de A à Z UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD L UTBM de A à Z édition 2011/2012 Lexique ATER BIATOS CIP CRI DEP DGS DRIME ECC EDIM FC LAB GESC IMaP Attaché temporaire d enseignement et de recherche

Plus en détail

201-105-RE SOLUTIONS CHAPITRE 1

201-105-RE SOLUTIONS CHAPITRE 1 Chapitre1 Matrices 1 201-105-RE SOLUTIONS CHAPITRE 1 EXERCICES 1.2 1. a) 1 3 Ë3 7 3 2 Ë 1 16 pas défini d) 16 30 17 3 e) Ë 7 68 22 16 13 Ë 5 18 6 2. a) 0 4 4 4 0 4 Ë4 4 0 Ë 0 4 32 4 4 0 4 32 32 4 0 4 4

Plus en détail

2 Professionnaliser les structures et développer les compétences collectives...8 2.1 Synthèse...8 2.2 Des illustrations...9 2.3 Des orientations...

2 Professionnaliser les structures et développer les compétences collectives...8 2.1 Synthèse...8 2.2 Des illustrations...9 2.3 Des orientations... ! " #$ % &'%! 1 Le contexte du secteur...4 1.1 Repositionner l offre associative face à la concurrence...4 1.2 Mieux connaître les besoins des publics...5 1.3 Développer des activités nouvelles et cibler

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

PRATIQUE DU COMPAS ou

PRATIQUE DU COMPAS ou PRTQU U OMPS ou Traité élémentaire de tous les traits servant aux rts et Métiers et à la construction des âtiments ZR, éomètre ii Reproduction de l édition de 1833, VNN, imprimerie TMON Père et ils, par

Plus en détail

Antécédents de crédit Banque Bon d études canadien Calendrier des dépenses Carte de crédit Carte de débit CELI Chèque du Gouvernement du Canada

Antécédents de crédit Banque Bon d études canadien Calendrier des dépenses Carte de crédit Carte de débit CELI Chèque du Gouvernement du Canada Antécédents de crédit Les renseignements rassemblés qui montrent le temps que cela vous prend à payer l argent que vous avez emprunté. Banque Une institution financière qui dépose de l argent, prête de

Plus en détail

L i c e n c e. www.univ-paris13.fr. Mention «Économie et de gestion» Diplôme Bac + 3. Parcours. Contacts. contact :

L i c e n c e. www.univ-paris13.fr. Mention «Économie et de gestion» Diplôme Bac + 3. Parcours. Contacts. contact : Diplôme Bac + 3 Parcours - - Contacts UFR des Sciences Economiques et de Gestion contact : Contact formation continue (Adultes en reprise d'études, Financement / VAE): tél.:01 49 40 37 64 acc-cfc@univ-paris13.fr

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Implémentation de Nouveaux Elements Finis dans Life et Applications

Implémentation de Nouveaux Elements Finis dans Life et Applications 1 Département Informatique et Mathématiques Appliquées Année Universitaire 29-21 Rapport de stage Implémentation de Nouveaux Elements Finis dans Life et Applications Présenté par Abdoulaye Samake M1 Mathématiques

Plus en détail

04 265 45 06-081 87 87 54 À VENDRE NEW LIÈGE SCIENCE PARK BUREAUX - HALL BAT. 3 BAT. 1 BAT. 4 BAT. 2 BAT. 5. Bureaux : ± 928 m². Bureaux : ± 178 m²

04 265 45 06-081 87 87 54 À VENDRE NEW LIÈGE SCIENCE PARK BUREAUX - HALL BAT. 3 BAT. 1 BAT. 4 BAT. 2 BAT. 5. Bureaux : ± 928 m². Bureaux : ± 178 m² CHRISTOHE NIHON HALL INDUSTRIEL SHOWROOM TERRAIN DÉVELOEMENT COURTIER DE RÉFÉRENCE OUR L IMMOBILIER D ENTRERISE WALLON Superficie : ± 928 m² Superficie : ± 178 m² RUE BOIS SAINT JEAN 20-4102 OUGRÉE RUE

Plus en détail

Le BTS Sciences et Technologies des Aliments (STA)

Le BTS Sciences et Technologies des Aliments (STA) BTS Le BTS Sciences et Technologies s Aliments (STA) Qu est ce que l agroalimentaire? Définition: L'agroalimentaire désigne l'ensemble s activités transformation s produits l'agriculture stinés à l'alimentation

Plus en détail

Ä ÇÊ ÌÇÁÊ ÈÀ ËÁÉÍ ÌÀ ÇÊÁÉÍ ÍÆÁÎ ÊËÁÌ ÈÁ ÊÊ ÌÅ ÊÁ ÍÊÁ ij ÇÄ ÆÇÊÅ Ä ËÍÈ ÊÁ ÍÊ ÌÀ Ë Ç ÌÇÊ Ì Ä³ÍÆÁÎ ÊËÁÌ È ÊÁË ËÔ Ð Ø ÈÀ ËÁÉÍ ÌÀ ÇÊÁÉÍ Ë Ö ÄÇÊ ÆË ÔÖ ÒØ Ô Ö Ç Ì ÍÊ Ä³ÍÆÁÎ ÊËÁÌ È ÊÁË ÔÓÙÖÓ Ø Ò ÖÐ Ö ÇÀ Ê Æ ÌÄÇ

Plus en détail

l Agence Qui sommes nous?

l Agence Qui sommes nous? l Agence Qui soes nous? Co Justine est une agence counication globale dont la ission est prendre en charge l enseble vos besoins et probléatiques counication. Créée en 2011, Co Justine a rapient investi

Plus en détail

RENSEIGNEMENTS SUR L IMPÔT ET LES GAINS EN CAPITAL

RENSEIGNEMENTS SUR L IMPÔT ET LES GAINS EN CAPITAL FONDS COMMUNS DE PLACEMENT AGF ET ACUITY 2014 RENSEIGNEMENTS SUR L IMPÔT ET LES GAINS EN CAPITAL La présente brochure renferme des renseignements fi scaux afférents à vos investissements et gains en capital

Plus en détail

Le multiplicateur monétaire (de crédit) : hier et aujourd'hui

Le multiplicateur monétaire (de crédit) : hier et aujourd'hui 23 février - N 27-72 Le multiplicateur monétaire (de crédit) : hier et aujourd'hui Le multiplicateur monétaire (de crédit) est la théorie qui explique quel montant de crédit (de masse monétaire) peut être

Plus en détail