Traitement du Signal Vu par Un Mesures Physiques

Dimension: px
Commencer à balayer dès la page:

Download "Traitement du Signal Vu par Un Mesures Physiques"

Transcription

1 Traitement du Signal Vu par Un Mesures Physiques Cette technique reste compliquée par les mathématiques qu il l accompagne. J ai découvert la première fois le TdS au travail (CEA) avec un ingénieur qui a eu comme Prof J.Max l une des références en la matière, mais aussi avec un technicien avec beaucoup de pratique. En tant que Mesures Physiques vous comprenez bien que j ai trouvé cet outil considérable en application. Surprenant mes propos, car j ai étudié le TdS durant mon DUT, mais en vain, je n ai vu à l époque qu une succession de formules de maths qui tournaient en rond et dont je ne voyais pas l intérêt!!! En fait, l utilisation d analyseur de spectre m a permis de mieux appréhender la théorie bien plus tard où j ai remis le nez dans les maths pour mieux comprendre ce que j ai vu dans la pratique et on s aperçoit qu avec on fait d énorme chose e jwt Ce document est une synthèse et reste non exhaustif, avec le temps, je l améliorerais. Je l ai fait avec peu de maths et beaucoup de schémas, ce qui manque dans la plus part des livres de TdS. BONNE LECTURE

2 Formation Les premiers outils du Traitement du Signal Etre CAPABLE de lire et d utiliser un SPECTRE de FREQUENCE Révision 02-29/01/02 - Chapitre 5

3 OBJECTIF: A l issu, de cette formation vous serez capable d utiliser les premiers outils du traitement du signal pour lire un spectre de fréquence

4 sommaire Introduction Echantillonnage Filtre Spectre Fenêtres de Pondération synthèse

5 INTRODUCTION >>>>>>>>>>>>>>> Initiation par la mesure vibratoire: être capable d appréhender l intérêt de l analyse spectrale

6 Introduction La mesure des VIBRATIONS est un bon moyen pour comprendre Le Traitement du Signal

7 Introduction La mesure des VIBRATIONS??!! impulsion t Masse M signal Ressort Amortisseur t

8 Introduction Les capteurs sont installés à demeure sur les machines et connectés à un système de surveillance. La mesure des VIBRATIONS??!! AL AL MOVISYS-2 X AL AL AL AL AL BY BY BY BY BY BY BY S'tell Diagnostic MAL MAMPV-BG MSCA MSCA MSCA MSCA MSCA PV-BG MSCA Moteur 3000 tr 440VAC - 70A Type 405TS

9 Introduction Verre en fusion 70 C Emplacement du capteur de mesure des vibrations: L ACCELEROMETRE Exemple de machine de fibrage

10 SIGNAL (mesure) Introduction A A0 Fourier SPECTRE U RMS A0 A/2 F 1 SIGNAL (mesure) SPECTRE Exemple: De mesure vibratoire.

11 Introduction Core-Cover-Plug/Phenix RNR vibration monitoring

12 Introduction Tout phénomène physique est en général transformé en signal électrique du fait de la conversion sous forme électrique des grandeurs physiques par des capteurs. Le traitement du signal recouvre une variété de techniques utilisées pour extraire des informations d'un signal complexe. Le bruit peut perturber l information. On cherche aussi à modifier cette grandeur physique et à l adapter aux moyens de transmissions.

13 A Introduction A0 Fourier U RMS A0 A/2 F 1 L'analyse spectrale est la méthode utilisée pour décomposer un signal complexe (signal non périodique) en ses constituants de base. Une représentation conventionnelle du signal se fait dans le domaine du temps (amplitude en fonction du temps a(t)). L'analyse spectrale reproduit dans le domaine fréquentiel l'amplitude en fonction de la fréquence. La transformée de Fourier (Discrète) est un moyen d'obtenir une représentation dans le domaine fréquentiel pour les signaux non périodiques en associant à un signal x(t) sa transformée de Fourier X(f) appelé spectre.

14 Introduction s

15 Introduction

16 Introduction Conclusion: Signal ANALOGIQUE Outil utilisé pour le traitement du signal est: SPECTRE La TFD: Transformée de Fourier Discrète

17 ECHANTILLONNAGE >>>>>>>>>>>>>>>> Etre capable d appliquer Le principe de SHANNON

18 L échantillonnage Pour construire un SPECTRE Il faut échantillonner le signal

19 L échantillonnage Définition Passage d un système continu possédant une infinité de valeurs à un système possédant un nombre fini de valeurs. t On distingue 2 étapes : La discrètisation La numérisation t

20 L échantillonnage La discrètisation du signal La discrètisation du signal consiste à prélever des échantillons à une cadence T E pendant une durée T. La fréquence de prélèvement des échantillons F E est appelée fréquence d échantillonnage. T E T=durée d acquisition T=N.T E F E = 1 T = N F E T E t

21 L échantillonnage La numérisation du signal La numérisation du signal consiste à quantifier les amplitudes A des échantillons successifs au moyen d une conversion dans un format binaire. n-1 A= a i.2 i i=1 ai{0;1} Le nombre de bits n de la conversion détermine la valeur du pas de quantification p, qui est la valeur de l incertitude. p = P.E 2 n P.E : Pleine Echelle 2 n

22 L échantillonnage Les effets de l échantillonnage : Périodisation du spectre à la fréquence d échantillonnage F E t Fourier F -F M F M Fourier t F T E -F E -F M F M F E

23 L échantillonnage Les effets de l échantillonnage : Repliement du spectre t Fourier F -F M F M T E t Fourier F -F E F E

24 Le Théorème de SHANNON L échantillonnage Soit F MAX la fréquence maximale du spectre du signal à échantillonner et F E la fréquence d échantillonnage : F E >2.F MAX Si cette condition n est pas vérifiée, l échantillonnage introduit une distorsion du signal qui ne pourra être corrigée et due au repliement de spectre (sous échantillonnage). -F E -F MAX F MAX F E F

25 L échantillonnage Le Théorème de SHANNON Une autre interprétation du Théorème de SHANNON utilise la représentation temporelle du signal : F E >2.F MAX Echantillonnage correct T E < T MAX 2 Soit au moins 2 points par période! Sous- Echantillonnage

26 L échantillonnage Le Théorème de SHANNON En sous-échantillonnage, on visualise un autre signal : Si le signal, à l origine, est de F=60Hz, et que Fe =100Hz (Shannon non respecté). On se retrouve au final avec un signal de 40 Hz, au lieu de visualiser le 60Hz. C est le résultat du repliement. T E < T MAX 2 Soit au moins 2 points par période! Sous- Echantillonnage

27 L échantillonnage SHANNON respecté Fe-20 Fe-4 Fe+4 Fe Fe=100 2Fe=200

28 L échantillonnage SHANNON NON respecté Fe-60=4060 Fe-4 Fe+4 Fe Fe=100 2Fe=200

29 Le Théorème de SHANNON L échantillonnage Le but de l'analyse spectrale étant de déterminer les composantes fréquentielles d'un signal, celles-ci ne sont donc pas au premier abord connues et le choix de la fréquence d'échantillonnage peut être fait sans avoir la certitude que toutes les composantes du spectre satisfont la condition de SHANNON. C'est l'effet indésirable de repliement de spectre que nous allons résoudre avec un FILTRE ANTIREPLIEMENT de spectre

30 L échantillonnage ET Les filtres anti-repliement Introduction La vérification du critère de SHANNON suppose que le spectre du signal soit borné, et que cette borne (F MAX ) soit connue. Afin de vérifier ces conditions dans tous les cas, on fait précéder l échantillonnage d un filtrage passe-bas dit filtre anti-repliement tel que : F M < 0,5.F E Filtre A.R Echantillonnage Le filtre utilisé est un filtre analogique à coupure très raide tel qu un filtre de CAUER d ordre élevé (8 ou 9).

31 L échantillonnage ET Les filtres anti-repliement Principe t Filtrage F t Echantillonnage -F M F M F t F -F E F M F E

32 L échantillonnage ET Les filtres anti-repliement Application aux analyseurs Sur nombre de collecteurs / analyseurs du marché, le filtre anti-repliement est positionné automatiquement en fonction de la gamme d analyse. La fréquence d échantillonnage est adaptée à la gamme d analyse, selon la relation : F E =2,56.F M F M :Fréquence maxi de la gamme d analyse [0;25]Hz [0;100]Hz [0;200]Hz [0;500]Hz [0;1k]Hz F E =64Hz F E =256Hz F E =512Hz F E =1.28kHz F E =2.56kHz [0;2k]Hz [0;5k]Hz [0;10k]Hz [0;20k]Hz F E =5.12kHz F E =12.8kHz F E =25.6kHz F E =51.2kHz

33 L échantillonnage ET Les paramètres d acquisition Les paramètres de l acquisition Soient : F E : Fréquence d acquisition ou d échantillonnage N : Nombre de point acquis T : Durée de l acquisition T E T=durée d acquisition T=N.T E t F E = 1 T E T = N F E

34 L échantillonnage ET Les paramètres d acquisition Les paramètres de la TFD Ils découlent des paramètres de l acquisition : En général, on trouve : F MAX : Fréquence supérieure de la gamme d analyse F MAX = F E 2 F E - N F MAX F : Résolution spectrale F = 1 T = F E N C : Nombre de points (lignes) du spectre C = N 2 F

35 L échantillonnage Conclusion: Tacq grand F petit Ne pas oublier que plus le temps d acquisition est grand plus la résolution du spectre sera meilleure donc un F petit Le numérique implique un échantillonnage. L échantillonnage périodise le spectre. Le risque de la périodisation est le recouvrement. Si il y a recouvrement on ne retrouve pas le signal Pour palier à cette difficulté, on utilise un filtre anti-repliement et on respecte Shannon F E >2.F MAX

36 FILTRAGE >>>>>>>>>>>>>>> Etre capable de choisir le filtre Anti-Repliement

37 Introduction Le Filtrage Le filtrage est une opération dont l objectif est de mettre en évidence l information utile contenue dans le signal. Exemple : Elimination du bruit («parasites»)

38 Le Filtrage Les différentes réponses Pour un gabarit donné, la fonction de transfert du filtre peut être représentée par différentes fonctions : Réponse de BUTTERWORTH Réponse de CHEBYSHEV Réponse de LEGENDRE Réponse de CAUER Réponse de BESSEL ou THOMSON Chacune de ces réponses présente des caractéristiques particulières dont la connaissance permet la sélection du filtre le plus adapté à une utilisation donnée.

39 Le Filtrage Exemple: Les filtres de BUTTERWORTH 0 F P F A F Réponse régulière dans la Bande Passante Décroissance monotone en Bande Coupée Pente faible pour un ordre donné Utilisés pour la solution de problèmes simples lorsque la régularité de la réponse est un critère important

40 Le Filtrage Autre exemple: Les filtres de CAUER (ou filtres elliptiques) F P F A F Oscillation dans la Bande Passante Présence de zéros de transmission en Bande Coupée Pente la plus élevée pour un ordre donné Filtres complexes à calculer La très grandeur raideur de la bande de transition (pente) est bien adaptée à la réalisation de filtres antirepliement. Il est alors nécessaire de corriger les oscillations dans la bande passante.

41 Le Filtrage Réalisation pratique : Les filtres analogiques La sélectivité du filtre requise impose une pente plus ou moins importante à la fonction de transfert du filtre. Cette sélectivité détermine l ordre du filtre et par suite sa complexité : En effet, un filtre analogique est réalisé au moyen de cellules élémentaires du 1er et 2ème ordre mises en cascade pour parvenir à l ordre requis. Exemple d un filtre du 7ème ordre : 2ème Ordre 2ème Ordre 2ème Ordre 1er Ordre

42 Le Filtrage Réalisation pratique : Les filtres numériques Les filtres numériques sont destinés aux signaux échantillonnés. Ils offrent des avantages considérables sur les structures analogiques, et sont aujourd hui très répandus : Réalisation de fonctions complexes irréalisables en continu Caractéristiques proches de celles du filtre idéale (pente infinie, pas d atténuation dans la bande passante) Modification de la valeur du filtre par modification des tables de coefficients du filtre. Invariance du filtre dans le temps et en fonction des composants.

43 FILTRAGE Conclusion: Les filtres sont à choisir en fonction de ses besoins. Les filtres de CHEBYSHEV: Bon rapport qualité prix Mais aujourd hui, les filtres numériques restent les plus avantageux par leur flexibilité de conception.

44 SPECTRE >>>>>>>>>>>>>>>> Etre capable d utiliser la TFD (Transformée Fourier Discrète) avec les unités (RMS Veff²)

45 SPECTRES A A0 Fourier U RMS A0 A/2 F 1 Orthogonalité TFD (Transformée de Fourier Discrète) Représentations des spectres (Puissance, Energie Veff, RMS)

46 SPECTRES: Orthogonalité Expliquons l orthogonalité, dans un premier temps, simplement sans trop de Maths.

47 SPECTRES: Orthogonalité L orthogonalité explique en quoi la formule de la TFD permet d identifier les différentes fréquences dans un signal Historiquement, il est connu depuis longtemps que l addition de deux ou plusieurs fonctions périodiques donne une nouvelle fonction périodique. Il était aussi connu que si pour composer cette nouvelle fonction on utilisait uniquement des sinus (ou des cosinus), on pouvait les retrouver par analyse à l aide de la formule de Fourier

48 SPECTRES: Orthogonalité La somme de plusieurs signaux peut donner un signal carré

49 SPECTRES: Orthogonalité

50 SPECTRES: Orthogonalité L orthogonalité nous permet d identifier toutes les fréquences constituant un signal, par le biais de Fourier. Pour ce faire on utilise le principe du produit scalaire que l on a tous appris au lycée. U. V = U. V.cos : angle entre les deux vecteurs U et V Si les deux vecteurs sont perpendiculaires (orthogonaux) donc = / 2 alors U. V = 0 Si les deux vecteurs sont non orthogonaux exemple = / 2 alors U. V = U. V 0

51 SPECTRES: Orthogonalité w.t = 2F Hz A A0 en radian Représentation orthonormée du signal temporel A0 = rayon du cercle Représentation de Fresnel (polaire) du signal temporel A = A0. Cos(w.t + ) Phase instantanée

52 SPECTRES: Orthogonalité Si les signaux A et B ont la même phase le produit scalaire =MAXI A = A0. Cos(wt + ) B = B0. Cos(wt + ) Si les signaux A et B n ont pas la même phase le produit scalaire sera = mini A = A0. Cos(wt + ) B = B0. Cos(wt + )

53 SPECTRES: Orthogonalité Si les signaux A et B n ont pas la même phase le produit scalaire sera = mini La modulation d amplitude sans porteuse permet de comprendre le spectre résultant

54 SPECTRES: Orthogonalité Si les signaux A et B ont la même phase le produit scalaire =MAXI La modulation d amplitude sans porteuse permet de comprendre le spectre résultant

55 SPECTRES: Orthogonalité Quel est le lien entre l orthogonalité et la formulation de Fourier?: A = A0. Cos(wt + ) Peut s écrire aussi: A = A0. e jwt L exponentielle se retrouve dans la TFD :

56 SPECTRES: Orthogonalité La formulation de la TFD est: Le signal échantillonné à étudier L exponentielle dont la phase est variable Produit scalaire «amélioré» X k = 1 1 N N i= 0 X i e ik j2 N La phase de l exponentielle est une variable, elle permet à l aide du produit scalaire d identifier les fréquences du signal échantillonné. Produit scalaire

57 SPECTRES: Orthogonalité Résumé sur l orthogonalité:

58 SPECTRES: TFD Transformée de Fourier Discrète X k = 1 1 N N i= 0 X i e j2 ik N X[0]=1V à O Hz fréquence RESULTAT DE LA TFD SUR UN SIGNAL CONTINU ECHANTILLONNE

59 SPECTRES: TFD Transformée de Fourier Discrète Le logiciel LABView utilise la TFD ainsi: = S XX =(1/N²)[X(k)]²=V eff 2 X k X * k fournit une estimation de l'autospectre du signal, c'est-à-dire de la puissance moyenne sur la durée T, contenue dans une bande fréquence de largeur, l unité est le volt efficace au carré V eff ² ou RMS².

60 SPECTRES:La représentation des spectres Introduction Les algorithmes de calcul de la TFD (Transformation discrète de Fourier FFT) permettent la représentation du spectre en fréquences sous plusieurs formes Autospectre bi-latéral, uni-latéral ou crête Autospectre de puissance ou en amplitude (linéaire) Densité spectrale de puissance ou d énergie Dans ce qui suit, l autospectre sera appelé spectre.

61 SPECTRES:La représentation des spectres autospectre Considérerons le signal temporel d origine constitué de : Une composante continue d amplitude A 0 Un sinus d amplitude crête A et de fréquence F 1 A A 0

62 SPECTRES:La représentation des spectres autospectre L algorithme de calcul de la TFD fournit un spectre bi-latéral de puissance, c est à dire une fonction paire présentant des amplitudes pour des fréquences négatives. Il représente la puissance du signal contenue dans l échantillon A U 2 RMS A 0 FFT A 2 /4 A 0 2 A 2 /4 -F 1 F 1

63 SPECTRES: La représentation des spectres autospectre Le spectre de puissance uni-latéral Il est déduit du précédent en «repliant» le spectre des fréquences négatives sur le spectre des fréquences positives, ce qui revient à doubler les amplitudes des fréquences strictement positives. A A 0 FFT U 2 RMS A 0 2 A 2 /2 F 1

64 SPECTRES: La représentation des spectres autospectre Le spectre d amplitude (ou linéaire) bi-latéral Il est déduit du spectre de puissance bi-latéral en considérant la racine carrée de la puissance de chacune des raies. Les spectres en amplitude permettent la visualisation de la phase des composantes, à l inverse des spectres en puissance. A A 0 FFT A/2 U RMS A 0 A/2 -F 1 F 1

65 SPECTRES: La représentation des spectres autospectre Le spectre d amplitude (ou linéaire) uni-latéral Il est déduit du spectre de puissance uni-latéral en considérant la racine carrée de la puissance de chacune des raies. Les amplitudes affichées sont donc homogènes aux valeurs efficaces ou valeurs RMS des composantes du signal. A A 0 FFT U RMS A 0 A/2 F 1 C est la représentation la plus courante en analyse vibratoire.

66 SPECTRES: La représentation des spectres autospectre Le spectre d amplitude crête (ou linéaire) uni-latéral Les amplitudes affichées sont homogènes aux valeurs crêtes des composantes du signal. A A 0 FFT U A 0 A F 1

67 SPECTRES: La représentation des spectres densité-spectrale La représentation en DSP ou en RMS (ou V eff ) La DSP est utilisée pour la mesure de BdF La RMS (ou Veff) est utilisée pour la mesure d Amplitude

68 SPECTRES: La représentation des spectres densité-spectrale La DSP représente la puissance contenue dans une bande étroite f. La DSP n a aucune signification lorsque l on a affaire à un spectre de raie (sinus, cosinus ) Rappel: DSP volt².s = V eff ²/Hz

69 SPECTRES: La représentation des spectres La densité spectrale de puissance (DSP) bi-latérale Elle est déduite du spectre de puissance bi-latéral en divisant l amplitude de chacune des raies par la résolution fréquentielle F. A U 2 RMS/Hz A 0 FFT A 2 /4F A 02 /F A 2 /4F -F 1 F 1

70 SPECTRES: La représentation des spectres La densité spectrale de puissance (DSP) uni-latérale Elle est déduite du spectre de puissance uni-latéral en divisant l amplitude de chacune des raies par la résolution fréquentielle F. A A 0 FFT U 2 RMS/Hz A 2 /2F A 02 /F F 1

71 SPECTRES: La représentation des spectres La densité spectrale d énergie (DSE) bi-latérale Elle est déduite du spectre de puissance bi-latéral en divisant l amplitude de chacune des raies par la résolution fréquentielle F puis en la multipliant par la durée de la durée d observation T du signal avec T=N.T E =1/F. A A 0 FFT U 2 RMS.S/Hz A 2 /4(F) 2 A 2 /4(F) 2 A 02 /(F) 2 -F 1 F 1

72 SPECTRES: La représentation des spectres La densité spectrale d énergie (DSE) uni-latérale Elle est déduite du spectre de puissance uni-latéral en divisant l amplitude de chacune des raies par la résolution fréquentielle F puis en la multipliant par la durée de la durée d observation T du signal avec T=N.T E =1/F. A A 0 FFT A 02 /(F) 2 U 2 RMS.S/Hz A 2 /2(F) 2 F 1

73 SPECTRES: Conclusion: La formule de base de la TFD: X k = 1 1 N N i= 0 X i e ik j2 N La représentation des spectres bi ou uni-latérale: Spectre de puissance Veff² Spectre d Amplitude Veff DSP (Densité Spectrale de Puissance) Veff²/?F DSE (Densité Spectrale d Energie) Veff²/?F²

74 FENETRES DE PONDERATION >>>>>>>>>>>>>>>> Etre capable de choisir la fenêtre d acquisition du signal

75 Les fenêtres de pondération Le fenêtrage temporel : Introduction L échantillonnage consiste à prélever des échantillons du signal sur une durée finie T : Il s agit d un fenêtrage temporel. 1 =

76 Les fenêtres de pondération Problématique de la fenêtrage temporel Lors de l acquisition des discontinuités se produisent entre les périodes successives. Ceci survient lorsqu on échantillonne un nombre non entier de cycles. Ces discontinuités artificielles se révèlent être de très hautes fréquences dans le spectre du signal, fréquences qui n étaient pas présentes dans le signal original. Ces fréquences peuvent être bien plus hautes que la fréquence Nyquist, et comme vous l avez vu précédemment,sont repliées quelque part entre 0 et fe/2.

77 Les fenêtres de pondération Le fenêtrage temporel : Introduction Si la période d acquisition correspond à un nombre entier de périodes du signal : Il y a recouvrement des extrémités et la FFT ne crée pas de distorsion du spectre. T 0 T E =k.t 0 FFT T E F 0

78 Les fenêtres de pondération Le fenêtrage temporel : Introduction Si la période d acquisition ne correspond pas à un nombre entier de périodes du signal, il n y a pas recouvrement des extrémités et la FFT crée une distorsion du spectre. T 0 T E k.t 0 FFT T E F 0

79 Les fenêtres de pondération Le fenêtrage temporel : Convolution des spectres X(t) X(f) Fourier H(t) Fourier -F 0 F H(f) F 0 Sinx/x ou sinc x F Fenêtre rectangulaire ou uniforme

80 Les fenêtres de pondération Rappel à propos du sinus cardinal (sinc) H(t) -F 0 H(f) F 0 Fourier Sinx/x ou sinc x F H(t) -F 0 H(f) F 0 Fourier Sinx/x ou sinc x F Fenêtre rectangulaire ou uniforme

81 Les fenêtres de pondérations Le fenêtrage temporel : Convolution des spectres X(t) T E Fourier S(f)=X(f)*H(f) T E =k.t 0 T 0 Les lobes latéraux ne génèrent pas de bandes latérales. L amplitude mesurée est la bonne. f résolution spectrale (CANAL) F -F 0 F 0 1/T E = f

82 Les fenêtres de pondération Le fenêtrage temporel : Convolution des spectres X(t) T E Fourier S(f)=X(f)*H(f) T E k.t 0 T 0 Les lobes latéraux génèrent des bandes latérales. 1/T E = f F -F 0 F 0 L amplitude mesurée n est pas la bonne.

83 Les fenêtres de pondération Les fenêtres de pondération : Utilité La condition T E =k.t 0 (nombre entier de périodes dans l échantillon) n est en pratique pas vérifiée en analyse spectrale car : On s intéresse à un grand nombre de fréquences On ne connaît pas à priori les fréquences du signal L utilisation des fenêtres de pondération permet de limiter les erreurs d estimation causées par le fenêtrage temporel simple, appelé fenêtre rectangulaire.

84 Les fenêtres de pondération Les fenêtres de pondération : Principe Les fenêtres de pondération créent artificiellement un recouvrement des extrémités de l échantillon temporel : =

85 Les fenêtres de pondération Les fenêtres de pondération : Principe Les profils des fenêtres de pondération ont pour but de limiter les amplitudes des lobes latéraux de leurs transformées de Fourier. Ceci est réalisé au détriment de la largeur du lobe principal qui augmente. Rectangulaire Hanning Flat-Top

86 Les fenêtres de pondération Choix de la fenêtre de pondération pour la FFT Le choix d une fenêtre de pondération doit être fait en fonction du signal analysé et des grandeurs recherchées. Le tableau ci-dessous permet de déterminer en première approche le type de fenêtre adapté selon la nature du signal. Type de signal Sinus ou combinaison de sinus Sinusoïde (recherche de l amplitude) Signaux vibratoires Bruit large bande Sinusoïdes de fréquences proches Inconnu Fenêtre Hanning Flat-Top Hanning Rectangle Hamming Hanning

87 Les fenêtres de pondération Choix de la fenêtre de pondération : Exemple Rectangle Hamming Hanning

88 Les fenêtres de pondération Conclusion: Les fenêtres de pondération (fenêtre d acquisition temporelle) influe l estimation de lecture en amplitude et en fréquence du spectre. La fenêtre de Hanning est un bon compromis de résolution entre l amplitude et la fréquence.

89 SYNTHESE: Le traitement du signal reste une science compliquée. Néanmoins, vous possédez les premiers outils pour être capable d utiliser la TFD pour passer du domaine temporel au fréquentiel. En prenant soin de respecter Shannon et acquérir le signal avec une fenêtre d acquisition respectant vos exigences en terme de résolution en amplitude et fréquentielle pour une lecture spectrale qui répond à vos attentes.

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique

Plus en détail

Chaine de transmission

Chaine de transmission Chaine de transmission Chaine de transmission 1. analogiques à l origine 2. convertis en signaux binaires Échantillonnage + quantification + codage 3. brassage des signaux binaires Multiplexage 4. séparation

Plus en détail

Traitement du signal avec Scilab : la transformée de Fourier discrète

Traitement du signal avec Scilab : la transformée de Fourier discrète Traitement du signal avec Scilab : la transformée de Fourier discrète L objectif de cette séance est de valider l expression de la transformée de Fourier Discrète (TFD), telle que peut la déterminer un

Plus en détail

CHAPITRE V. Théorie de l échantillonnage et de la quantification

CHAPITRE V. Théorie de l échantillonnage et de la quantification CHAPITRE V Théorie de l échantillonnage et de la quantification Olivier FRANÇAIS, SOMMAIRE I INTRODUCTION... 3 II THÉORIE DE L ÉCHANTILLONNAGE... 3 II. ACQUISITION DES SIGNAUX... 3 II. MODÉLISATION DE

Plus en détail

TP Modulation Démodulation BPSK

TP Modulation Démodulation BPSK I- INTRODUCTION : TP Modulation Démodulation BPSK La modulation BPSK est une modulation de phase (Phase Shift Keying = saut discret de phase) par signal numérique binaire (Binary). La phase d une porteuse

Plus en détail

- Instrumentation numérique -

- Instrumentation numérique - - Instrumentation numérique - I.Présentation du signal numérique. I.1. Définition des différents types de signaux. Signal analogique: Un signal analogique a son amplitude qui varie de façon continue au

Plus en détail

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd UE 503 L3 MIAGE Initiation Réseau et Programmation Web La couche physique A. Belaïd abelaid@loria.fr http://www.loria.fr/~abelaid/ Année Universitaire 2011/2012 2 Le Modèle OSI La couche physique ou le

Plus en détail

Transmission de données. A) Principaux éléments intervenant dans la transmission

Transmission de données. A) Principaux éléments intervenant dans la transmission Page 1 / 7 A) Principaux éléments intervenant dans la transmission A.1 Equipement voisins Ordinateur ou terminal Ordinateur ou terminal Canal de transmission ETTD ETTD ETTD : Equipement Terminal de Traitement

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes CNRS SUPÉLEC UPS SUPÉLEC, Plateau de Moulon, 91192 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Numérisation du signal

Numérisation du signal Chapitre 12 Sciences Physiques - BTS Numérisation du signal 1 Analogique - Numérique. 1.1 Définitions. Signal analogique : un signal analogique s a (t)est un signal continu dont la valeur varie en fonction

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE

J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE RANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE Un message numérique est une suite de nombres que l on considérera dans un premier temps comme indépendants.ils sont codés le plus souvent

Plus en détail

Chapitre 2 : communications numériques.

Chapitre 2 : communications numériques. Chapitre 2 : communications numériques. 1) généralités sur les communications numériques. A) production d'un signal numérique : transformation d'un signal analogique en une suite d'éléments binaires notés

Plus en détail

Chapitre I La fonction transmission

Chapitre I La fonction transmission Chapitre I La fonction transmission 1. Terminologies 1.1 Mode guidé / non guidé Le signal est le vecteur de l information à transmettre. La transmission s effectue entre un émetteur et un récepteur reliés

Plus en détail

Communications numériques

Communications numériques Communications numériques 1. Modulation numérique (a) message numérique/signal numérique (b) transmission binaire/m-aire en bande de base (c) modulation sur fréquence porteuse (d) paramètres, limite fondamentale

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 9119 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

Systèmes de transmission

Systèmes de transmission Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un

Plus en détail

FAG Detector III la solution pour la surveillance et l équilibrage. Information Technique Produit

FAG Detector III la solution pour la surveillance et l équilibrage. Information Technique Produit FAG Detector III la solution pour la surveillance et l équilibrage Information Technique Produit Principe Utilisation Hautes performances utilisation simple Le FAG Detector III est, à la fois, un appareil

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Expérience 3 Formats de signalisation binaire

Expérience 3 Formats de signalisation binaire Expérience 3 Formats de signalisation binaire Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure. Filtres passe-bas Ce court document expose les principes des filtres passe-bas, leurs caractéristiques en fréquence et leurs principales topologies. Les éléments de contenu sont : Définition du filtre

Plus en détail

Projet audio. Analyse des Signaux ELE2700

Projet audio. Analyse des Signaux ELE2700 ÉCOLE POLYTECHNIQUE DE MONTRÉAL Département de Génie Électrique Projet audio Analyse des Signaux ELE2700 Saad Chidami - 2014 Table des matières Objectif du laboratoire... 4 Caractérisation du bruit...

Plus en détail

LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB

LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB 5.1 Introduction Au cours de séances précédentes, nous avons appris à utiliser un certain nombre d'outils fondamentaux en traitement du

Plus en détail

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN) 1/5 Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN) Objectifs : Reconnaître des signaux de nature analogique et des signaux de nature numérique Mettre en

Plus en détail

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) I. L'intérêt de la conversion de données, problèmes et définitions associés. I.1. Définitions:

Plus en détail

Traitement du signal avec Scilab : transmission numérique en bande de base

Traitement du signal avec Scilab : transmission numérique en bande de base Traitement du signal avec Scilab : transmission numérique en bande de base La transmission d informations numériques en bande de base, même si elle peut paraître simple au premier abord, nécessite un certain

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences

Plus en détail

LÕenregistrement. 10.1 Enregistrement analogique et enregistrement numžrique

LÕenregistrement. 10.1 Enregistrement analogique et enregistrement numžrique 10 LÕenregistrement numžrique 10.1 Enregistrement analogique et enregistrement numžrique Tout processus d enregistrement, comme nous l avons vu dans les chapitres précédents, débute par la conversion des

Plus en détail

8563A. SPECTRUM ANALYZER 9 khz - 26.5 GHz ANALYSEUR DE SPECTRE

8563A. SPECTRUM ANALYZER 9 khz - 26.5 GHz ANALYSEUR DE SPECTRE 8563A SPECTRUM ANALYZER 9 khz - 26.5 GHz ANALYSEUR DE SPECTRE Agenda Vue d ensemble: Qu est ce que l analyse spectrale? Que fait-on comme mesures? Theorie de l Operation: Le hardware de l analyseur de

Plus en détail

Technique de codage des formes d'ondes

Technique de codage des formes d'ondes Technique de codage des formes d'ondes Contenu Introduction Conditions préalables Conditions requises Composants utilisés Conventions Modulation par impulsions et codage Filtrage Échantillon Numérisez

Plus en détail

P1PY7204 Acquisition de données Cours

P1PY7204 Acquisition de données Cours ANNEE 2012-2013 Semestre d Automne 2012 Master de Sciences, Technologies, Santé Mention Physique- Spécialité Instrumentation P1PY7204 Acquisition de données Cours Denis Dumora denis.dumora@u-bordeaux1.fr

Plus en détail

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté Compétences travaillées : Mettre en œuvre un protocole expérimental Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique

Plus en détail

Transmission des signaux numériques

Transmission des signaux numériques Transmission des signaux numériques par Hikmet SARI Chef de Département d Études à la Société Anonyme de Télécommunications (SAT) Professeur Associé à Télécom Paris. Transmission en bande de base... E

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 Le compressed sensing pour l holographie acoustique de champ proche II: Mise en œuvre expérimentale. Antoine Peillot 1, Gilles Chardon 2, François

Plus en détail

M1107 : Initiation à la mesure du signal. T_MesSig

M1107 : Initiation à la mesure du signal. T_MesSig 1/81 M1107 : Initiation à la mesure du signal T_MesSig Frédéric PAYAN IUT Nice Côte d Azur - Département R&T Université de Nice Sophia Antipolis frederic.payan@unice.fr 15 octobre 2014 2/81 Curriculum

Plus en détail

SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES

SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES ----------------------------------------------------------------------------------------------------------------- LES SIGNAUX NUMERIQUES Un signal numérique

Plus en détail

Analyse spectrale. jean-philippe muller. version juillet 2002. jean-philippe muller

Analyse spectrale. jean-philippe muller. version juillet 2002. jean-philippe muller Analyse spectrale version juillet 2002 Analyse spectrale des signaux continus 1) La représentation temporelle d un signal 2) La représentation fréquentielle d un signal simple 3) Exemples de spectres de

Plus en détail

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef

Plus en détail

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test 11 juillet 2003 Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test Mariane Comte Plan 2 Introduction et objectif

Plus en détail

Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable

Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable RÉSUMÉ U N I O N D E S P R O F E S S E U R S D E P H Y S I Q U E E T D E C H I M I E par Lycée Victor Hugo - 25000

Plus en détail

Université de La Rochelle. Réseaux TD n 6

Université de La Rochelle. Réseaux TD n 6 Réseaux TD n 6 Rappels : Théorème de Nyquist (ligne non bruitée) : Dmax = 2H log 2 V Théorème de Shannon (ligne bruitée) : C = H log 2 (1+ S/B) Relation entre débit binaire et rapidité de modulation :

Plus en détail

FAG Detector II le collecteur et l analyseur de données portatif. Information Technique Produit

FAG Detector II le collecteur et l analyseur de données portatif. Information Technique Produit FAG II le collecteur et l analyseur de données portatif Information Technique Produit Application La maintenance conditionnelle Principe de fonctionnement Application Le FAG II est, à la fois, un appareil

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 ème Congrès Français d'acoustique Lyon, -6 Avril Application de l'analyse Multirésolution en Ondelettes Pour la Prédiction de l'usure des Outils de Coupe Mohamed Khemissi Babouri, Nouredine Ouelaa Laboratoire

Plus en détail

Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette

Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette Compression et Transmission des Signaux Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette 1 De Shannon à Mac Donalds Mac Donalds 1955 Claude Elwood Shannon 1916 2001 Monsieur X 1951 2 Où

Plus en détail

LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES

LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES Compétences mises en jeu durant l'activité : Compétences générales : S'impliquer, être autonome. Compétence(s) spécifique(s) : Reconnaître des signaux de nature

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

http://www.u-bourgogne.fr/monge/e.busvelle/teaching.php

http://www.u-bourgogne.fr/monge/e.busvelle/teaching.php TP1 Traitement numérique du son 1 Introduction Le but de ce TP est de mettre en pratique les notions de traitement numérique vues en cours, TDs et dans le précédent TP. On se focalisera sur le traitement

Plus en détail

5.2 Théorème/Transformée de Fourier a) Théorème

5.2 Théorème/Transformée de Fourier a) Théorème . Théorème de Fourier et Transformée de Fourier Fourier, Joseph (788). Théorème/Transformée de Fourier a) Théorème Théorème «de Fourier»: N importe quelle courbe peut être décomposée en une superposition

Plus en détail

Cours d Électronique du Tronc Commun S3. Le filtrage optimisé du signal numérique en bande de base. Notion de BRUIT en télécommunication.

Cours d Électronique du Tronc Commun S3. Le filtrage optimisé du signal numérique en bande de base. Notion de BRUIT en télécommunication. IUT MARSEILLE DEPARTEMENT DE GENIE ELECTRIQUE ET INFORMATIQUE INDUSTRIELLE Diplôme Universitaire de Technologie. Cours d Électronique du Tronc Commun S3. Chapitre 8 : Le filtrage optimisé du signal numérique

Plus en détail

Chap17 - CORRECTİON DES EXERCİCES

Chap17 - CORRECTİON DES EXERCİCES Chap17 - CORRECTİON DES EXERCİCES n 3 p528 Le signal a est numérique : il n y a que deux valeurs possibles pour la tension. Le signal b n est pas numérique : il y a alternance entre des signaux divers

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Chapitre 18 : Transmettre et stocker de l information

Chapitre 18 : Transmettre et stocker de l information Chapitre 18 : Transmettre et stocker de l information Connaissances et compétences : - Identifier les éléments d une chaîne de transmission d informations. - Recueillir et exploiter des informations concernant

Plus en détail

Champ électromagnétique?

Champ électromagnétique? Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques

Plus en détail

LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK

LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK 5.1 Introduction Simulink est l'extension graphique de MATLAB permettant, d une part de représenter les fonctions mathématiques et les systèmes sous forme

Plus en détail

Les techniques de multiplexage

Les techniques de multiplexage Les techniques de multiplexage 1 Le multiplexage et démultiplexage En effet, à partir du moment où plusieurs utilisateurs se partagent un seul support de transmission, il est nécessaire de définir le principe

Plus en détail

Le calculateur numérique pour la commande des processus

Le calculateur numérique pour la commande des processus Le calculateur numérique pour la commande des processus par Daniel JAUME Maître de Conférences au Laboratoire d Automatique du Conservatoire National des Arts et Métiers et Michel VERGÉ Professeur des

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise.

LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise. M Informatique Réseaux Cours bis Couche Physique Notes de Cours LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise. Les technologies utilisées sont celles du traitement

Plus en détail

Chapitre 13 Numérisation de l information

Chapitre 13 Numérisation de l information DERNIÈRE IMPRESSION LE 2 septembre 2013 à 17:33 Chapitre 13 Numérisation de l information Table des matières 1 Transmission des informations 2 2 La numérisation 2 2.1 L échantillonage..............................

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques Didier Pietquin Timbre et fréquence : fondamentale et harmoniques Que sont les notions de fréquence fondamentale et d harmoniques? C est ce que nous allons voir dans cet article. 1. Fréquence Avant d entamer

Plus en détail

Régler les paramètres de mesure en choisissant un intervalle de mesure 10µs et 200 mesures.

Régler les paramètres de mesure en choisissant un intervalle de mesure 10µs et 200 mesures. TP Conversion analogique numérique Les machines numériques qui nous entourent ne peuvent, du fait de leur structure, que gérer des objets s composés de 0 et de. Une des étapes fondamentale de l'interaction

Plus en détail

TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne

TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne Objectifs : Ce TP est relatif aux différentes méthodes de codage d une information binaire, et à la transmission en bande de base de cette information. Les grandes lignes de ce TP sont l étude des méthodes

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Equipement. électronique

Equipement. électronique MASTER ISIC Les générateurs de fonctions 1 1. Avant-propos C est avec l oscilloscope, le multimètre et l alimentation stabilisée, l appareil le plus répandu en laboratoire. BUT: Fournir des signau électriques

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Le concept cellulaire

Le concept cellulaire Le concept cellulaire X. Lagrange Télécom Bretagne 21 Mars 2014 X. Lagrange (Télécom Bretagne) Le concept cellulaire 21/03/14 1 / 57 Introduction : Objectif du cours Soit un opérateur qui dispose d une

Plus en détail

Mode d emploi ALTO MONITOR PROCESSEUR D ÉCOUTE. www.altoproaudio.com Version 1.0 Juillet 2003 Français

Mode d emploi ALTO MONITOR PROCESSEUR D ÉCOUTE. www.altoproaudio.com Version 1.0 Juillet 2003 Français Mode d emploi ALTO MONITOR PROCESSEUR D ÉCOUTE www.altoproaudio.com Version 1.0 Juillet 2003 Français SOMMAIRE 1. INTRODUCTION................................................................... 4 2. FONCTIONNALITÉS................................................................

Plus en détail

MESURES D UN ENVIRONNEMENT RADIOELECTRIQUE AVEC UN RECEPTEUR CONVENTIONNEL ETALONNE

MESURES D UN ENVIRONNEMENT RADIOELECTRIQUE AVEC UN RECEPTEUR CONVENTIONNEL ETALONNE Jacques Mézan de Malartic / F2MM MESURES D UN ENVIRONNEMENT RADIOELECTRIQUE AVEC UN RECEPTEUR CONVENTIONNEL ETALONNE 1- Objectif des mesures (Page 1) 1-1 Critères de qualité radio 1-2 Principe des mesures

Plus en détail

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration

Plus en détail

Signalisation, codage, contrôle d'erreurs

Signalisation, codage, contrôle d'erreurs Signalisation, codage, contrôle d'erreurs Objectifs: Plan Comprendre les mécanismes utilisés pour transmettre des informations sur un support physique Comprendre la nécessité de regrouper les informations

Plus en détail

SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION. Contenu du dossier :

SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION. Contenu du dossier : SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION Contenu du dossier : 1. PRESENTATION DU SYSTEME DE PALPAGE A TRANSMISSION RADIO....1 1.1. DESCRIPTION DU FABRICANT....1

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Enregistrement et transformation du son. S. Natkin Novembre 2001

Enregistrement et transformation du son. S. Natkin Novembre 2001 Enregistrement et transformation du son S. Natkin Novembre 2001 1 Éléments d acoustique 2 Dynamique de la puissance sonore 3 Acoustique géométrique: effets de diffusion et de diffraction des ondes sonores

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

I. TRANSMISSION DE DONNEES

I. TRANSMISSION DE DONNEES TD I. TRANSMISSION DE DONNEES 1. QU'EST-CE QU'UN CANAL DE TRANSMISSION? 1.1 Rappels Une ligne de transmission est une liaison entre les deux machines. On désigne généralement par le terme émetteur la machine

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations Valérie Pommier-Budinger Bernard Mouton - Francois Vincent ISAE Institut Supérieur de l Aéronautique et de

Plus en détail

Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes

Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes Avant Propos : Le sujet comporte deux parties : une partie théorique, jalonnée de questions (dans les cadres), qui doit être préparée

Plus en détail

xdsl Digital Suscriber Line «Utiliser la totalité de la bande passante du cuivre»

xdsl Digital Suscriber Line «Utiliser la totalité de la bande passante du cuivre» xdsl Digital Suscriber Line «Utiliser la totalité de la bande passante du cuivre» Le marché en France ~ 9 millions d abonnés fin 2005 ~ 6 millions fin 2004 dont la moitié chez l opérateur historique et

Plus en détail

WWW.ELCON.SE Multichronomètre SA10 Présentation générale

WWW.ELCON.SE Multichronomètre SA10 Présentation générale WWW.ELCON.SE Multichronomètre SA10 Présentation générale Le SA10 est un appareil portable destiné au test des disjoncteurs moyenne tension et haute tension. Quoiqu il soit conçu pour fonctionner couplé

Plus en détail

Agilent Technologies Oscilloscopes portables série 1000. Fiche technique. Des oscilloscopes plus complets pour les petits budgets

Agilent Technologies Oscilloscopes portables série 1000. Fiche technique. Des oscilloscopes plus complets pour les petits budgets Agilent Technologies Oscilloscopes portables série 1000 Fiche technique Des oscilloscopes plus complets pour les petits budgets Des oscilloscopes plus complets pour les petits budgets Les nouveaux oscilloscopes

Plus en détail

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information I. Nature du signal I.1. Définition Un signal est la représentation physique d une information (température, pression, absorbance,

Plus en détail

Une fréquence peut-elle être instantanée?

Une fréquence peut-elle être instantanée? Fréquence? Variable? Instantané vs. local? Conclure? Une fréquence peut-elle être instantanée? Patrick Flandrin CNRS & École Normale Supérieure de Lyon, France Produire le temps, IRCAM, Paris, juin 2012

Plus en détail

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE - MANIP 2 - - COÏNCIDENCES ET MESURES DE TEMPS - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE L objectif de cette manipulation est d effectuer une mesure de la vitesse de la lumière sur une «base

Plus en détail

EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006

EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006 EMETTEUR ULB Architectures & circuits David MARCHALAND STMicroelectronics 26/10/2006 Ecole ULB GDRO ESISAR - Valence 23-27/10/2006 Introduction Emergence des applications de type LR-WPAN : Dispositif communicant

Plus en détail

Bandes Critiques et Masquage

Bandes Critiques et Masquage Bandes Critiques et Masquage A. Almeida Licence Pro Acoustique et Vibrations Octobre 2012 Au Menu Au programme 1 Observations du masquage 5 Application du masquage 2 Conséquences du Masquage 3 Interprétation

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail