Cours de mathématiques - Alternance Gea

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "Cours de mathématiques - Alternance Gea"

Transcription

1 Cours de mathématiques - Alternance Gea Anne Fredet 17 octobre Suites On appelle suite numérique toute application de N ou une partie de N vers R. On notera par u n le terme général d une suite. Définition 1.1 Une suite (u n ) est croissante lorsque chacun de ses termes est supérieur à ceux qui le précèdent : u m u n pour tout m > n. Une suite (u n ) est strictement croissante lorsque chacun de ses termes est strictement supérieur à ceux qui le précèdent : u m > u n pour tout m > n. Une suite (u n ) est décroissante lorsque chacun de ses termes est inférieur à ceux qui le précèdent : u m u n pour tout m > n. Une suite (u n ) est strictement décroissante lorsque chacun de ses termes est strictement inférieur à ceux qui le précèdent : u m < u n pour tout m > n. Une suite est monotonne si elle est croissante ou décroissante. Définition 1.2 Une suite (u n ) est bornée s il existe m et M tels que pour tout n, m u n M. On dit alors que la suite est minorée par m et majorée par M. Définition 1.3 On appelle suite arithmétique toute suite numérique dont chaque terme est obtenu en ajoutant au terme précédent une constante r, appelée raison de la suite arithmétique : u n+1 = u n + r. Proposition 1.1 Si (u n ) est une suite arithmétique de raison r, on a les propriétés suivantes : u n = u 0 + nr = u 1 + (n 1)r 1

2 S n = u u n = n+1 2 (u 0 + u n ) = u u n = n 2 (u 1 + u n ) Exercice 1.1 Déterminer le 7ème et le 15ème terme d une suite arithmétique de premier terme 5 et de raison 3. Exercice 1.2 Calculer la somme des 15 premiers nombres impairs. Exercice 1.3 Soit la suite logique suivante : 12, 25, 38, 51, 63,. Dterminer u est la valeur de u?? Calculer u 8, exprimer le terme gnral de (u n ). Définition 1.4 On appelle suite géométrique toute suite numérique dont chaque terme est obtenu en multipliant le terme précédent par une constante q, appelée raison de la suite géométrique : u N+1 = qu n. Proposition 1.2 Si (u n ) est une suite géométrique de raison q, on a les propriétés suivantes : u n = u 0.q n = u 1.q n 1 S n = u u n = u 1 qn q 1 q = u u n = u n 1 1 q La formule de la somme peut se retrouver : S n = u 0 + u u n = u 0 + qu q n u 0 qs n = qu 0 + qu qu n = qu 0 + q 2 u q n+1 u 0 S n qs n = (u 0 + qu q n u 0 ) (qu 0 + q 2 u q n+1 u 0 ) = u 0 q n+1 u 0 S n (1 q) = u 0 (1 q n+1 ) 1 q n+1 S n = u 0 1 q Exercice 1.4 Déterminer le 6ème et le 12ème terme d une suite géométrique de premier terme 2 et de raison 3. Exercice 1.5 Déterminer la raison d une suite géométrique de premier terme 4 et de 6ème terme

3 Exercices Conventionnellement, les intérêts sont payés soit au moment du retrait, soit à la fin de chaque année de placement. Il existe deux types d intérêts : les intérêts simples : Un capital produit des intérêts simples si les intérêts sont uniquement calculés sur ce capital. les intérêts composés : Un capital produit des intérêts composés si à la fin de chaque période, les intérêts générés sont ajoutés au capital pour produire de nouveaux intérêts. On dit aussi que les intérêts sont capitalisés. Exemple : Placement d un capital de 100 euros à un taux annuel de 5 % d intérêts simples sur 2 ans. Les intérêts seront de : 100 (5/100)2 = 10 euros. Placement d un capital de 100 euros à un taux annuel de 5 % d intérêts composés sur 2 ans. Les intérêts seront de : 100 (5/100) = 5 euros la première année. Puis : 105 (5/100) = 5, 25 euros la deuxième année. Soit au total 10,25 euros. Les placements d une durée inférieure à un an ont généralement des intérêts simples. Le taux annuel est désigné comme le taux nominal ou le taux facial. Les intérêts des placements de plus d un an sont des intérêts composés. Le taux annuel est appelé taux actuariel ou taux équivalent. Exercice 1.6 Une personne place euros pour trois mois sur un compte rémunéré avec un taux de 4,8%. De combien dispose-t-elle à l issue de cette période? Exercice 1.7 Quel est le montant des intérêts fournis par un placement de euros pendant sept mois au taux d intérêts annuels de 4,5 %? Exercice 1.8 Quelle somme doit-on placer aujourd hui sur un compte rapportant 3% pour obtenir euros dans 11 mois? Exercice 1.9 Monsieur Dupont a euros à placer pendant une période de 9 ans. La banque lui offre deux possibilités : un placement à intérêts simples au taux annuel de 11 % ; un placement à intérêts composés au taux annuel de 8 %. Quel est le placement le plus intéressant? Et s il décide de placer son argent pour 3 ans seulement, quel est le placement le plus intéressant? 3

4 Exercice 1.10 Une somme de euros est placée pour dix ans au taux d intérêt annuel de 4%. Quelle somme récupère-t-on à l issue du placement, sachant que les intérêts sont composés? Exercice 1.11 Une personne souhaite disposer dans trois ans de euros. Dans ce but, elle place aujourd hui une somme sur un compte ayant un taux d intérêt composé de 6%. Quelle est la somme placée? Exercice 1.12 Une somme de euros a été placée pour cinq ans. À l issue du placement, cette somme est devenur ,21 euros. Quel est le taux de placement si les intérêts sont simples? Quel est le taux de placement si les intérêts sont composés? Exercice 1.13 Une personne place euros à un taux annuel de 4% (intérêts composés). Combien de temps doit durer le placement pour pouvoir disposer de ,65 euros? Exercice 1.14 Quel est le taux mensuel correspondant à un taux annuel de 6%? Exercice 1.15 Quel est le taux annuel équivalent à un taux trimestriel de 1%? Exercice 1.16 Une personne place une somme de euros pour quatre ans et sept mois sur un compte rapportant un intérêt annuel de 4%. De combien dispose-t-elle à l issue du placement si : 1. la composition des intérêt s applique en cours d année? 2. les fractions d années donnent naissance à des intérêtes simples? Exercice 1.17 On propose le contrat de placement suivant : vous placez aujourd hui une somme de euros. Le taux d intérêt versé est de 3% pour chacune des trois premières années du placement. Ce taux passe à 6% pour les années suivantes. 1. De quelle somme dispose-t-on au bout de 3 ans? 2. De quelle somme dispose-t-on au bout de 7 ans? 3. Quel est, après sept ans, le taux moyen annuel du placement? 4

5 Exercice 1.18 On propose le contrat de placement suivant : vous placez aujourd hui et en une seule fois une somme au taux de 2,5 %. Cette somme reste bloquée pendant cinq ans. À l issue du placement, vous recevez une prime égale au montant des intérêts acquis. Quel est le taux effectif de ce placement? Exercice 1.19 Un capital de euros est placé à un taux d intérêts composés de 5%. La valeur récupérée à l issue du placement est ,83 euros. Quelle est la durée de ce placement? 5

6 2 Solutions des exercices Solution 1.1 u 7 = = 26 et u 15 = = 50. Solution 1.2 On cherche la somme des 15 premiers termes d une suite arithmétique de raison 2 : S n = (1 + 29) = 240. Solution 1.3 u 0 = 12 et la raison vaut est la valeur de u 3. u 8 = = 116 et de manière général, u n = n. Solution 1.4 u 6 = = 1458 et u 12 = = Solution 1.5 On a u 6 = 4 r 6 donc r 6 = = et r = 729 1/6 = 3 Solution 1.6 S = ,8 100 Solution 1.7 I = ,5 100 = 913, 50 euros. = euros. Solution = S ( , 03) donc S = 4866, 18 euros. 12 Solution (1 + 0, 11 9) = et (1, 08) 9 = 39980, 09 donc le deuxième placament est plus avantageux s il place son argent 9 ans (1+0, 11 3) = et (1, 08) 3 = 25194, 24 donc le premier placament est plus avantageux s il place son argent 3 ans. Solution 1.10 S = (1 + 0, 0 4 ) 10 = , 43 euros. Solution = S(1 + 0, 06) 3 donc S = 41980, 96 euros. Solution 1.12 Soit t le taux d intérêts : Si les intérêts sont simples : (1 + 5t) = , 21 et donc t = 4, 37%. Si les intérêts sont composés : (1 + t) 5 = , 21 donc 1 + t = 1, 0404 et t = 4, 04%. Solution , 65 = 50000(1+0, 04) a donc a = donc attendre 5 ans. ln( 60832, ) ln(1,04) 5. Il faudra Solution 1.14 Il faut que (1 + t) 1 2 = 1, 06 donc on trouve t = 0, Un taux mensuel de 0, 49% correspond à un taux annuel de 6%. 6

7 Solution t = (1, 01) 4 donc t = 0, 0406 soit un taux annuel de 4, 06%. Solution S = 50000(1 + 0, 04) = 59846, 60 euros 2. Après 4 ans, la somme est S = 50000(1 + 0, 04) 4 = 58492, 93. Pour les sept mois restant, la somme produit des intérêt simples : S = 58492, 93 ( , 04) = 59857, 76 euros. 12 Solution S = 50000(1, 03) 3 = 54636, S = 54636, 35 (1, 06) 4 = 68977, , 13 = 50000(1 + t) 7 donc t = 0, 047 soit un taux de 4, 7%. Solution 1.18 S 5 = S 0 (1, 025) 5 donc les intérêts sont de I = S 5 S 0 = S 0 ((1, 025) 5 1), qui est donc le montant de la prime. Au bout de cinq ans, on a donc S 0 (1, 025) 5 + S 0 ((1, 025) 5 1) = S 0 (2(1, 025) 5 1). On cherche le taux de placement annuel : S 0 (1 + t) 5 = S 0 (2(1, 025) 5 1) donc (1 + t) 5 = 2(1, 025) 5 1, ce qui nous amène à t = 0, 04778, soit un taux d intérêts de 4, 7%. Solution 1.19 Soit a le nombre d années. On a 15000(1+ 0, 05) a = 22161, 83 et donc 1, 05 a = 22161,83 d où ln(1, 05 a ) = a ln(1, 05) = ln( 22161,83 ) ce qui nous ,83 ln( donne a = ) 8 ln(1,05) 7

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

MATHÉMATIQUES FINANCIÈRES

MATHÉMATIQUES FINANCIÈRES MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................

Plus en détail

Apllication au calcul financier

Apllication au calcul financier Apllication au calcul financier Hervé Hocquard Université de Bordeaux, France 1 er novembre 2011 Intérêts Généralités L intérêt est la rémunération du placement d argent. Il dépend : du taux d intérêts

Plus en détail

Mathématiques financières

Mathématiques financières Ecole Nationale de Commerce et de Gestion de Kénitra Mathématiques financières Enseignant: Mr. Bouasabah Mohammed ) بوعصابة محمد ( ECOLE NATIONALE DE COMMERCE ET DE GESTION -KENITRA- Année universitaire:

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Quinzième cours Détermination des valeurs actuelle et accumulée d une annuité de début de période pour laquelle la période de paiement est plus courte que la période de capitalisation

Plus en détail

Chapitre 5. Calculs financiers. 5.1 Introduction - notations

Chapitre 5. Calculs financiers. 5.1 Introduction - notations Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement

Plus en détail

Ma banque, mes emprunts et mes intérêts

Ma banque, mes emprunts et mes intérêts Ma banque, mes emprunts et mes intérêts Alexandre Vial 0 janvier 2009 Les intérêts cumulés Je place 00 e à 4% par an pendant un an. Donc au bout d un an, j ai 00 + 00. 4 = 00 00( + 4 ) =04 e. 00 Cependant,

Plus en détail

Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows

Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows Chapitre 4 - La valeur de l argent dans le temps et l'actualisation des cash-flows Plan Actualisation et capitalisation Calculs sur le taux d intérêt et la période Modalités de calcul des taux d intérêts

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés.

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés. Suites numériques 1ère STG Introduction : Intérêts simpleset composés. On dispose d un capital de 1 000 euros que l on peut placer de deux façons différentes : à intérêts simples au taux annuel de 10%.

Plus en détail

Utilisation des fonctions financières d Excel

Utilisation des fonctions financières d Excel Utilisation des fonctions financières d Excel TABLE DES MATIÈRES Page 1. Calcul de la valeur acquise par la formule des intérêts simples... 4 2. Calcul de la valeur actuelle par la formule des intérêts

Plus en détail

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,

Plus en détail

LISTE D EXERCICES 2 (à la maison)

LISTE D EXERCICES 2 (à la maison) Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros

Plus en détail

Intérêts. Administration Économique et Sociale. Mathématiques XA100M

Intérêts. Administration Économique et Sociale. Mathématiques XA100M Intérêts Administration Économique et Sociale Mathématiques XA100M 1. LA NOTION D INTÉRÊT 1.1. Définition. Définition 1. L intérêt est la rémunération d un prêt d argent effectué par un agent économique

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

CH X Intérêts composés - Amortissements

CH X Intérêts composés - Amortissements CH X Intérêts composés - Amortissements I) Les intérêts composés : 1) Situation : Un capital de 20 000,00 est placé à un taux d intérêts de 4 % l an pendant 5 ans. Chaque année les intérêts produits viennent

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER

COURS GESTION FINANCIERE A COURT TERME SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER COURS GESTION FINANCIERE A COURT TERME SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER SEANCE 4 LE VOCABULAIRE BANCAIRE ET FINANCIER Objet de la séance 4: définir les termes techniques utilisés par le trésorier

Plus en détail

Éléments de calcul actuariel

Éléments de calcul actuariel Éléments de calcul actuariel Master Gestion de Portefeuille ESA Paris XII Jacques Printems printems@univ-paris2.fr 3 novembre 27 Valeur-temps de l argent Deux types de décisions duales l une de l autre

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

TD 3 : suites réelles : application économique et nancière

TD 3 : suites réelles : application économique et nancière Mathématiques Appliquées Cours-TD : K. Abdi, M. Huaulmé, B. de Loynes et S. Pommier Université de Rennes 1 - L1 AES - 009-010 TD 3 : suites réelles : application économique et nancière Exercice 1 Calculer

Plus en détail

Qu est-ce que le relevé de compte?

Qu est-ce que le relevé de compte? Qu est-ce que le relevé de compte? Le relevé de compte constitue la trace légale de toutes les opérations effectuées sur un compte bancaire. Ce document permet au titulaire d'un compte de connaître en

Plus en détail

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

DUT Techniques de commercialisation Mathématiques et statistiques appliquées DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 3 novembre 2014 Francois.Kauffmann@unicaen.fr UCBN MathStat

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1. L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

L'INTÉRÊT COMPOSÉ. 2.1 Généralités. 2.2 Taux

L'INTÉRÊT COMPOSÉ. 2.1 Généralités. 2.2 Taux L'INTÉRÊT COMPOSÉ 2.1 Généralités Un capital est placé à intérêts composés lorsque les produits pendant la période sont ajoutés au capital pour constituer un nouveau capital qui, à son tour, portera intérêt.

Plus en détail

Bloc 1 Sens des nombres et des opérations (+- 6 cours)

Bloc 1 Sens des nombres et des opérations (+- 6 cours) Bloc 1 Sens des nombres et des opérations (+- 6 cours) 1 Démontrer une compréhension du concept du nombre et l utiliser pour décrire des quantités du monde réel. (~6 cours) RÉSULTATS D APPRENTISSAGE SPÉCIFIQUES

Plus en détail

15/02/2009. Le calcul des intérêts. Le calcul des intérêts. Le calcul des intérêts Les intérêts simples. Le calcul des intérêts Les intérêts simples

15/02/2009. Le calcul des intérêts. Le calcul des intérêts. Le calcul des intérêts Les intérêts simples. Le calcul des intérêts Les intérêts simples Le taux d intérêt Comparer ce qui est comparable 2 Chapitre 1 La valeur du temps Aide-mémoire - 2009 1 Deux sommes de même montant ne sont équivalentes que si elles sont considérées à une même date. Un

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Nombres et calcul numérique

Nombres et calcul numérique Accompagnement personnalisé PFEG - Math A quoi sert une banque? Nombres et calcul numérique Organisation et gestion de données Fonctions Grandeurs et mesures Calcul littéral Remerciements à Mesdames Hélène

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Socles de compétences de. mathématiques. Enseignement secondaire 1 er degré

Socles de compétences de. mathématiques. Enseignement secondaire 1 er degré Enseignant Choisir un compte d épargne I Socles de compétences de mathématiques Enseignement secondaire 1 er degré COMPTE D'ÉPARGNE + INTÉRÊT ALEX 230 Porte d entrée Banque Compétences Opérer et fractionner

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement...

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement... III Table des matières Avant-propos Remerciements................................. Les auteurs..................................... Chapitre 1 L intérêt............................. 1 1. Mise en situation...........................

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Calculs financiers (1) : intérêts simples, composés.

Calculs financiers (1) : intérêts simples, composés. Calculs financiers (1) : intérêts simples, composés. 1. Intérêts simples Paul doit 10 000 à son fournisseur. Celui-ci lui accorde un crédit au taux annuel de 5% à intérêts simples (capitalisation annuelle).

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Théorie Financière 2. Valeur actuelle Evaluation d obligations

Théorie Financière 2. Valeur actuelle Evaluation d obligations Théorie Financière 2. Valeur actuelle Evaluation d obligations Objectifs de la session. Comprendre les calculs de Valeur Actuelle (VA, Present Value, PV) Formule générale, facteur d actualisation (discount

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

Mathématiques financières

Mathématiques financières Mathématique financière à court terme I) Les Intérêts : Intérêts simples Mathématiques financières - Intérêts terme échu et terme à échoir - Taux terme échu i u équivalent à un taux terme à échoir i r

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts CORRIGES DES CAS TRANSVERSAUX Corrigés des cas : Emprunts Remboursement par versements périodiques constants - Cas E1 Objectifs : Construire un échéancier et en changer la périodicité, Renégocier un emprunt.

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

GEOSI. Les intérêts et les Emprunts

GEOSI. Les intérêts et les Emprunts GEOSI Les intérêts et les Emprunts 1.Définition Lorsque qu une personne (prêteur) prête une somme à une autre personne (emprunteur) il est généralement convenu de rembourser, à l échéance, cet emprunt

Plus en détail

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques

Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques financières Année universitaire 2010-11 1 Version Septembre 2010 1 Responsable du cours: Marie-Amélie Morlais 2 0.1 Plan sommaire du cours

Plus en détail

Fiche mathématiques financières

Fiche mathématiques financières Fiche mathématiques financières Thème 1 : Les taux d'intérêts simples et composés Taux d'intérêts simples : Les taux d'intérêts simples sont appliqués dans le cas d'emprunts dont la durée est inférieure

Plus en détail

Les obligations. S. Chermak infomaths.com

Les obligations. S. Chermak infomaths.com Les obligations S. Chermak Infomaths.com Saïd Chermak infomaths.com 1 Le marché des obligations est un marché moins médiatique mais tout aussi important que celui des actions, en terme de volumes. A cela

Plus en détail

Taux d intérêts simples

Taux d intérêts simples Taux d intérêts simples Les caractéristiques : - < à 1 ans - Rémunération calculée uniquement sur investissement initial. Période de préférence = période sur laquelle on définit le taux de l opération

Plus en détail

Chapitre 2. Valeur temps de l argent : arbitrage, actualisation et capitalisation

Chapitre 2. Valeur temps de l argent : arbitrage, actualisation et capitalisation Fondements de Finance Chapitre 2. Valeur temps de l argent : arbitrage, actualisation et capitalisation Cours proposé par Fahmi Ben Abdelkader Version étudiants Février 2012 1 Préambule «Time is money»

Plus en détail

Claude-Annie Duplat. Votre retraite. Quand? Comment? Combien? Groupe Eyrolles, 2004, ISBN 2-7081-3557-0

Claude-Annie Duplat. Votre retraite. Quand? Comment? Combien? Groupe Eyrolles, 2004, ISBN 2-7081-3557-0 Claude-Annie Duplat Votre retraite Quand? Comment? Combien? Groupe Eyrolles, 2004, ISBN 2-7081-3557-0 Chapitre 4 Le nouveau calcul de la retraite de base La loi d août 2003 portant réforme des retraites

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Problèmes de crédit et coûts de financement

Problèmes de crédit et coûts de financement Chapitre 9 Problèmes de crédit et coûts de financement Ce chapitre aborde un ensemble de préoccupations devenues essentielles sur les marchés dedérivésdecréditdepuislacriseducréditde2007.lapremièredecespréoccupations

Plus en détail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES Suites géométriques, fonction exponentielle Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence L objectif de cet exercice

Plus en détail

Formules et Approches Utilisées dans le Calcul du Coût Réel

Formules et Approches Utilisées dans le Calcul du Coût Réel Formules et Approches Utilisées dans le Calcul du Coût Réel Objectifs du Taux Annuel Effectif Global (TAEG) et du Taux d Intérêt Effectif (TIE) Le coût réel d un crédit inclut non seulement l intérêt,

Plus en détail

Frédéric Laroche 2009

Frédéric Laroche 2009 Frédéric Laroche 2009 Les Entiers Caractériser les nombres : peut-être avec des figures géométriques? En triangle * * * * * * * * * * --------------- Une formule 1 3 6 10 --- En carré * * * * * * * * *

Plus en détail

Amortissement annuité 1 180 000 14 400 12 425,31 26 825,31 2. 2) Indiquer ce que sera la deuxième ligne du tableau en justifiant chacun des résultats.

Amortissement annuité 1 180 000 14 400 12 425,31 26 825,31 2. 2) Indiquer ce que sera la deuxième ligne du tableau en justifiant chacun des résultats. EXERCICES SUR LES EMPRUNTS INDIVIS Exercice 1 Pour financer l extension de son magasin, un responsable a contracté un emprunt remboursable, intérêts compris, sur 10 ans par annuités constantes. Voici le

Plus en détail

Lignes de crédit et prêts. Comment combler vos besoins

Lignes de crédit et prêts. Comment combler vos besoins Lignes de crédit et prêts Comment combler vos besoins Nous simplifions le financement Laissez-nous vous aider à trouver le meilleur moyen d obtenir ce que vous voulez Lorsque vous êtes décidé lorsque vous

Plus en détail

SOMMAIRE OPÉRATIONS COURANTES OPÉRATIONS D INVENTAIRE

SOMMAIRE OPÉRATIONS COURANTES OPÉRATIONS D INVENTAIRE SOMMAIRE OPÉRATIONS COURANTES OPÉRATIONS D INVENTAIRE 1 Factures de doit p. 9 Processus 1 2 Réductions sur factures de doit p. 11 Processus 1 3 Frais accessoires sur factures p. 13 Processus 1 4 Comptabilisation

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

L he b d o Finan c e de la

L he b d o Finan c e de la - DU 24 Novembre AU 1 Décembre 2007 - Numéro 17 Dossier : Dossier : LES CO U R S Simulation d un prêt immobilier Titrisation p1-3 p-3-4 p-5-7 L he b d o Finan c e de la M A C S Ce bulletin d informations

Plus en détail

L assurance de Groupe. 10 questions souvent posées sur l assurance de groupe

L assurance de Groupe. 10 questions souvent posées sur l assurance de groupe L assurance de Groupe Un must, aussi pour les PME 10 questions souvent posées sur l assurance de groupe Les pensions complémentaires ont le vent en poupe La pension légale d un travailleur salarié belge

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Sodexo Card. Guide pratique pour la Sodexo Card. Mode d emploi et conseils pour une utilisation en toute sécurité

Sodexo Card. Guide pratique pour la Sodexo Card. Mode d emploi et conseils pour une utilisation en toute sécurité Sodexo Card Guide pratique pour la Sodexo Card Mode d emploi et conseils pour une utilisation en toute sécurité Table des matières Bienvenue, La Sodexo Card c est facile, tout simplement 1. La Sodexo Card

Plus en détail

L essentiel sur L ASSURANCE VIE. Fonds en euros. Fiscalité. Unités de compte

L essentiel sur L ASSURANCE VIE. Fonds en euros. Fiscalité. Unités de compte L ASSURANCE VIE L essentiel sur Fiscalité Fonds en euros Unités de compte Qu est ce que c est? Un produit d épargne à moyen et long terme L assurance vie sert à épargner et faire fructifier son capital,

Plus en détail

DISCOUNTED CASH-FLOW

DISCOUNTED CASH-FLOW DISCOUNTED CASH-FLOW Principes généraux La méthode des flux futurs de trésorerie, également désignée sous le terme de Discounted Cash Flow (DCF), est très largement admise en matière d évaluation d actif

Plus en détail

LIVRET D ÉPARGNE SALARIALE

LIVRET D ÉPARGNE SALARIALE LIVRET D ÉPARGNE SALARIALE Tout ce que vous devez savoir sur les dispositifs d épargne salariale 2 - Tout ce que vous devez savoir sur les dispositifs d épargne salariale Sommaire Les dispositifs de participation

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Les suites numériques

Les suites numériques Chapitre 3 Term. STMG Les suites numériques Ce que dit le programme : Suites arithmétiques et géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Suites arithmétiques et géométriques Expression du terme

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de

CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de HAPITRE 1 Suites arithmetiques et géometriques Rappel 1 On appelle suite réelle une application de dans, soit est-à-dire pour une valeur de la variable appartenant à la suite prend la valeur, ie : On notera

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Options, Futures, Parité call put

Options, Futures, Parité call put Département de Mathématiques TD Finance / Mathématiques Financières Options, Futures, Parité call put Exercice 1 Quelle est la différence entre (a) prendre une position longue sur un forward avec un prix

Plus en détail

EMPRUNTS OBLIGATAIRES EMIS PAR LES SOCIETES. Conséquences du financement par emprunt obligataire dans le tableau de financement de l'entreprise.

EMPRUNTS OBLIGATAIRES EMIS PAR LES SOCIETES. Conséquences du financement par emprunt obligataire dans le tableau de financement de l'entreprise. EMPRUNTS OBLIGATAIRES EMIS PAR LES SOCIETES Objectif(s) : o Pré-requis : Conséquences du financement par emprunt obligataire dans le tableau de financement de l'entreprise. o Outils de mathématiques financières

Plus en détail

Foresters Viefamille Le guide du conseiller

Foresters Viefamille Le guide du conseiller Foresters Viefamille Le guide du conseiller Assurance vie entière à participation Ce guide a pour but de répondre à vos questions, de vous fournir des idées pour vous aider à vendre Viefamille de Foresters

Plus en détail

LES INFORMATIONS GÉNÉRALES

LES INFORMATIONS GÉNÉRALES GUIDE D UTILISATION Calculatrice Texas Instrument BA II Plus Avril 2007 LES INFORMATIONS GÉNÉRALES La calculatrice financière Texas Instrument BA II Plus a été conçue pour satisfaire aux diverses applications

Plus en détail

Responsabilité civile et décennale Construction maison individuelle

Responsabilité civile et décennale Construction maison individuelle Responsabilité civile et décennale Construction maison individuelle Référence de votre cabinet Code ORIAS N : Cachet de votre cabinet : Raison sociale Sigle Adresse Code postal Ville Téléphone Fax Mobile

Plus en détail

Résumé abrégé. des applications de. Tribut TAX et TAXEasy

Résumé abrégé. des applications de. Tribut TAX et TAXEasy Résumé abrégé des applications de Tribut TAX et TAXEasy TRIBUT SA, 3172 Niederwangen Tel 031 980 16 16 / FAX 031 980 16 19 Hotline: 08:00 12:00 031 980 16 17 Homepage: http://www.tribut.ch E-Mail: mailto:tribut@tribut.ch

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Les fonctions d Excel Guide de référence

Les fonctions d Excel Guide de référence Jack Steiner Les fonctions d Excel Guide de référence Éditions OEM (Groupe Eyrolles), 2004 ISBN 2-212-11533-4 Chapitre 5 Fonctions financières Les fonctions financières s adressent aux particuliers et

Plus en détail

ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ. Exercice 1

ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ. Exercice 1 ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ OLIVIER COLLIER Exercice 1 Le calcul de la banque. 1 Au bout de deux ans, la banque aurait pu, en prêtant la somme S 1 au taux d intérêt r pendant un an, obtenir

Plus en détail

Annuités. Administration Économique et Sociale. Mathématiques XA100M

Annuités. Administration Économique et Sociale. Mathématiques XA100M Annuités Administration Économique et Sociale Mathématiques XA100M En général, un prêt n est pas remboursé en une seule fois. Les remboursements sont étalés sur plusieurs périodes. De même, un capital

Plus en détail

Le crédit relais immobilier

Le crédit relais immobilier juillet 2012 n 31 crédit Les mini-guides bancaires www.lesclesdelabanque.com Le site pédagogique sur la banque et l argent Le crédit relais immobilier 1 FBF - 18 rue La Fayette - 75009 Paris cles@fbf.fr

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Advanzia Bank S.A. Brochure d information sur le compte à vue «Livret Advanzia»

Advanzia Bank S.A. Brochure d information sur le compte à vue «Livret Advanzia» Advanzia Bank S.A. Brochure d information sur le compte à vue «Livret Advanzia» 1. Description générale du produit... 2 1.1 Frais et commissions... 2 1.2 Qui peut ouvrir un Livret?... 2 1.3 Justific a

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Police Protection Niveau de vie pour les professionnels

Police Protection Niveau de vie pour les professionnels Stéphane a 40 ans et il touche une rémunération nette de 125 000 $ par année. Il est sur le point de devenir allergique au latex......ce qui lui coûtera plus de 4,5 millions de dollars. Police Protection

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail