Préparation aux épreuves écrites du CAPES Conseils de rédaction

Dimension: px
Commencer à balayer dès la page:

Download "Préparation aux épreuves écrites du CAPES Conseils de rédaction"

Transcription

1 Préparation aux épreuves écrites du CAPES Conseils de rédaction Claire Debord Le texte qui suit est une libre compilation de plusieurs textes sur le même thème, notamment ceux de Christophe Champetier et de Christophe Bertault. En mathématiques, la phase de rédaction est essentielle : elle est l occasion de vérifier la justesse et la rigueur de ce qui est énoncé. Voici quelques règles élémentaires de rédaction. Avant de rendre tout document, vous devrez vous assurer que vous avez respecté scrupuleusement ces règles. Règle 1 : Introduire tout ce dont on parle Toute notation, tout caractère désignant un objet mathématiques doit impérativement être présenté et clairement défini avant d être utilisé. En français, si vous dites : Ils ont tout mangé. sans avoir précisé qui sont ces ils et ce qu est ce tout, vous risquez de n être pas compris. En mathématiques, c est pareil : on ne parle pas de quelque chose tant que l on n a pas dit ce que c était. Introduire un objet quelconque Lorsque l on veut introduire une variable décrivant tout un ensemble, autrement dit un élément x quelconque d un ensemble E, on procède ainsi : Soit x E. Bien sûr, la lettre x pourrait être remplacée par n importe quel symbole : y, t, Cette formulation peut souvent être remplacée par l une des suivantes : Pour tout x E. Soit x un élément de E. Oublier ces petites phrases d introduction est une faute grave de rédaction ainsi que de logique. Par exemple les phrases cos(x) = sin(x) x = π 4 ou cos(x) = sin(x) x = π 4 + kπ n ont aucun sens si x et k ne sont pas présentés avant d être utilisés. 1

2 Donner un nom à un objet précis Lorsque l on veut donner un nom à un objet précis, le On pose est de mise. Par exemple si vous devez employer plusieurs fois dans un raisonnement l expression compliquée cos( ln(n + 3)) (où n a été préalablement défini), vous pouvez nommer cette quantité, par exemple par T. L introduction de la notation T se fait de la façon suivante : On pose T = cos( ln(n + 3)). Le On pose peut être utilisé dans un tout autre contexte lorsque l on veut produire un exemple d objet mathématique particulier. Supposons que l on veuille montrer l assertion x, y R tels que x + y Z et x / Z et z / Z. Pour montrer un tel résultat d existence, il faut trouver un exemple. On peut donc montrer ce résultat en procédant de la façon suivante. On pose x = 1 et y = 1. Alors x et y sont deux réels non entiers et x + y = 1 est un entier. Règle : Faire des phrases correctes Ne pas hésiter à faire des phrases en français. Il est plus agréable, et souvent plus facile, de lire un raisonnement écrit en français qu avec des symboles logiques. Il ne faut pas utiliser d abréviations comme mq pour remplacer un Montrons que. On ne mélange pas texte en français et langage mathématique. Au sein d une phrase, les seuls symboles mathématiques autorisés sont : les signes d égalité, de non égalité, d inégalité, d appartenance et d inclusion. Il est donc formellement interdit de mettre les quantificateurs, ou les symboles, au milieu d une phrase de texte. On ne commence pas une phrase par un symbole mathématique. Cette règle, communément admise dans la communauté scientifique, n admet aucune exception. Qui plus est, une confusion est possible entre et un signe de multiplication, l emploi d une majuscule permet d indiquer le début d une phrase. Par exemple : est à remplacer par : On a x = y.f est une fonction croissante. On a x = y. La fonction f est une fonction croissante. Les mathématiques, ça se ponctue. Il faut remplacer Ainsi : x = 3 y = 9 3 < 9 par Ainsi : x = 3, y = 9 et 3 < 9. Un phrase doit comporter au minimum un sujet, un verbe et un complément. Par exemple z point de C, z + 1 = 1 z = 0, contradiction.

3 se lit z point de C, z + 1 = 1 implique z = 0 contradiction., ce qui n a aucun sens! Il faudrait la remplacer par Soit z un point de C. Si z + 1 = 1 alors z = 0, ce qui contredit nos hypothèses. D une façon générale, chaque phrase mathématique ou non doit pouvoir être lue à voix haute en gardant du sens. Il faut être clair et concis. En particulier il faut de préférence faire des phrases courtes. La plupart du temps les phrases doivent comporter au maximum un sujet, un verbe et un complément. Règle 3 : Utiliser correctement les symboles et Ici, correctement signifie que l on devrait presque toujours se passer des symboles et et les remplacer par les mots donc, ainsi, ce qui équivaut à, etc. L utilisation de et ne doit s inscrire que dans un cadre très rigoureux de syntaxe logique et ces symboles doivent se trouver entre deux propositions très clairement délimitées. Par exemple la phrase x E, f(x) = g(x) f = g. est ambiguë, donc n a pas de sens. En effet, elle pourrait signifier : ou bien : ( x E, f(x) = g(x)) f = g. x E, (f(x) = g(x) f = g). Les significations de ces deux implications sont très différentes. L utilisation des symboles et en début de ligne et sans aucune référence à quoi implique quoi est à proscrire. Noter qu il existe une nuance entre donc et implique : la phrase mathématiques (P Q) signifie que si P est vraie, alors Q est vraie. Elle ne suppose pas a priori que P est vraie. Dans un raisonnement on affirmera souvent : P est vraie, donc Q est vraie, ce qui n a pas la même signification. Par exemple, imaginez que l on vous demande de montrer que la fonction f : t t 4 + 3t + est à valeurs positives sur R. Voici un réponse incomplète : On a les implications suivantes : { x x [ 1, + [ x + 0 x + 3x + = (x + 1)(x + ) 0. D où le résultat en posant t = x. Certes, vous avez montré une implication utile pour conclure, mais cette implication à elle seule ne répond pas à la question. Pour avoir un réponse correcte il faudrait remplacer le D où le résultat... par : Or, pour tout t R, le réel t [ 1, + [ et donc d après les implications précédentes f(t) = (t ) + 3t + 0. Ainsi la fonction f est bien à valeurs positives sur R. Le symbole est souvent utilisé de manière incorrecte. Quant on l utilise, il faut impérativement vérifier les deux implications et. 3

4 Règle 4 : Mettre en évidence les articulations logiques N oubliez jamais que le correcteur ne lira pas plusieurs fois votre solution pour se convaincre de sa validité. Quand on rédige un raisonnement, il est très important de distinguer clairement les hypothèses des conclusions par exemple, et d indiquer les rapports d implication entre les différentes propositions. Cela se fait notamment au moyen de donc, alors, par conséquent, ainsi, or, de plus, en outre, ensuite, enfin, mais, cependant, toutefois, puisque, comme, car, etc Truffez vos raisonnements de ces petits mots qui guideront votre lecteur. Un texte mathématique rédigé n est pas une bande dessinée. Il faut éviter tous les commentaires en aparté, dans des coins, au côté de calculs, sous des signes d égalité ou d implication. Pensez que vous devriez pouvoir taper votre texte avec un traitement de texte standard. Il faut éviter de justifier vos résultats a posteriori. Par exemple, imaginez que l on vous demande de montrer l assertion : Voici une très mauvaise réponse : Voici une bonne solution : x [0, 1], 1 x [0, 1]. 0 x 1 0 x 1 (t t est croissante sur R + ) 0 1 x x 1 (t t est croissante sur R + ) Soit x [0, 1]. On a donc 0 x 1. La croissance de la fonction t t sur R + donne 0 x 1. Mais alors ona 0 1 x 1. Finalement, par croissance de la fonction t t surr +, ona 0 1 x 1. Cela nous montre bien que 1 x [0, 1] comme voulu. Règle 5 : Annoncer ce que l on fait et conclure Il faut expliquer ce que l on fait avec des : Montrons que, Nous allons maintenant prouver que Il ne faut pas oublier de préciser le numéro de la question traitée. Pour autant, il ne faut surtout pas recopier l énoncé, c est une perte de temps. Enfin, il ne faut pas oublier à la fin d un raisonnement de conclure en signalant au lecteur que vous avez bien obtenu le résultat attendu. Règle 6 : Ne jamais bluffer Le correcteur vous fait confiance a priori, c est cette confiance qui l incitera parfois à être tolérant vis à vis d un petit défaut de rigueur ou d une maladresse mathématiques. Il est très important de garder cette confiance. En particulier il ne faut jamais bluffer. Vous n avez aucune chance de tromper votre correcteur qui a déjà des centaines de copies corrigées à son actif. Vous avez par contre toutes les chances de le mettre en colère, en effet, rares sont les personnes qui apprécient d être prises pour des imbéciles. Il ne faut donc pas écrire il est évident..., on a trivialement... en donnant la réponse attendu alors que justement vous ne savez pas montrer ce résultat. Il ne faut pas faire de tour de passe passe avec les différents termes impliqués dans des calculs pour miraculeusement tomber à la dernière ligne sur la bonne réponse. Enfin, tout correcteur appréciera l honnêteté qui consiste à dire Je 4

5 vais admettre ce résultat dans la suite... ou Il y vraisemblablement une erreur dans mes calculs... Cela ne rendra pas votre réponse correcte mais montrera néanmoins au correcteur que vous comprenez ce que vous faites et maintiendra sa confiance. Dernières remarques Preuve par récurrence Il est essentiel de savoir rédiger correctement une preuve par récurrence. Rappelons le principe suivant. Principe : Soit P (n) une propriété concernant un entier naturel n. Si P (0) est vraie et si pour tout entier naturel k, quand on suppose que P (k) est vraie, on montre que P (k + 1) est vraie, alors on peut affirmer que P (n) est vraie pour tout entier naturel n. Les erreurs classiques et impardonnables sont : Une mauvaise initialisation. Montrons, par exemple, que tout sous-ensemble fini de N contient des entiers qui sont tous de même parité. Voici une démonstration fausse. Nous voulons prouver par récurrence sur n N la propriété P (n) suivante : si E est un sousensemble de N de cardinal n et si x, y sont deux éléments de E alors x et y ont même parité. Lorsque E est un sous-ensemble de N réduit à un seul élément, ce dernier à la même parité que lui-même. Donc P (1) est vraie. (H) Hypothèse de récurrence : fixons k N et supposons que P (k) soit vraie. Soit E un sous-ensemble de N de cardinal k + 1 et soit x et y dans E. Soit alors z un autre élément de E, distinct de x et de y. Alors l ensemble E \ {z} est un sous-ensemble de N de cardinal k et contenant x et y. D après l hypothèse de récurrence, x et y ont donc même parité. Ainsi P (k + 1) est vraie. Finalement, par le principe de récurrence, on a montré que tout sous-ensemble fini de N ne contient que des entiers de même parité. Ici on n a pas initialisé assez loin... En effet la preuve ci dessus qui permet d obtenir P (k + 1) à partir de P (k) ne fonctionne pas pour k = 1 (on ne peut pas trouver trois éléments distincts dans un ensemble à deux éléments). Ainsi cette démonstration serait parfaitement correcte si P () était vraie, ce qui n est pas le cas. Une façon d éviter ce type d erreur est de prendre quelques minutes pour vérifier que l on est bien capable de passer de P (0) à P (1) avec le raisonnement qui nous permet de montrer que P (k) implique P (k + 1). Supposer ce que l on veut montrer. Voici un exemple typique de démonstration fausse. n n(n + 1) On souhaite montrer que pour tout n N on a k =. Initialisation : on a 0 k = 0 = 0(0 + 1). Faisons à présent l hypothèse que pour tout n N, on a relation au rang n + 1. On a n+1 n k = ( k) + n + 1 = n(n + 1) 5 n k = + n + 1 = n(n + 1) (n + 1)(n + ) et montrons cette.

6 La propriété est vraie au rang n + 1 elle est donc vraie pour tout entier n. Ici le raisonnement serait parfaitement juste si on remplace le Faisons à présent l hypothèse que pour tout n N... par Faisons à présent l hypothèse que pour un n N... Effectivement, une fois que l on a supposé vraie la propriété cherchée, il n y a plus rien à montrer. Le raisonnement devient : supposons la propriété P vraie, blablabla, donc P est vraie. Ceci est juste, mais sans aucun intérêt. Preuve par contraposée ou par l absurde? Supposons que l on ait deux assertions P et Q et que l on cherche à montrer que P implique Q. Une preuve directe consiste à montrer directement que P implique Q. Une preuve par contraposée consiste à montrer que si Q est fausse alors P est fausse. Une preuve par l absurde consiste à montrer que si P est vraie et Q est fausse alors on obtient une absurdité (du type 0 = 1). Voici un exemple un peu caricatural. Montrons que si x est un réel contenu dans l intervalle ]0, 1[ alors x appartient à l intervalle [0, ]. Directement : Soit x ]0, 1[, autrement dit 0 < x < 1. Puisque la fonction carrée est croissante sur R + on obtient 0 x 1. Ainsi si x appartient à l intervalle ]0, 1[ alors x appartient à [0, ]. Par contraposée : Soit x un réel tel que x / [0, ]. Puisque x est positif, on a alors x >. Comme la fonction racine carrée est croissante sur R +, on obtient x >. Or x = x. Par suite x > ou x < et en particulier x / ]0, 1[. Donc si x / [0, ] alors x / ]0, 1[. Par contraposée, on a montré l implication demandée. Par l absurde : Soit x un réel tel que x ]0, 1[ et x / [0, ]. Puisque x est positif, on a donc d où 0 < x < 1 < < x 0 < x x 1 < 0 (x 1)(x + 1) = x 1 > 0 ainsi on a x+1 < 0 et 0 < x. Finalement on obtient 0 < 1 ce qui est absurde. Donc si x ]0, 1[ on a nécessairement x [0, ]. Une fausse démonstration par l absurde : Soit x un réel tel que x ]0, 1[ et x / [0, ]. Puisque la fonction carrée est croissante sur R + on obtient 0 x 1. Mais alors x [0, 1] ce qui est absurde car on a supposé x / [0, ]. Ceci est à éviter! Ici vous n utilisez jamais l assertion x / [0, ]. Il s agit donc d une démonstration directe. 6

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2 éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Fibonacci et les paquerettes

Fibonacci et les paquerettes Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Premiers pas avec Mathematica

Premiers pas avec Mathematica Premiers pas avec Mathematica LP206 : Mathématiques pour physiciens I Année 2010/2011 1 Introduction Mathematica est un logiciel de calcul formel qui permet de manipuler des expressions mathématiques symboliques.

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

STAGE IREM 0- Premiers pas en Python

STAGE IREM 0- Premiers pas en Python Université de Bordeaux 16-18 Février 2014/2015 STAGE IREM 0- Premiers pas en Python IREM de Bordeaux Affectation et expressions Le langage python permet tout d abord de faire des calculs. On peut évaluer

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

MIS 102 Initiation à l Informatique

MIS 102 Initiation à l Informatique MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ

Plus en détail

CRÉER UN COURS EN LIGNE

CRÉER UN COURS EN LIGNE Anne DELABY CRÉER UN COURS EN LIGNE Deuxième édition, 2006, 2008 ISBN : 978-2-212-54153-3 2 Que recouvre le concept d interactivité? Dans une perspective de cours en ligne, une activité interactive est

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Consignes pour les travaux d actualité Premier quadrimestre

Consignes pour les travaux d actualité Premier quadrimestre Consignes pour les travaux d actualité Premier quadrimestre Principes de base Durant le premier semestre, vous serez amenés à remettre un travail effectué en groupe. Le but de celui-ci est de s intéresser

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Les Fonctions de Hachage Temps de préparation :.. 2 h 15 minutes Temps de présentation devant le jury :.10 minutes Entretien avec le jury :..10 minutes GUIDE

Plus en détail

LES TYPES DE DONNÉES DU LANGAGE PASCAL

LES TYPES DE DONNÉES DU LANGAGE PASCAL LES TYPES DE DONNÉES DU LANGAGE PASCAL 75 LES TYPES DE DONNÉES DU LANGAGE PASCAL CHAPITRE 4 OBJECTIFS PRÉSENTER LES NOTIONS D ÉTIQUETTE, DE CONS- TANTE ET DE IABLE DANS LE CONTEXTE DU LAN- GAGE PASCAL.

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

NOTICE TELESERVICES : Créer mon compte personnel

NOTICE TELESERVICES : Créer mon compte personnel NOTICE TELESERVICES : Créer mon compte personnel Sommaire Sommaire... 1 Objet de la notice... 1 A qui s adresse cette notice?... 1 Pré-requis... 1 Le guide pas à pas pour créer votre compte personnel...

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

Méthode du commentaire de document en Histoire

Méthode du commentaire de document en Histoire Méthode du commentaire de document en Histoire I. Qu est-ce qu un commentaire de document? En quelques mots, le commentaire de texte est un exercice de critique historique, fondé sur la démarche analytique.

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

INTRODUCTION. 1 k 2. k=1

INTRODUCTION. 1 k 2. k=1 Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Calcul Formel et Numérique, Partie I

Calcul Formel et Numérique, Partie I Calcul Formel et Numérique N.Vandenberghe nvdb@irphe.univ-mrs.fr Table des matières 1 Introduction à Matlab 2 1.1 Quelques généralités.......................... 2 2 Où trouver des informations 2 3 Opérations

Plus en détail

Quelques éléments de compilation en C et makefiles

Quelques éléments de compilation en C et makefiles Quelques éléments de compilation en C et makefiles Guillaume Feuillade 1 Compiler un programme C Le principe de la compilation consiste à passer d un ensemble de fichiers de code à un programme exécutable

Plus en détail

PHYSIQUE 2 - Épreuve écrite

PHYSIQUE 2 - Épreuve écrite PHYSIQUE - Épreuve écrite WARIN André I. Remarques générales Le sujet de physique de la session 010 comprenait une partie A sur l optique et une partie B sur l électromagnétisme. - La partie A, à caractère

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Table des matières. Introduction

Table des matières. Introduction Table des matières 1 Formalisation des virus informatiques 2 1.1 Les machines de Turing........................ 2 1.2 Formalisation de Fred Cohen..................... 2 1.2.1 Définition d un virus informatique..............

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie Partie I : Séries statistiques descriptives univariées (SSDU) A Introduction Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie et tous sont organisés selon le même

Plus en détail

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ Auteur : S.& S. Etienne F7n COUP DE BOURSE, NOMBRE DÉRIVÉ TI-Nspire CAS Mots-clés : représentation graphique, fonction dérivée, nombre dérivé, pente, tableau de valeurs, maximum, minimum. Fichiers associés

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Voici un extrait du guide de rédaction. Le guide complet est téléchargeable sur le lien suivant

Voici un extrait du guide de rédaction. Le guide complet est téléchargeable sur le lien suivant Voici un extrait du guide de rédaction. Le guide complet est téléchargeable sur le lien suivant Guide de rédaction d un BUSINESS PLAN dans la restauration Auteur : Amandine Prat Conseils en création et

Plus en détail

les Formulaires / Sous-Formulaires Présentation...2 1. Créer un formulaire à partir d une table...3

les Formulaires / Sous-Formulaires Présentation...2 1. Créer un formulaire à partir d une table...3 Présentation...2 1. Créer un formulaire à partir d une table...3 2. Les contrôles :...10 2.1 Le contrôle "Intitulé"...11 2.2 Le contrôle "Zone de Texte"...12 2.3 Le contrôle «Groupe d options»...14 2.4

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

DOMAIN NAME SYSTEM. CAILLET Mélanie. Tutoriel sur le DNS. Session 2012-2014 Option SISR

DOMAIN NAME SYSTEM. CAILLET Mélanie. Tutoriel sur le DNS. Session 2012-2014 Option SISR DOMAIN NAME SYSTEM Tutoriel sur le DNS CAILLET Mélanie Session 2012-2014 Option SISR Table des matières DOMAIN NAME SYSTEM 2013 I. DNS Statique sous Linux (Ubuntu 12.04 LTS)... 3 A. DNS Principal... 3

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.

MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Maple: premiers calculs et premières applications

Maple: premiers calculs et premières applications TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2 Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

Algorithme. Table des matières

Algorithme. Table des matières 1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............

Plus en détail

Compter à Babylone. L écriture des nombres

Compter à Babylone. L écriture des nombres Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens

Plus en détail

Python - introduction à la programmation et calcul scientifique

Python - introduction à la programmation et calcul scientifique Université de Strasbourg Environnements Informatique Python - introduction à la programmation et calcul scientifique Feuille de TP 1 Avant de commencer Le but de ce TP est de vous montrer les bases de

Plus en détail

Algorithmique et Programmation, IMA

Algorithmique et Programmation, IMA Algorithmique et Programmation, IMA Cours 2 : C Premier Niveau / Algorithmique Université Lille 1 - Polytech Lille Notations, identificateurs Variables et Types de base Expressions Constantes Instructions

Plus en détail

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique - IUT de Laval Année Universitaire 2008/2009 Département Informatique, 1ère année Mathématiques Discrètes Fiche 1 - Logique - 1 Logique Propositionnelle 1.1 Introduction Exercice 1 : Le professeur Leblond

Plus en détail

Logique : ENSIIE 1A - contrôle final

Logique : ENSIIE 1A - contrôle final 1 Logique : ENSIIE 1A - contrôle final - CORRIGÉ Mardi 11 mai 2010 - Sans documents - Sans calculatrice ni ordinateur Durée : 1h30 Les exercices sont indépendants. Exercice 1 (Logique du premier ordre

Plus en détail

IN 102 - Cours 1. 1 Informatique, calculateurs. 2 Un premier programme en C

IN 102 - Cours 1. 1 Informatique, calculateurs. 2 Un premier programme en C IN 102 - Cours 1 Qu on le veuille ou non, les systèmes informatisés sont désormais omniprésents. Même si ne vous destinez pas à l informatique, vous avez de très grandes chances d y être confrontés en

Plus en détail

Chapitre 1 I:\ Soyez courageux!

Chapitre 1 I:\ Soyez courageux! Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel

Plus en détail

CRÉER UNE BASE DE DONNÉES AVEC OPEN OFFICE BASE

CRÉER UNE BASE DE DONNÉES AVEC OPEN OFFICE BASE CRÉER UNE BASE DE DONNÉES AVEC OPEN OFFICE BASE 2 ème partie : REQUÊTES Sommaire 1. Les REQUÊTES...2 1.1 Créer une requête simple...2 1.1.1 Requête de création de listage ouvrages...2 1.1.2 Procédure de

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Les systèmes CPC (Coût Par Clic) sont des moyens rapides d'obtenir de la visibilité à grande échelle et rapidement.

Les systèmes CPC (Coût Par Clic) sont des moyens rapides d'obtenir de la visibilité à grande échelle et rapidement. L'affiliation www.faireducashfacile.com www.revenus-automatiques.com (si vous n êtes pas encore inscrit sur revenusautomatiques, sachez que vous recevrez 70-90$ par vente) L'affiliation consiste à envoyer

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Présentation du langage et premières fonctions

Présentation du langage et premières fonctions 1 Présentation de l interface logicielle Si les langages de haut niveau sont nombreux, nous allons travaillé cette année avec le langage Python, un langage de programmation très en vue sur internet en

Plus en détail

D'UN THÉORÈME NOUVEAU

D'UN THÉORÈME NOUVEAU DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent

Plus en détail