Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve..."

Transcription

1 Sommaire Descriptif de l épreuve Conseils pour l épreuve Les pourcentages FICHES Pages 1 Pourcentage Proportions Taux d évolution Évolution réciproque Évolutions successives Taux global Racine n-ième d un réel positif Taux d évolution moyen Indice simple en base Les suites 6 Suites arithmétiques : définition Suites arithmétiques : calcul de termes Suites géométriques : définition Suites géométriques : calcul de termes Représentations graphiques et variations Calcul d une somme de termes consécutifs à la calculatrice Comparaison des termes de suites : calculatrice TI Comparaison des termes de suites : calculatrice Casio Statistiques 14 Médiane, quartiles, diagramme en boîte Moyenne Écart type Série statistique à deux variables Ajustement affine Réalisation d un ajustement affine Utilisation d un ajustement pour interpoler ou extrapoler Les probabilités 19 Vocabulaire des probabilités Probabilités Probabilités conditionnelles Utilisation d un tableau pour le calcul de probabilités Construction d un arbre pondéré Utilisation d un arbre pondéré Schéma de Bernoulli Nombre de succès Loi binomiale Espérance Loi binomiale et calculatrice Texas Instrument Loi binomiale et calculatrice Casio

2 Sommaire 29 Loi binomiale Intervalle de fluctuation Prise de décision Loi normale Loi normale et calculatrice Texas Instrument Loi normale et calculatrice Casio Intervalle de fluctuation d une fréquence Échantillonnage et prise de décision Estimation Intervalle de confiance Les fonctions 36 Fonction : image antécédents courbe Courbe représentative et tableau de valeurs : calculatrice TI Courbe représentative et tableau de valeurs : calculatrice Casio Résolution graphique d équations et d inéquations : f(x) = k ou f(x) k Résolution graphique d équations et d inéquations : f(x) = g(x) ou f(x) g(x) Étude du signe d une fonction Équation du second degré Signe d un trinôme du second degré Dérivées des fonctions usuelles Dérivée d une somme de fonctions et du produit par une constante Dérivée du quotient de deux fonctions Étude des variations d une fonction Extremum d une fonction Nombre dérivé Tangente Tracer une tangente Déterminer le coefficient directeur d une tangente Déterminer l équation d une tangente Tableur 52 Tableur et adressage Tableur et pourcentages Tableaux à double entrée Tableur et fonctions Tableur et suites Tableur et lois de probabilité Algorithmes 58 Afficher un terme d une suite Algorithme Calculer une somme de termes d une suite Algorithme Comparer deux suites Algorithme

3 Descriptif de l'épreuve Conseils 1 Pour réussir l épreuve L épreuve de mathématiques au baccalauréat dure 3 heures, coefficient 3. L épreuve est constituée de 3 ou 4 exercices indépendants les uns des autres, notées de 3 à 10 points, pouvant comporter plusieurs questions. Il aborde des domaines divers du programme de mathématiques de la série STMG. Une question peut faire appel aux autres disciplines, à condition que les connaissances requises dans cette autre discipline soient données dans l'énoncé. La calculatrice et le tableur tiennent une part importante dans le programme, vous devez être capable : d effectuer les opérations sur les nombres, savoir comparer des nombres et savoir donner une valeur approchée à la précision attendue ; de tabuler les valeurs d une fonction ou d une suite et de savoir les représenter graphiquement dans une fenêtre utile ; de saisir et traiter une série statistique. 2 Conseils méthodologiques Lors de vos révisions, ne vous plongez pas dans un exercice ou un sujet sans connaître votre cours sur le domaine concerné. Mettez-vous dans des conditions proches de l examen : traitez chaque exercice dans un temps limité ; évitez tout recours à des documents annexes (cours, fiches) ; évitez aussi de jeter un œil sur le corrigé après chaque question ; ne consultez le corrigé qu après avoir terminé : celui-ci vous permettra de vérifier vos connaissances et de savoir quelles sont les notions et méthodes restant à approfondir. Avant l épreuve, vérifiez votre matériel, en particulier, l état des piles de votre calculatrice. N oubliez pas votre montre, car les salles d examen ne sont pas toujours équipées d une horloge. Les feuilles de copies, brouillon et le papier millimétré vous seront fournis le jour de l épreuve. 5

4 Descriptif de l'épreuve Conseils Au début de l épreuve, lisez attentivement tout le sujet, évaluez le temps nécessaire pour chaque exercice, n hésitez pas à commencer par l exercice qui vous semble le plus facile. Pendant l épreuve, pensez à utiliser un brouillon pour les questions qui vous semblent les plus difficiles, ne passez pas trop de temps sur une question, il sera toujours temps d y revenir ensuite. Si l énoncé d une question commence par «En déduire» : n oubliez pas qu il faut alors utiliser la réponse à la question précédente pour répondre. 3 Présentation et rédaction La présentation de votre copie donne une première impression au correcteur. Il faut penser : à séparer les questions, encadrer ou souligner vos résultats ; à changer de feuille à chaque nouvel exercice ; à utiliser le papier millimétré fourni pour tracer des graphiques ou des courbes, en soignant le tracé. à garder du temps à la fin de l épreuve, pour vous relire et corriger les éventuelles fautes d orthographe. 6

5 Pourcentages Proportions Fiche 1 LE COURS Pourcentages Un pourcentage est une fraction de dénominateur 100. Le symbole % placé après un nombre signifie «divisé par 100». Exemples : 5 % = 5 ; 30 % = Proportions On utilise les pourcentages pour exprimer des proportions (fiche 1) ou des taux d évolution (fiche 2). a Pour calculer a % d un nombre, on multiplie ce nombre par 100. Exemple : 12 % de 400 c est = 400 0,12 = La proportion d une sous-population A d effectif n parmi une population E d effectif N est : cp = Nombre d'éléments de A Nombre d'éléments de E = n N c On a 0 < p < 1 et on exprime en général p en pourcentage. Exemple : Dans une classe de 30 élèves, il y a 18 filles. La proportion de filles dans cette classe est = 3 = 0,6 = 60 %. 5 Remarque : La formule p = n N permet aussi, connaissant p et l un des effectifs n ou N, de déterminer l autre effectif. 7 à détacher

6 EXERCICE TYPE CORRIGÉ 1. Sur commandes enregistrées par un site internet, étaient d un montant inférieur à 100. Quelle est, en pourcentage, la proportion des commandes de moins de 100? 2. Sur les d allocation reçus par une association, 7,5 % ont été consacrés à son fonctionnement. Quel est le montant du budget fonctionnement de cette association? 3. Dans une section de BTS, les 22 étudiants titulaires d un bac STMG représentent 40 % de l effectif total. Quel est l effectif total de cette section? 1. La proportion est soit 64 % Le budget fonctionnement est égal à 7,5 % de c est-à-dire à : ,5 = ,075 = On connaît l effectif des étudiants titulaires d un bac STMG n = 22, la proportion qu ils représentent p = 40 % = 0,4 et on cherche l effectif total N de la section. Selon la formule p = n on obtient : N 0,4 = 22 d où N = 22 N 0,4. Il y a donc 55 étudiants dans cette section. 8

7 Taux d évolution Évolution réciproque Fiche 2 LE COURS Le taux d évolution t entre une valeur de départ V D et une valeur d arrivée V A est défini par la formule : ct = V A V D V D.c On peut aussi utiliser le coefficient multiplicateur q = 1 + t. En effet, appliquer un taux d évolution t à une valeur V D revient à multiplier V D par q = 1 + t. On a donc : cv A = q V D.c Lorsqu il s agit d une augmentation, t est positif et q > 1. Lorsqu il s agit d une diminution, t est négatif et q < 1. Explication illustrée Valeur de départ V D Appliquer le taux d évolution t à V D revient à multiplier V D par q = 1 + t. Pour retrouver V D connaissant V A, on divise V A par q = 1 + t. Valeur d arrivée V A Taux réciproque Le taux d évolution réciproque t qui permet de retrouver la valeur de départ V D connaissant la valeur d arrivée V A est tel que V D = (1 + t ) V A. Or, comme le montre le schéma ci-dessus, on a aussi V D = 1 + t. On en déduit : 1 + t = t. Le taux d évolution réciproque est donc : c t = t 1.c V A 9 à détacher

8 EXERCICE TYPE CORRIGÉ 1. Le prix HT d un article est de 245. Quel sera son prix TTC avec le nouveau taux de TVA de 20 % (applicable au 1 er janvier 2014)? 2. Le prix HT d un article est de 660, son prix TTC est 693. Quel taux de TVA lui a-t-il été appliqué? 3. Avec une TVA à 20 % le prix d un article est 522. Quel est son prix HT? 4. Quel est le taux d évolution réciproque permettant de retrouver le prix HT d un article auquel a été appliquée une TVA de 10 %? 1. Le coefficient multiplicateur est q = = 1,2. Le prix TTC est donc 245 1,2 = Le taux de TVA est t = = 33 = 0,05 soit 5 % Le coefficient multiplicateur est 1,2. Donc le prix HT est 522 = ,2 4. Le taux d évolution réciproque est t = t 1. Donc ici t = 1 1 = 0,0909 soit environ 9,1 %. 1,1 Remarque : On peut noter qu une augmentation de 10 % n est pas compensée par une baisse de 10 % mais par une baisse de seulement 9,1 % (environ). 10

9 Évolutions successives Taux global Fiche 3 LE COURS Soit t 1, t 2,, t n les taux d évolution successifs permettant de passer respectivement de la valeur V 0 à la valeur V 1, de la valeur V 1 à la valeur V 2,, de la valeur V n-1 à la valeur V n. Le coefficient multiplicateur global, correspondant à ces n évolutions successives, permettant de passer de V 0 à V n, est le produit des n coefficients multiplicateurs correspondants. Le taux global d évolution T correspondant à n évolutions successives de taux respectifs t 1, t 2,, t n vérifie donc : 1 + T = (1 + t 1 ) (1 + t 2 ) (1 + t n ) Alors T = (1 + t 1 ) (1 + t 2 ) (1 + t n ) 1. Explication illustrée (1 + t 1 ) (1 + t 2 ) (1 + t n ) V 0 V 1 V 2 V n 1 V n (1 + T) On calcule les coeffcients multiplicateurs correspondant à chaque évolution : (1 + t 1 ), (1 + t 2 ),, (1 + t n ) On calcule le produit de ces coeffcients multiplicateurs afin d obtenir le coefficent multiplicateur global : (1 + T) À l aide de ce coeffcient multiplicateur global, on calcule le taux d évolution global : T. 11 à détacher

10 EXERCICE TYPE CORRIGÉ 1. Le prix d un produit a subi successivement au cours de l année passée une baisse de 20 %, suivie d une hausse de 40 %, puis d une baisse de 30 %. Quel est le taux global d évolution correspondant à ces trois évolutions successives? 2. Un placement financier à intérêts composés rapporte 0,2 % par mois pendant un an. Quel est le taux d intérêt de ce placement sur un an? 1. Les taux d évolution successifs sont t 1 = 0,2 ; t 2 = + 0,4 et t 3 = 0,3. Les coefficients multiplicateurs correspondants sont 0,8 ; 1,4 et 0,7. Alors le taux d évolution global T vérifie : 1 + T = 0,8 1,4 0,7. 0,8 1,4 0,7 20 % + 40 % 30 % V 0 V 1 V 2 V 3 (1 + T) Donc : 1 + T = 0,8 1,4 0,7. Alors T = 0,8 1,4 0,7 1 = 0,216. Soit une baisse de 21,6 %. 2. t 1 = t 2 = = t 12 = 0,002. 1,002 1,002 1, ,2 % + 0,2 % + 0,2 % V 0 V 1 V 2 V 11 V 12 (1 + T) Donc : 1 + T = 1,002 1,002 1, T = 1, T = 1, ,0243 Soit un taux d environ 2,43 %. 12

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières Interrogation 1 : Indice et taux d évolution........................... 2 Devoir maison 1 : Taux d évolution................................ 4 Devoir maison 1

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

= constante et cette constante est a.

= constante et cette constante est a. Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ Auteur : S.& S. Etienne F7n COUP DE BOURSE, NOMBRE DÉRIVÉ TI-Nspire CAS Mots-clés : représentation graphique, fonction dérivée, nombre dérivé, pente, tableau de valeurs, maximum, minimum. Fichiers associés

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Les suites numériques

Les suites numériques Chapitre 3 Term. STMG Les suites numériques Ce que dit le programme : Suites arithmétiques et géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Suites arithmétiques et géométriques Expression du terme

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

SOMMAIRE OPÉRATIONS COURANTES OPÉRATIONS D INVENTAIRE

SOMMAIRE OPÉRATIONS COURANTES OPÉRATIONS D INVENTAIRE SOMMAIRE OPÉRATIONS COURANTES OPÉRATIONS D INVENTAIRE 1 Factures de doit p. 9 Processus 1 2 Réductions sur factures de doit p. 11 Processus 1 3 Frais accessoires sur factures p. 13 Processus 1 4 Comptabilisation

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Classe de première L

Classe de première L Classe de première L Orientations générales Pour bon nombre d élèves qui s orientent en série L, la classe de première sera une fin d étude en mathématiques au lycée. On a donc voulu ici assurer à tous

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Collecter des informations statistiques

Collecter des informations statistiques Collecter des informations statistiques FICHE MÉTHODE A I Les caractéristiques essentielles d un tableau statistique La statistique a un vocabulaire spécifique. L objet du tableau (la variable) s appelle

Plus en détail

Leçon N 4 : Statistiques à deux variables

Leçon N 4 : Statistiques à deux variables Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3

Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3 Chapitre 3 : Le budget des ventes Introduction 2 Rappel des différents budgets opérationnels - budget des ventes (chapitre 3) - budget de production (chapitre 4) - budget des approvisionnements et des

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Les formations de remise à niveau(!) l'entrée des licences scientifiques. Patrick Frétigné CIIU

Les formations de remise à niveau(!) l'entrée des licences scientifiques. Patrick Frétigné CIIU Les formations de remise à niveau(!) pour les bacheliers «non-s» à l'entrée des licences scientifiques. Patrick Frétigné CIIU Cinq exemples Nantes Clermont Ferrand Lorraine Rennes 1 Rouen Nantes REUSCIT

Plus en détail

nos graphiques font leur rentrée!

nos graphiques font leur rentrée! Toute l'actualité CASIO pour les maths Septembre 2010 - N 10 Édito nos graphiques font leur rentrée! NOUVEAUTÉ 2010 Chers professeurs, Nous sommes heureux de vous rrouver pour cte nouvelle édition de CASIO

Plus en détail

COURS DE MS EXCEL 2010

COURS DE MS EXCEL 2010 COURS DE MS EXCEL 2010 Auteur: Jean Monseu Ce cours est publié par Mechelsesteenweg 102 2018 Anvers Copyright Jean Monseu CFD, Mechelsesteenweg 102, 2018 Anvers Tous droits réservés. Aucune partie de cette

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

FORMULES DE CALCUL. Prix = PV TTC = PV HT x (1 + taux de TVA) TVA = PV HT x taux de TVA PV HT = PV TTC 1 + taux de TVA

FORMULES DE CALCUL. Prix = PV TTC = PV HT x (1 + taux de TVA) TVA = PV HT x taux de TVA PV HT = PV TTC 1 + taux de TVA FORMULES DE CALCUL Le prix : Prix = PV TTC = PV HT x (1 + taux de TVA) TVA = PV HT x taux de TVA PV HT = PV TTC 1 + taux de TVA Ex : PV TTC = 250 x 1,196 = 299. TVA = 250 x 19,6 % = 49. PV HT = 299 = 250.

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Mesures et incertitudes

Mesures et incertitudes En physique et en chimie, toute grandeur, mesurée ou calculée, est entachée d erreur, ce qui ne l empêche pas d être exploitée pour prendre des décisions. Aujourd hui, la notion d erreur a son vocabulaire

Plus en détail

Quelles sont les principales formules utiles pour l étude de cas de vente?

Quelles sont les principales formules utiles pour l étude de cas de vente? Quelles sont les principales formules utiles pour l étude de cas de vente? Approvisionnement et gestion des stocks : des quantités vendues dans un Du stock initial, final et des livraisons, des commandes

Plus en détail

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Taux d évolution moyen.

Taux d évolution moyen. Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

PLAN DE COURS CEGEP DU VIEUX-MONTRÉAL

PLAN DE COURS CEGEP DU VIEUX-MONTRÉAL PLAN DE COURS CONTRÔLE DE LA QUALITÉ 241-B60-VM TECHNIQUE DE GÉNIE MÉCANIQUE 241-06 PONDÉRATION : 2-1-1 Compétence : 012Z Contrôler la qualité d un produit DÉPARTEMENT DE LA MÉCANIQUE CEGEP DU VIEUX-MONTRÉAL

Plus en détail

Découverte du tableur CellSheet

Découverte du tableur CellSheet Découverte du tableur CellSheet l application pour TI-83 Plus et TI-84 Plus. Réalisé par Guy Juge Professeur de mathématiques et formateur IUFM de l académie de Caen Pour l équipe des formateurs T 3 Teachers

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Séquence 3. Expressions algébriques Équations et inéquations. Sommaire

Séquence 3. Expressions algébriques Équations et inéquations. Sommaire Séquence 3 Expressions algébriques Équations et inéquations Sommaire 1. Prérequis. Expressions algébriques 3. Équations : résolution graphique et algébrique 4. Inéquations : résolution graphique et algébrique

Plus en détail

EXCEL TUTORIEL 2012/2013

EXCEL TUTORIEL 2012/2013 EXCEL TUTORIEL 2012/2013 Excel est un tableur, c est-à-dire un logiciel de gestion de tableaux. Il permet de réaliser des calculs avec des valeurs numériques, mais aussi avec des dates et des textes. Ainsi

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

U102 Devoir sur les suites (TST2S)

U102 Devoir sur les suites (TST2S) LES SUITES - DEVOIR 1 EXERCICE 1 L'objectif de cet exercice est de comparer l'évolution des économies de deux personnes au cours d'une année. Pierre possède 500 euros d'économies le 1 er janvier. Il décide

Plus en détail

Maple: premiers calculs et premières applications

Maple: premiers calculs et premières applications TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Calculer avec Sage. Revision : 417 du 1 er juillet 2010

Calculer avec Sage. Revision : 417 du 1 er juillet 2010 Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

PRINCIPES DE LA CONSOLIDATION. CHAPITRE 4 : Méthodes de consolidation. Maître de conférences en Sciences de Gestion Diplômé d expertise comptable

PRINCIPES DE LA CONSOLIDATION. CHAPITRE 4 : Méthodes de consolidation. Maître de conférences en Sciences de Gestion Diplômé d expertise comptable PRINCIPES DE LA CONSOLIDATION CHAPITRE 4 : Méthodes de consolidation David Carassus Maître de conférences en Sciences de Gestion Diplômé d expertise comptable SOMMAIRE CHAPITRE I Les fondements de la consolidation

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

4 Statistiques. Les notions abordées dans ce chapitre CHAPITRE

4 Statistiques. Les notions abordées dans ce chapitre CHAPITRE CHAPITRE Statistiques Population (en milliers) 63 6 6 6 Évolution de la population en France 9 998 999 3 Année Le graphique ci-contre indique l évolution de la population française de 998 à. On constate

Plus en détail

TSTT ACC OUTILS DE GESTION COMMERCIALE FICHE 1 : LES MARGES

TSTT ACC OUTILS DE GESTION COMMERCIALE FICHE 1 : LES MARGES TSTT ACC OUTILS DE GESTION COMMERCIALE FICHE 1 : LES MARGES Coût de revient du produit + Marge du fabricant = Prix de vente HT au distributeur Prix d'achat HT du distributeur + Marge du distributeur =

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2 Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

LOGICIEL NATURELLEMENT CONVIVIAL POUR AVOCATS ERGONOMIE FACILITÉ D UTILISATION SERVICES

LOGICIEL NATURELLEMENT CONVIVIAL POUR AVOCATS ERGONOMIE FACILITÉ D UTILISATION SERVICES LOGICIEL NATURELLEMENT CONVIVIAL POUR AVOCATS ERGONOMIE FACILITÉ D UTILISATION SERVICES SECIB, La Qualité au service des Avocats SECIB est le seul éditeur de logiciels à offrir à ses clients des prestations

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

Conseil économique et social. Document établi par le Bureau central de statistique d Israël

Conseil économique et social. Document établi par le Bureau central de statistique d Israël Nations Unies Conseil économique et social ECE/CES/GE.2/214/3 Distr. générale 12 février 214 Français Original: russe Commission économique pour l Europe Conférence des statisticiens européens Groupe d

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Introduction à la statistique descriptive

Introduction à la statistique descriptive Chapitre chapitre 1 Introduction à la statistique descriptive Les méthodes de la statistique descriptive (statistique déductive) permettent de mener des études à partir de données exhaustives, c est-à-dire

Plus en détail

Evaluation de la variabilité d'un système de mesure

Evaluation de la variabilité d'un système de mesure Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les

Plus en détail

Les cartes de fidélités... 2 Natures de pièces... 5 Impression des chèques cadeaux... 6 Statistiques fidélités... 8 Fiche client...

Les cartes de fidélités... 2 Natures de pièces... 5 Impression des chèques cadeaux... 6 Statistiques fidélités... 8 Fiche client... Sommaire Les cartes de fidélités... 2 Natures de pièces... 5 Impression des chèques cadeaux... 6 Statistiques fidélités... 8 Fiche client... 9 Copyright WaveSoft 1/9 La gestion des cartes de fidélités

Plus en détail

La monnaie, les banques et les taux d intérêt

La monnaie, les banques et les taux d intérêt Chapitre 10 La monnaie, les banques et les taux d intérêt 1 Objectifs Définir ce qu est la monnaie et décrire ses fonctions Expliquer les fonctions économiques des banques canadiennes et des autres intermédiaires

Plus en détail

Parcours FOAD Formation EXCEL 2010

Parcours FOAD Formation EXCEL 2010 Parcours FOAD Formation EXCEL 2010 PLATE-FORME E-LEARNING DELTA ANNEE SCOLAIRE 2013/2014 Pôle national de compétences FOAD Formation Ouverte et A Distance https://foad.orion.education.fr Livret de formation

Plus en détail