FICHE 5A LES LENTILLES MINCES. 1. Définition d une lentille. 2. Différents types de lentilles. Lentilles à bords minces. Lentilles à bords épais

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "FICHE 5A LES LENTILLES MINCES. 1. Définition d une lentille. 2. Différents types de lentilles. Lentilles à bords minces. Lentilles à bords épais"

Transcription

1 FICHE 5A LES LENTILLES MINCES. Définition d une lentille Une lentille est un milieu transparent limité par deux dioptres dont l'un au moins est sphérique. D: diamètre d'ouverture. e: épaisseur. Une lentille est dite mince si son épaisseur e est faible devant son diamètre D. On appelle centre optique le milieu de la lentille. 2. Différents types de lentilles Lentilles à bords minces symbole d'une lentille mince à bords minces Biconvexe plan convexe ménisque convergent Lentilles à bords épais symbole d'une lentille mince à bords épais biconcave plan concave ménisque divergent Page

2 3. Les deux types de lentilles On dispose de deux lentilles épaisses cylindriques, deux à bord mince, une à bord épais. On envoie trois rayons lumineux parallèles entre eux et à l'axe otique. Une lentille à bords minces est convergente. (ex: œil, loupe ) Une lentille à bords épais est divergente. (ex: lunette de myope) Les trois rayons émergents se coupent en un point de l'axe optique. Ce point est appelé foyer image. La distance entre le centre optique et ce foyer est appelé distance focale OF'. Lentilles minces convergentes F' est réel et placé après la lentille lentilles minces divergentes F' est virtuel et placé avant la lentille On oriente l'axe optique dans le sens de propagation de la lumière. Pour une lentille convergente : OF' 0 Pour une lentille divergente : OF' 0 On appelle vergence C d'une lentille l'inverse de sa distance focale. La vergence s'exprime en dioptries (). C avec OF' en m OF' Tout rayon qui passe par le centre optique n'est pas dévié quelque soit son inclinaison par rapport à l'axe optique. D'après la loi du retour inverse de la lumière, tout rayon qui passe par F symétrique de F' par rapport à la lentille émerge de la lentille parallèlement à l'axe optique. F est appelé foyer objet. Page 2

3 4. Constructions d'images (dans les conditions de Gauss) Lorsqu'on fait des constructions en optique, on choisit une échelle horizontale précise, mais verticalement on prend une échelle beaucoup plus grande sinon on ne verrait pas les constructions. a. Image d'un point objet On trace deux des trois rayons importants: Celui qui passe par le centre optique sans être dévié. Celui qui arrive parallèle à l'axe optique et qui émerge en passant par le foyer image. Celui qui arrive en passant par le foyer objet et qui émerge parallèle à l'axe optique. Leur intersection est le point image. Il faut ajouter les flèches indiquant le sens de propagation de la lumière. b. Image d'un objet perpendiculaire à l'axe optique. Le plan de l'image est perpendiculaire à l'axe optique 5. Caractéristiques d'une image. Page 3

4 Une image réelle s'observe sur un écran. Une image virtuelle s'observe en regardant dans le système optique. 6. Formule de conjugaison de Descartes Les triangles OBA et OB'A' sont homothétiques OA AB OA' A'B' Les triangles HOF' et B'A'F' sont homothétiques F'O OH AB F'A' A'B' A'B' Donc OA OA' F'O F'A' F'O F'O OA' en retournant les fractions OA' F'O OA' OA F'O en divisant par OA' OF' OA' et en arrangeant on obtient : OA OA' OF' ou OA' OA OF' Par définition: A'B' AB 7. Grandissement (de Descartes) OA' OA Page 4

5 si > 0 l'image est droite si < 0 l'image est renversée si > l'image est plus grande que l'objet si < l'image est plus petite que l'objet 8. Formules de Newton 9. Associations de lentilles FA F' A' f ' 2 lentilles accolées C = C + C 2 (théorème des vergences avec 2 lentilles mais généralisable à n lentilles). lentilles non accolées : on obtient un microscope, lunette astronomique, etc.(ce n est plus au programme). 0. Les défauts d'une lentille a. Aberrations chromatiques: Si on réalise l expérience suivante : avec un filtre rouge puis un filtre vert placé avant la lentille convergente, tracer les 3 rayons incidents et les trois rayons émergents. Le point d'intersection des rayons émergents bleus est plus proche de la lentille que le point d'intersection des rayons émergents rouges. Ce phénomène est dû à la dispersion de la lumière par la lentille qui se comporte comme un prisme, en effet l'indice de réfraction est plus grand pour le bleu que pour le rouge. En lumière blanche: Une lentille possède autant de foyers image que la lumière polychromatique contient de couleurs. La distance focale de la lentille dépend de la couleur de la lumière. b. Aberrations géométriques: Défaut de stigmatisme d'une lentille: les rayons issus d'un point objet ne passent pas exactement par le point image. Par conséquent, les images sont floues. Exemple : Aberration de sphéricité Page 5

6 Ce défaut est du à l'ouverture d'un système optique. Réalisation expérimentale: On éclaire la lentille par un faisceau large. On observe alors une surface appelée caustique de révolution. Les rayons sont plus convergents au bord de la lentille. On peut obtenir de très belles caustiques derrière des verres éclairés et posés sur une table.. Les conditions de Gauss Une lentille ne donne une image nette que si les rayons qu elle utilise pour former cette image sont tous peu inclinés sur l axe principal et traversent la lentille au voisinage du centre optique. Dans ces conditions, la lentille est stigmatique : à chaque point de l objet, elle fait correspondre un point image, point d intersection de tous le rayons issus du point objet et traversant la lentille. Page 6

7 Exercice n I. Une lentille mince convergente donne d un objet AB, réel, une image A B, réelle, trois fois plus grande que l objet, située à la distance d = 32 cm de cet objet. Calculer la distance objet-lentille ainsi que la distance focale f de cette lentille. II. On utilise une lentille convergente de distance focale 6 cm. Répondre par VRAI ou FAUX aux affirmations suivantes en justifiant (faire un schéma si nécessaire). a) Un objet réel AB est placé à une distance OA (OA = 5 cm) de la lentille convergente. On appelle A B l image de AB donnée par cette lentille. - L image A B se forme du même côté que l objet par rapport à la lentille. 2- L image est réelle et renversée. 3- La vergence de la lentille est négative. 4- Le grandissement est positif. 5- L image grandit quand on déplace l objet AB vers le foyer principal objet. 6- Pour voir l image, on doit placer l oeil au point A. 7- Pour voir l image on peut placer l oeil n importe où, de l'autre côté de la lentille par rapport à l'objet. 8- Ce montage modélise une loupe. 9- Ce montage modélise un projecteur de diapositives. b) Cette lentille convergente peut donner d un objet virtuel : - Une image réelle. 2- Une image virtuelle. c) Pour une lentille convergente, dire si les situations suivantes sont possibles ou impossibles, justifier brièvement : - L objet et l image sont réels, l'image est renversée par rapport à l'objet. 2- L objet est réel et l image est virtuelle, l'image est renversée par rapport à l'objet. 3- L objet est virtuel et l image est réelle, l'image est renversée par rapport à l'objet. Page 7

8 Exercice n 2 Méthode de l objet à l infini a) Montrer comment mesurer la distance focale d une lentille convergente en utilisant un objet lumineux très éloigné (le Soleil par exemple). b) Comment procéder si on ne dispose pas d un tel objet, en utilisant une lentille convergente auxiliaire de vergence connue et un objet lumineux proche? Exercice n 3 Méthode de l image à l infini Où doit-on placer un objet lumineux pour obtenir une image à l infini à l aide d une lentille convergente? Peut-on, pratiquement, observer cette image sur un écran? Où celui-ci doit-il être placé? En déduire une méthode de mesure de la distance focale de cette lentille convergente. Cette mesure estelle précise? Page 8

Université Bordeaux 1 MIS 103 OPTIQUE GÉOMÉTRIQUE

Université Bordeaux 1 MIS 103 OPTIQUE GÉOMÉTRIQUE Université Bordeaux 1 MIS 103 OPTIQUE GÉOMÉTRIQUE Année 2006 2007 Table des matières 1 Les grands principes de l optique géométrique 1 1 Principe de Fermat............................... 1 2 Rayons lumineux.

Plus en détail

OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS

OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS PR. MUSTAPHA ABARKAN EDITION 014-015 Université Sidi Mohamed Ben Abdallah de Fès - Faculté Polydisciplinaire de Taza Département Mathématiques, Physique et Informatique

Plus en détail

Sujet. calculatrice: autorisée durée: 4 heures

Sujet. calculatrice: autorisée durée: 4 heures DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Approche d'un projecteur de diapositives...2 I.Questions préliminaires...2 A.Lentille divergente...2 B.Lentille convergente et

Plus en détail

Chapitre 2 : étude sommaire de quelques instruments d optique 1 Grandeurs caractéristiques des instruments d optique Grossissement

Chapitre 2 : étude sommaire de quelques instruments d optique 1 Grandeurs caractéristiques des instruments d optique Grossissement Chapitre 2 : étude sommaire de quelques instruments d optique 1 Grandeurs caractéristiques des instruments d optique Grossissement Puissance Pouvoir de résolution ou pouvoir séparateur Champ 2 l œil comme

Plus en détail

Faculté de physique LICENCE SNV EXERCICES PHYSIQUE Par MS. MAALEM et A. BOUHENNA Année universitaire 2010-2011

Faculté de physique LICENCE SNV EXERCICES PHYSIQUE Par MS. MAALEM et A. BOUHENNA Année universitaire 2010-2011 Faculté de physique LICENCE SNV L1 EXERCICES DE PHYSIQUE Par Année universitaire 2010-2011 OPTIQUE GÉOMÉTRIQUE: GÉNÉRALITÉS ET MIROIR PLAN Ex. n 1: Citer quelques systèmes optiques, d'usage courant. Ex.

Plus en détail

Séquence 1. Physique Couleur, vision et image Chimie La réaction chimique. Sommaire

Séquence 1. Physique Couleur, vision et image Chimie La réaction chimique. Sommaire Séquence 1 Physique Couleur, vision et image Chimie La réaction chimique Sommaire 1. Physique : Couleur, vision et image Résumé Exercices 2. Chimie : La réaction chimique Résumé Exercices Séquence 1 Chapitre

Plus en détail

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre

Plus en détail

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices

Plus en détail

Les bases de l optique

Les bases de l optique Vision to Educate Les 10 pages essentielles Edition 2014 Introduction Edito Si résumer le métier d opticien dans un livret de 12 pages n est pas possible, nous avons essayé dans ce document d apporter

Plus en détail

Comprendre l Univers grâce aux messages de la lumière

Comprendre l Univers grâce aux messages de la lumière Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,

Plus en détail

Sur le grossissement des divers appareils pour la mesure des angles par la réflexion d un faisceau lumineux sur un miroir mobile

Sur le grossissement des divers appareils pour la mesure des angles par la réflexion d un faisceau lumineux sur un miroir mobile Sur le grossissement des divers appareils pour la mesure des angles par la réflexion d un faisceau lumineux sur un miroir mobile W. Lermantoff To cite this version: W. Lermantoff. Sur le grossissement

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

DIFFRACTion des ondes

DIFFRACTion des ondes DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène

Plus en détail

La spectrophotométrie

La spectrophotométrie Chapitre 2 Document de cours La spectrophotométrie 1 Comment interpréter la couleur d une solution? 1.1 Décomposition de la lumière blanche En 1666, Isaac Newton réalise une expérience cruciale sur la

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

Sujet. calculatrice: autorisée durée: 4 heures

Sujet. calculatrice: autorisée durée: 4 heures DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Spectrophotomètre à réseau...2 I.Loi de Beer et Lambert... 2 II.Diffraction par une, puis par deux fentes rectangulaires... 3

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D. TITRE : Comment s affranchir de la limite de la diffraction en microscopie optique?

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D. TITRE : Comment s affranchir de la limite de la diffraction en microscopie optique? ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Comment s affranchir de la limite de la diffraction en microscopie optique? Temps de préparation :...2 h 15 minutes Temps de présentation devant le jury

Plus en détail

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité? EXERCICE 1 : QUESTION DE COURS Q1 : Qu est ce qu une onde progressive? Q2 : Qu est ce qu une onde mécanique? Q3 : Qu elle est la condition pour qu une onde soit diffractée? Q4 : Quelles sont les différentes

Plus en détail

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE OBJECTIFS : - Distinguer un spectre d émission d un spectre d absorption. - Reconnaître et interpréter un spectre d émission d origine thermique - Savoir qu un

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

Ni tout noir, ni tout blanc Consignes Thème I - Observer

Ni tout noir, ni tout blanc Consignes Thème I - Observer Ni tout noir, ni tout blanc Consignes Thème I - Observer BUT : Etudier les synthèses additives et soustractives Comprendre la notion de couleur des objets COMPETENCES : Rechercher et trier des informations

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

7. Exemples de tests pour détecter les différents troubles de la vision.

7. Exemples de tests pour détecter les différents troubles de la vision. 7. Exemples de tests pour détecter les différents troubles de la vision. 7.1 Pour la myopie (mauvaise vue de loin) : Test de vision de loin Sur le mur d un pièce, fixez l illustration ci-dessous que vous

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

PRINCIPE MICROSCOPIE CONFOCALE

PRINCIPE MICROSCOPIE CONFOCALE PRINCIPE MICROSCOPIE CONFOCALE Un microscope confocal est un système pour lequel l'illumination et la détection sont limités à un même volume de taille réduite (1). L'image confocale (ou coupe optique)

Plus en détail

Les interférences lumineuses

Les interférences lumineuses Les interférences lumineuses Intérêt de l étude des interférences et de la diffraction : Les interférences sont utiles pour la métrologie, la spectrométrie par transformée de Fourier (largeur de raie),

Plus en détail

AiryLab. 12 impasse de la Cour, 83560 Vinon sur Verdon. Rapport de mesure

AiryLab. 12 impasse de la Cour, 83560 Vinon sur Verdon. Rapport de mesure AiryLab. 12 impasse de la Cour, 83560 Vinon sur Verdon Rapport de mesure Référence : 2010-44001 FJ Référence 2010-44001 Client Airylab Date 28/10/2010 Type d'optique Lunette 150/1200 Opérateur FJ Fabricant

Plus en détail

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire : Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire : 1. Prélever ml de la solution mère à la pipette jaugée. Est-ce que je sais : Mettre une propipette sur une pipette

Plus en détail

LE PROJOPHONE de Fresnel

LE PROJOPHONE de Fresnel LE PROJOPHONE de Fresnel Le principe général est assez simple : l'image de l écran est agrandie et projetée à l'aide de la lentille optique. Nous allons commencer par créer un élément dans lequel le téléphone

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 15 mars 2006 CLASSE DE PREMIERE ES, GMF Durée : 4 heures Les quatre exercices sont indépendants Les calculatrices sont autorisées L énoncé comporte trois pages Exercice

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

AiryLab. 34 rue Jean Baptiste Malon, 04800 Gréoux les Bains. Rapport de mesure

AiryLab. 34 rue Jean Baptiste Malon, 04800 Gréoux les Bains. Rapport de mesure AiryLab. 34 rue Jean Baptiste Malon, 04800 Gréoux les Bains Rapport de mesure Référence : 2014-07001 FJ Référence 2014-07001 Client xxx Date 14/02/2014 Type d'optique Triplet ED Opérateur FJ Fabricant

Plus en détail

Utilisation du logiciel Epson Easy Interactive Tools

Utilisation du logiciel Epson Easy Interactive Tools Utilisation du logiciel Epson Easy Interactive Tools Ce logiciel permet d'utiliser le stylo electronique comme souris pour contrôler l'ordinateur depuis l'écran et comme feutre électronique pour écrire

Plus en détail

L'astrophotographie au Cercle

L'astrophotographie au Cercle L'astrophotographie au Cercle Introduction générale à l'astrophotographie Le matériel Les différents domaines: imagerie sur trépied, du ciel profond... Réaliser des images sur trépied Réaliser des images

Plus en détail

Physique: 1 er Bachelier en Medecine. 1er juin 2012. Duree de l'examen: 3 h. Partie 1: /56. Partie 2 : /20. Nom: N ō carte d étudiant:

Physique: 1 er Bachelier en Medecine. 1er juin 2012. Duree de l'examen: 3 h. Partie 1: /56. Partie 2 : /20. Nom: N ō carte d étudiant: Nom: Prénom: A N ō carte d étudiant: Physique: 1 er Bachelier en Medecine 1er juin 2012. Duree de l'examen: 3 h Avant de commencer a repondre aux questions, identiez-vous en haut de cette 1ere page, et

Plus en détail

Choisir entre le détourage plume et le détourage par les couches.

Choisir entre le détourage plume et le détourage par les couches. Choisir entre le détourage plume et le détourage par les couches. QUEL CHOIX D OUTILS ET QUELLE METHODE, POUR QUEL OBJECTIF? Il existe différentes techniques de détourage. De la plus simple à la plus délicate,

Plus en détail

Interférences et applications

Interférences et applications Interférences et applications Exoplanète : 1ère image Image de la naine brune 2M1207, au centre, et de l'objet faible et froid, à gauche, qui pourrait être une planète extrasolaire Interférences Corpuscule

Plus en détail

Unitecnic 2200 Unitecnic 2200 CS

Unitecnic 2200 Unitecnic 2200 CS Unitecnic Unitecnic S Notice de pose Seules les vis rouges et bleues peuvent être dévissées. (changement de combinaison et de main) Tout autre démontage interne est interdit. (annulation de la garantie)

Plus en détail

Comment fabriquer un miroir de télescope?

Comment fabriquer un miroir de télescope? Comment fabriquer un miroir de télescope? Origine et historique du projet: Le concours «olympiades de physique» étant consacré plus particulièrement cette année à l'astronomie, un groupe de lycéens de

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

La spectro, c'est facile

La spectro, c'est facile La spectro, c'est facile OHP Spectro Party Observatoire de Haute Provence 25-30 juillet 2014 François Cochard francois.cochard@shelyak.com La spectro, c'est facile à certaines conditions OHP Spectro Party

Plus en détail

Immersion - Vision 3D dans la RV.

Immersion - Vision 3D dans la RV. Cours RVS Master II IVA Immersion - Vision 3D dans la RV. Cours de Réalité Virtuelle et Simulation Master II - IVA A. Mebarki - Maître de Conférences Département d'informatique Faculté des Mathématiques

Plus en détail

"La collimation est la première cause de mauvaises images dans les instruments amateurs" Walter Scott Houston

La collimation est la première cause de mauvaises images dans les instruments amateurs Walter Scott Houston "La collimation est la première cause de mauvaises images dans les instruments amateurs" Walter Scott Houston F.Defrenne Juin 2009 Qu est-ce que la collimation en fait? «Newton»? Mais mon télescope est

Plus en détail

MEMENTO D'UTILISATION Du T.N.I. SmartBoard (Version 10.0.130)

MEMENTO D'UTILISATION Du T.N.I. SmartBoard (Version 10.0.130) CRDP de l académie de Versailles Mission TICE Médiapôles mediapoles @crdp.ac-versailles.fr MEMENTO D'UTILISATION Du T.N.I. SmartBoard (Version 10.0.130) Mars 2009 584, rue Fourny 78530 Buc Tél. 01 39 45

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

FICHE 1 Fiche à destination des enseignants

FICHE 1 Fiche à destination des enseignants FICHE 1 Fiche à destination des enseignants 1S 8 (b) Un entretien d embauche autour de l eau de Dakin Type d'activité Activité expérimentale avec démarche d investigation Dans cette version, l élève est

Plus en détail

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ] Les moments de force Les submersibles Mir peuvent plonger à 6 000 mètres, rester en immersion une vingtaine d heures et abriter 3 personnes (le pilote et deux observateurs), dans une sphère pressurisée

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de

Plus en détail

La perspective conique

La perspective conique La perspective conique Définitions et principes. Deux cas de la perspective conique : la perspective conique oblique et la perspective conique centrale. Principe de la perspective conique : . La perspective

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

P R O PA G AT I O N & C O U L E U R S

P R O PA G AT I O N & C O U L E U R S P R O PA G AT I O N & C O U L E U R S Modèle de l oeil, lentilles, miroirs, couleurs, synthèse additive et soustractive L ensemble permet une approche globale et simple des phénomènes optiques : propagation

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

La gravitation universelle

La gravitation universelle La gravitation universelle Pourquoi les planètes du système solaire restent-elles en orbite autour du Soleil? 1) Qu'est-ce que la gravitation universelle? activité : Attraction universelle La cohésion

Plus en détail

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008 GMPI*EZVI0EFSVEXSMVIH%WXVSTL]WMUYIHI&SVHIEY\ 1. Introduction à Celestia Celestia 1.1 Généralités 1.2 Ecran d Ouverture 2. Commandes Principales du Menu 3. Exemples d Applications 3.1 Effet de l atmosphère

Plus en détail

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

1S9 Balances des blancs

1S9 Balances des blancs FICHE 1 Fiche à destination des enseignants 1S9 Balances des blancs Type d'activité Étude documentaire Notions et contenus Compétences attendues Couleurs des corps chauffés. Loi de Wien. Synthèse additive.

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La Synthèse d'images I Venceslas BIRI IGM Université de Marne La La synthèse d'images II. Rendu & Affichage 1. Introduction Venceslas BIRI IGM Université de Marne La Introduction Objectif Réaliser une image

Plus en détail

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance

Plus en détail

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013 Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane

Plus en détail

pka D UN INDICATEUR COLORE

pka D UN INDICATEUR COLORE TP SPETROPHOTOMETRIE Lycée F.BUISSON PTSI pka D UN INDIATEUR OLORE ) Principes de la spectrophotométrie La spectrophotométrie est une technique d analyse qualitative et quantitative, de substances absorbant

Plus en détail

Comment mettre les mirages en boite?

Comment mettre les mirages en boite? Comment mettre les mirages en boite? 2009 2010 Une idée tordue BRASSEUR Paul DELAYE Cécile QUERTINMONT Joelle Lycée Hoche, Versailles http://apelh.free.fr Résumé Nous nous sommes intéressés au phénomène

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS Document du professeur 1/7 Niveau 2 nde THEME : L UNIVERS Physique Chimie SPECTRES D ÉMISSION ET D ABSORPTION Programme : BO spécial n 4 du 29/04/10 L UNIVERS Les étoiles : l analyse de la lumière provenant

Plus en détail

EP 2 290 703 A1 (19) (11) EP 2 290 703 A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: 02.03.2011 Bulletin 2011/09

EP 2 290 703 A1 (19) (11) EP 2 290 703 A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: 02.03.2011 Bulletin 2011/09 (19) (12) DEMANDE DE BREVET EUROPEEN (11) EP 2 290 703 A1 (43) Date de publication: 02.03.2011 Bulletin 2011/09 (1) Int Cl.: H01L 31/02 (2006.01) (21) Numéro de dépôt: 008786. (22) Date de dépôt: 24.08.20

Plus en détail

Université Joseph Fourier Grenoble. Master Pro "Physique et Ingénieries" Spécialité "Optique et Photonique"

Université Joseph Fourier Grenoble. Master Pro Physique et Ingénieries Spécialité Optique et Photonique Université Joseph Fourier Grenoble Master Pro "Physique et Ingénieries" Spécialité "Optique et Photonique" Campus de Saint Martin d Hères, Bt C 3 ème étage (salle 312) Logiciel de conception de systèmes

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Savoir lire une carte, se situer et s orienter en randonnée

Savoir lire une carte, se situer et s orienter en randonnée Savoir lire une carte, se situer et s orienter en randonnée Le b.a.-ba du randonneur Fiche 2 Lire une carte topographique Mais c est où le nord? Quel Nord Le magnétisme terrestre attire systématiquement

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

RDP : Voir ou conduire

RDP : Voir ou conduire 1S Thème : Observer RDP : Voir ou conduire DESCRIPTIF DE SUJET DESTINE AU PROFESSEUR Objectif Compétences exigibles du B.O. Initier les élèves de première S à la démarche de résolution de problème telle

Plus en détail

Mesurer les altitudes avec une carte

Mesurer les altitudes avec une carte www.ign.fr > Espace éducatif > Les fiches thématiques > Lecture de la carte Mesurer les altitudes avec une carte Les cartes topographiques ne sont pas uniquement une représentation plane de la surface

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

A chaque couleur dans l'air correspond une longueur d'onde.

A chaque couleur dans l'air correspond une longueur d'onde. CC4 LA SPECTROPHOTOMÉTRIE I) POURQUOI UNE SUBSTANCE EST -ELLE COLORÉE? 1 ) La lumière blanche 2 ) Solutions colorées II)LE SPECTROPHOTOMÈTRE 1 ) Le spectrophotomètre 2 ) Facteurs dont dépend l'absorbance

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

Site Professionnel Opticiens : http://espaceprofessionnel.apgis.com

Site Professionnel Opticiens : http://espaceprofessionnel.apgis.com apgis Institution de prév oyance 12 rue Massue 94684 Vincennes cedex Site Professionnel Opticiens : http://espaceprofessionnel.apgis.com QUELQUES EXPLICATIONS Institution de Prévoyance agréée par le Ministère

Plus en détail

Mathématiques et petites voitures

Mathématiques et petites voitures Mathématiques et petites voitures Thomas Lefebvre 10 avril 2015 Résumé Ce document présente diérentes applications des mathématiques dans le domaine du slot-racing. Table des matières 1 Périmètre et circuit

Plus en détail

Une plongée vers l invisible

Une plongée vers l invisible Charlie Leprince Yohann Roiron Damien Toussaint Lycée Pothier Orléans Une plongée vers l invisible Comment voir la structure de la matière SOMMAIRE REMERCIEMENTS....... LA PROBLÉMATIQUE LA DÉMARCHE SCIENTIFIQUE

Plus en détail

La lumière. Sommaire de la séquence 10. t Séance 4. Des lumières blanches. Des lumières colorées. Les vitesses de la lumière

La lumière. Sommaire de la séquence 10. t Séance 4. Des lumières blanches. Des lumières colorées. Les vitesses de la lumière Sommaire de la séquence 10 La lumière t Séance 1 Des lumières blanches t Séance 2 Des lumières colorées t Séance 3 Les vitesses de la lumière t Séance 4 Je fais le point sur la séquence 10 Ce cours est

Plus en détail

01 CONCEPT 02 DETAILS 03 OPTIQUES 04 PUISSANCES 05 DONNEES TECHNIQUE CLOUD

01 CONCEPT 02 DETAILS 03 OPTIQUES 04 PUISSANCES 05 DONNEES TECHNIQUE CLOUD 01 CONCEPT 02 DETAILS 03 OPTIQUES 04 PUISSANCES 05 DONNEES TECHNIQUE CLOUD PROJECTEUR EXTRACTIBLE À DE DERNIÈRE GÉNÉRATION Le design particulier est ce qui distingue principalement CLOUD. En créant une

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

La recherche d'indices par fluorescence

La recherche d'indices par fluorescence La recherche d'indices par fluorescence Ces sources d éclairage à haute intensité permettent, en fluorescence, la mise en évidence d indices qui ne sont pas visibles ou peu à l oeil nu. Ex : empreintes

Plus en détail

Utiliser le logiciel Photofiltre Sommaire

Utiliser le logiciel Photofiltre Sommaire Utiliser le logiciel Photofiltre Sommaire 1. Quelques mots sur l image 2. Obtenir des images numériques 3. Le tableau de bord de logiciel PhotoFiltre 4. Acquérir une image 5. Enregistrer une image 6. Redimensionner

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Microscopie de fluorescence Etat de l art

Microscopie de fluorescence Etat de l art Etat de l art Bibliométrie (Web of sciences) CLSM GFP & TPE EPI-FLUORESCENCE 1 Fluorescence Diagramme de JABLONSKI S2 S1 10-12 s Excitation Eex Eem 10-9 s Émission Courtoisie de C. Spriet

Plus en détail