Un collectionneur achète un tableau Il le revend Il le rachète plus tard 7000 pour le revendre finalement 8000.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Un collectionneur achète un tableau 5000. Il le revend 6000. Il le rachète plus tard 7000 pour le revendre finalement 8000."

Transcription

1

2 Un collectionneur achète un tableau Il le revend Il le rachète plus tard 7000 pour le revendre finalement A-t-il gagné ou perdu de l argent? Combien?

3 Animation pédagogique Mathématiques au cycle 3 Décembre 2010 Enseignement des mathématiques au cycle 3

4 Pourquoi le choix des mathématiques? Evaluations nationales CM2 Janvier 2010 Résultats du français dans le Morbihan Résultats des mathématiques dans le Morbihan

5 Analyse des résultats Evaluations nationales CM2 Janvier 2010 LORIENT SUD Compétences dont le taux de réussite est compris entre 20 et 50%. Animation pédagogique Mathématiques au cycle 3 Novembre 2010 OGD 98 Savoir organiser les données d'un problème en vue de sa résolution CALCULS 77 Résoudre des problèmes relevant des quatre opérations 25.8 OGD 100 Résoudre des problèmes relevant de la proportionnalité 28.5 GM 96 Résoudre des problèmes concrets faisant intervenir des grandeurs et une ou plusieurs des quatre opérations OGD 99 Résoudre des problèmes relevant de la proportionnalité 32.0 NOMBRES 65 Écrire et nommer les nombres entiers, décimaux et les fractions CALCULS 83 Poser et effectuer une division d un nombre entier ou décimal par un nombre entier OGD 63 Savoir organiser les données d'un problème en vue de sa résolution GEOMETRIE 88 Reconnaître, et vérifier en utilisant les instruments, qu une figure est un carré, un rectangle, un losange, un triangle particulier, un parallélogramme. NOMBRES 66 Passer d'une écriture fractionnaire à une écriture à virgule et réciproquement GM 85 Connaître les unités de temps et leurs relations, et calculer des durées. Lire l heure sur un cadran à aiguilles OGD 62 Lire ou produire des tableaux et les analyser CALCULS 69 Calculer mentalement le résultat d une opération ou d une suite d opérations, ou le terme manquant d une opération CALCULS 70 Calculer mentalement le résultat d une opération ou d une suite d opérations, ou le terme manquant d une opération GEOMETRIE 89 Reconnaître, et vérifier en utilisant les instruments, qu une figure est un carré, un rectangle, un losange, un triangle particulier, un parallélogramme NOMBRES 72 Ordonner, comparer, encadrer des nombres. Les placer sur une droite graduée CALCULS 82 Poser et effectuer une division d un nombre entier ou décimal par un nombre entier

6 Animation pédagogique Mathématiques au cycle 3 Novembre 2010 Analyse des résultats Evaluations nationales CM2 Janvier 2010 LORIENT SUD Compétences dont le taux de réussite est inférieur à 20%. NOMBRES 68 GM 97 Passer d'une écriture fractionnaire à une écriture à virgule et réciproquement. Résoudre des problèmes concrets faisant intervenir des grandeurs et une ou plusieurs des quatre opérations GM 95 Estimer ou mesurer une longueur, calculer un périmètre, une aire, un volume. Connaître les différentes unités et leurs relations GM 94 Estimer ou mesurer une longueur, calculer un périmètre, une aire, un volume. Connaître les différentes unités et leurs relations. 19.9

7 Les mathématiques Des connaissances : suite des nombres ; principe de la numération de position ; qu est-ce qu un angle droit?... Des automatismes : dans les connaissances : tables ; opérations ; utiliser l équerre dans les raisonnements : sens des opérations ; calcul mental résolution de problèmes «simples» Le goût de la recherche et du raisonnement Résolution de problèmes «non simples» Recherche d informations dans des situations complexes (Orsay)

8 Les mathématiques : une discipline cumulative Les connaissances et les compétences s acquièrent progressivement, et toute lacune à un niveau donné peut s avérer un obstacle difficilement surmontable aux niveaux suivants Etre vigilant à chaque étape Les apprentissages se construisent dans la durée, par approfondissements et enrichissements successifs Penser en terme de progressions spiralaires

9 Exemple : progression des apprentissages sur les nombres décimaux La suite orale des nombres à la maternelle L écriture des nombres entiers au cycle 2 : principe de la numération décimale, irrégularité de leur désignation orale Comparer et ranger des nombres Les grands nombres Introduction des nombres décimaux au CM1 Lien avec les fractions décimales Partage de l unité Comparaison Approfondir au CM2 Plus de décimales Produire des décompositions liées à une écriture à virgule Valeur approchée

10 A partir de quelques productions d élèves Extraits des évaluations CM2

11 Animation pédagogique Savoir organiser les données d un problème Mathématiques en vue au cycle 3 Novembre 2010 de sa résolution (CE2) Analyse des résultats Familiarité avec les nombres + propriétés de linéarité Addition d entiers (CP) Addition de décimaux (CM1) Nombres décimaux (CM1) Fractions simples (CM1) Le gramme (CE1) Le litre (CE2) Utiliser un tableau ou la règle de trois dans des situations très simples de proportionnalité (CM1)

12 Analyse des résultats Animation pédagogique Mathématiques au cycle 3 Novembre 2010

13 Analyse des résultats Animation pédagogique Mathématiques au cycle 3 Novembre 2010

14 Analyse des résultats Animation pédagogique Mathématiques au cycle 3 Novembre 2010

15 Animation pédagogique Mathématiques au cycle 3 Novembre 2010 L enseignement des mathématiques ne se réduit pas à l entraînement d automatismes et d apport de connaissances. Ils sont nécessaires mais pas suffisants. Développer la résolution de problèmes, les automatismes et l apport de connaissances de façon conjointe

16 Vous avez un problème? «Un problème est généralement défini comme une situation initiale, avec un but à atteindre, demandant au sujet d élaborer une suite d actions ou d opérations pour atteindre ce but. Il n y a problème, dans un rapport sujet / situation, que si la solution n est pas disponible d emblée, mais possible à construire. C est dire aussi qu un problème pour un sujet donné peut ne pas être un problème pour un autre sujet, en fonction de leur niveau de développement intellectuel par exemple.» ERMEL (CM1)

17 La résolution de problème Elle engage de nombreux automatismes : le maître doit les repérer Souvent, plusieurs démarches possibles En formation, une démarche partielle mérite d être valorisée par l identification des réussites (et non «en cours d acquisition») Apprendre à expliquer son raisonnement : retravailler des productions d écrit ; être exigeant

18 Les moyens Proposer des situations mathématiques variées et structurantes Organiser son enseignement des mathématiques autour de la résolution de problèmes

19 Les textes officiels La résolution de problèmes joue un rôle essentiel dans l activité mathématique. Elle est présente dans tous les domaines et s exerce à tous les stades des apprentissages. Les capacités d organisation et de gestion des données (OGD) se développent par la résolution de problèmes de la vie courante ou tirés d autres enseignements.

20 Deux problèmes Quels sont les objectifs de l enseignant quand il propose chacun de ces problèmes à ses élèves?

21 Un fermier part compter ses poules et ses moutons. Quand il revient, il dit à sa famille : «j ai compté 40 têtes et 134 pattes» Combien a-t-il de poules et de moutons?

22 L énoncé est court PROBLEME OUVERT L énoncé n induit ni la méthode ni la solution pas de questions «montrer que» pas de questions intermédiaires pas de liens avec les dernières notions du cours Le champ conceptuel est familier aux élèves Tous les élèves doivent pouvoir «rentrer» dans le problème

23 Critères de réussite Prise d initiative et engagement dans une démarche Aboutissement de la démarche engagée Communication Utilisation de savoir ou de savoir-faire Manifestation d esprit critique

24 Un avion attend en bout de piste ses 600 passagers. Combien de voyages un bus de 55 places doitil effectuer pour transporter l ensemble des passagers à l avion? CM1

25 SITUATION-PROBLEME Construire des nouvelles compétences Amener les élèves au fur et à mesure à utiliser implicitement puis explicitement de nouveaux outils mathématiques.

26 Quatre enfants ont ramassé, au total, 100 coquillages et ont commencé à se les partager. Chacun en a déjà 13. A la fin, ils veulent tous avoir le même nombre. Combien chaque enfant doit-il encore recevoir de coquillages? CM1

27 Un fleuriste fait des bouquets composé de 3 œillets rouges et de 5 œillets blancs. Chaque bouquet est vendu 4. Ce matin, il a reçu 84 œillets rouges et 125 œillets blancs. Il fait le plus de bouquets possibles. Quelle somme recevra-t-il?

28 PROBLEME DE TRANSFERT Etendre le champ d application d une notion Dans un autre contexte que celui de l apprentissage de la notion et pour une finalité différente On travaille les capacités d adaptation de l élève face à de nouvelles situations

29 Animation pédagogique Mathématiques au cycle 3 Novembre 2010 Classement des problèmes Problèmes pour apprendre Problèmes pour chercher Situations-problèmes Problèmes dont la résolution vise la construction d une nouvelle connaissance. Problèmes de réinvestissement Problème destiné à permettre le réinvestissement de connaissances déjà travaillées, à les exercées. Problèmes de synthèse ou de transfert Problèmes plus complexes dont la résolution nécessite la mobilisation de plusieurs catégories de connaissances Problèmes ouverts Problèmes centrés sur le développement des capacités à chercher : en général, les élèves ne connaissent pas la solution experte.

30 La place de la résolution de problème dans l emploi du temps Un créneau réservé dans la semaine Une semaine sur deux, on travaille les problèmes ouverts, l autre semaine l organisation et la gestion des données

31 La place de la résolution de problème dans l emploi du temps Deux temps dans chaque période Un temps, on travaille les problèmes ouverts, l autre temps l organisation et la gestion des données

32 Organisation et gestion des données CM1 Interpréter un tableau Construire un graphique

33 Organisation et gestion des données CM2 Résoudre des problèmes relevant de la proportionnalité relatifs aux échelles Laquelle de ces cartes est la plus précise? A nous les Maths CM2 édition Sédrap

34 Organisation et gestion des données CE2 Utiliser un tableau ou un graphique en vue d un traitement des données.

35 Organisation et gestion des données CE2 Utiliser un tableau ou un graphique en vue d un traitement des données. Entoure le nom de la chaîne dont les émissions commencent le plus tard

36 CYCLE 3 Compétence: Utiliser un tableau ou la règle de trois dans des situations très simples de proportionnalité La tribu des maths

37 CYCLE 3 Compétence: Utiliser un tableau ou la règle de trois dans des situations très simples de proportionnalité Cap Math - HATIER

38 Compétence: Utiliser un tableau ou la règle de trois dans des situations très simples de proportionnalité CYCLE 3 J apprends les maths RETZ

39 CYCLE 3 Utiliser un tableau ou la règle de trois dans des situations très simples de proportionnalité Existe-t-il plusieurs procédures pour résoudre le problème? Les élèves sont-ils amenés à manipuler? A quels prérequis la situation fait-elle appel? La situation permet-elle de comprendre ce qu est une situation de proportionnalité? La situation favorise-telle l apport de nouveaux outils mathématiques? La tribu des maths Cap Math J apprends les maths

40 Ressources Problèmes ouverts Rallye maths de la circonscription de Jonzac : 5.htm Rallye maths de la circonscription de Jonzac : Défi maths de l'espace Coopératif de Sarrebourg : Rencontre maths de la circonscription d' Arras IV :

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

La construction du nombre en petite section

La construction du nombre en petite section La construction du nombre en petite section Éléments d analyse d Pistes pédagogiquesp 1 La résolution de problèmes, premier domaine de difficultés des élèves. Le calcul mental, deuxième domaine des difficultés

Plus en détail

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux

Plus en détail

NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2

NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /

Plus en détail

Temps forts départementaux. Le calcul au cycle 2 Technique opératoire La soustraction

Temps forts départementaux. Le calcul au cycle 2 Technique opératoire La soustraction Temps forts départementaux Le calcul au cycle 2 Technique opératoire La soustraction Calcul au cycle 2 La soustraction fait partie du champ opératoire additif D un point de vue strictement mathématique,

Plus en détail

Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année

Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année PALIER 2 CM2 La maîtrise de la langue française DIRE S'exprimer à l'oral comme à l'écrit dans un vocabulaire approprié

Plus en détail

Le jour et ses divisions

Le jour et ses divisions Le jour et ses divisions Le cadran de l horloge. Le cadran de l horloge est divisé en 12 heures, marquées par des nombres. Il est aussi divisé en 60 minutes, marquées par des petits traits. L heure (h)

Plus en détail

Programme de calcul et résolution d équation

Programme de calcul et résolution d équation Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

Synthèse «Le Plus Grand Produit»

Synthèse «Le Plus Grand Produit» Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique

Plus en détail

Document d aide au suivi scolaire

Document d aide au suivi scolaire Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde

Plus en détail

LIVRET PERSONNEL DE COMPÉTENCES

LIVRET PERSONNEL DE COMPÉTENCES Nom... Prénom... Date de naissance... Note aux parents Le livret personnel de compétences vous permet de suivre la progression des apprentissages de votre enfant à l école et au collège. C est un outil

Plus en détail

Les nombres entiers. Durée suggérée: 3 semaines

Les nombres entiers. Durée suggérée: 3 semaines Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Plan lutte. contre la difficulté scolaire. tout au long de l école du socle

Plan lutte. contre la difficulté scolaire. tout au long de l école du socle Plan lutte de contre la difficulté scolaire tout au long de l école du socle Rentrée 2012 Sommaire Présentation... 3 I - Mettre en œuvre «l école du socle»... 1 - Permettre à chaque élève de maîtriser

Plus en détail

ÉQUATIONS. Quel système!!!! PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION. Dossier n 3 Juin 2005

ÉQUATIONS. Quel système!!!! PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION. Dossier n 3 Juin 2005 ÉQUATIONS PROBLÈMES À DEUX INCONNUES : - MISE EN ÉQUATIONS - RÉSOLUTION 3 x + 5 y = 12 6 x + 4 y = 0 Quel système!!!! Dossier n 3 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par

Plus en détail

EQUATIONS ET INEQUATIONS Exercices 1/8

EQUATIONS ET INEQUATIONS Exercices 1/8 EQUATIONS ET INEQUATIONS Exercices 1/8 01 Résoudre les équation suivantes : x + 7 = 0 x 1 = 0 x + 4 = 0 3x 9 = 0 9x + 1 = 0 - x + 4 = 0-6x + = 0-5x 15 = 0-1 + 8x = 0-4 - 3x = 0-5x 3 + 7x = 0 + 6x 4 = 0

Plus en détail

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France

Plus en détail

Je découvre le diagramme de Venn

Je découvre le diagramme de Venn Activité 8 Je découvre le diagramme de Venn Au cours de cette activité, l élève découvre le diagramme de Venn et se familiarise avec lui. Pistes d observation L élève : reconnaît les éléments du diagramme

Plus en détail

de compétences Un atout pour apprendre et faciliter le recensement et la valorisation de mes expériences Mon portefeuille

de compétences Un atout pour apprendre et faciliter le recensement et la valorisation de mes expériences Mon portefeuille Mon portefeuille de compétences Un atout pour apprendre et faciliter le recensement et la valorisation de mes expériences Un atout pour réfléchir à la suite de mon parcours professionnel Service de Formation

Plus en détail

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.

Plus en détail

Guide d enseignement efficace des mathématiques, de la maternelle à la 3 e année Modélisation et algèbre

Guide d enseignement efficace des mathématiques, de la maternelle à la 3 e année Modélisation et algèbre Guide d enseignement efficace des mathématiques, de la maternelle à la 3 e année Modélisation et algèbre Fascicule 1 : Régularités et relations Le Guide d enseignement efficace des mathématiques, de la

Plus en détail

EVALUATIONS FIN CM1. Mathématiques. Livret élève

EVALUATIONS FIN CM1. Mathématiques. Livret élève Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les

Plus en détail

Organiser des séquences pédagogiques différenciées. Exemples produits en stage Besançon, Juillet 2002.

Organiser des séquences pédagogiques différenciées. Exemples produits en stage Besançon, Juillet 2002. Cycle 3 3 ème année PRODUCTION D'ECRIT Compétence : Ecrire un compte rendu Faire le compte rendu d'une visite (par exemple pour l'intégrer au journal de l'école ) - Production individuelle Précédée d'un

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 15 mars 2006 CLASSE DE PREMIERE ES, GMF Durée : 4 heures Les quatre exercices sont indépendants Les calculatrices sont autorisées L énoncé comporte trois pages Exercice

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

LA BATTERIE DU PORTABLE

LA BATTERIE DU PORTABLE LA BATTERIE DU PORTABLE Table des matières Fiche professeur... 2 Fiche élève... 4 Narration de séance et productions d élèves... 5 1 Fiche professeur LA BATTERIE DU PORTABLE Niveaux et objectifs pédagogiques

Plus en détail

Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes

Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes Apprendre à résoudre des problèmes numériques Utiliser le nombre pour résoudre des problèmes Ce guide se propose de faire le point sur les différentes pistes pédagogiques, qui visent à construire le nombre,

Plus en détail

- affichage digital - aiguille

- affichage digital - aiguille . Lire l heure On peut lire l heure sur une horloge, un réveil, une montre à : - affichage digital - aiguille A) La lecture sur un système digital est très simple, il suffit de lire les nombres écrits

Plus en détail

STATISTIQUES DESCRIPTIVES

STATISTIQUES DESCRIPTIVES 1 sur 7 STATISTIQUES DESCRIPTIVES En italien, «stato» désigne l état. Ce mot à donné «statista» pour «homme d état». En 1670, le mot est devenu en latin «statisticus» pour signifier ce qui est relatif

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

GRILLE D ANALYSE D UNE SEQUENCE D APPRENTISSAGE

GRILLE D ANALYSE D UNE SEQUENCE D APPRENTISSAGE GRILLE D ANALYSE D UNE SEQUENCE D APPRENTISSAGE 1 - LA DEFINITION DES OBJECTIFS DE LA SEQUENCE : - Ai-je bien identifié l objectif de la séquence? - Est-il clairement situé dans la progression générale

Plus en détail

Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée

Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée 1/5 Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée Étape 1 : associer la droite graduée à deux objets du quotidien : la règle graduée ici, celle de l'enseignant

Plus en détail

Les titres en gras correspondent à de nouveaux manuels

Les titres en gras correspondent à de nouveaux manuels CLASSES DE CM2 ANNEE SCOLAIRE 2015/2016 Interlignes (livre de l élève )ISBN 978-23 52 477 785 édititon SED Lecture envol Edition SED Référence 40 600 ( livre de l élève uniquement ) Bescherelle 12.000

Plus en détail

Carré parfait et son côté

Carré parfait et son côté LE NOMBRE Carré parfait et son côté Résultat d apprentissage Description 8 e année, Le nombre, n 1 Démontrer une compréhension des carrés parfaits et des racines carrées (se limitant aux nombres entiers

Plus en détail

Les enfants malentendants ont besoin d aide très tôt

Les enfants malentendants ont besoin d aide très tôt 13 CHAPITRE 2 Les enfants malentendants ont besoin d aide très tôt Pendant les premières années de leur vie, tous les enfants, y compris les enfants malentendants, apprennent rapidement et facilement les

Plus en détail

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE

Plus en détail

Normes de référence. Comparaison. Commande cognitive Sentiments épistémiques Incarnés dépendants de l activité

Normes de référence. Comparaison. Commande cognitive Sentiments épistémiques Incarnés dépendants de l activité Séminaire Sciences Cognitives et Education 20 Novembre 2012 Collège de France L importance de la Métacognition: Joëlle Proust Institut Jean-Nicod, Paris jproust@ehess.fr http://joelleproust.org.fr Plan

Plus en détail

Puissances d un nombre relatif

Puissances d un nombre relatif Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.

Plus en détail

L'EPS à l'école primaire aucune modification des programmes

L'EPS à l'école primaire aucune modification des programmes L'EPS à l'école primaire aucune modification des programmes Les 3 objectifs sont poursuivis aussi bien à l'école maternelle, qu'à l école primaire MATERNELLE * Favoriser la construction des actions motrices

Plus en détail

Technique opératoire de la division (1)

Technique opératoire de la division (1) Unité 17 Technique opératoire de la division (1) Effectuer un calcul posé : division euclidienne de deux entiers. 1 Trois camarades jouent aux cartes. Manu fait la distribution en donnant à chaque joueur

Plus en détail

UN TOURNOI A GAGNER ENSEMBLE

UN TOURNOI A GAGNER ENSEMBLE UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

Merci beaucoup de votre collaboration

Merci beaucoup de votre collaboration QUESTIONNAIRE ENSEIGNANTS ASSOCIÉS Ce questionnaire permettra de recueillir des informations sur l intégration des technologies de l information et de la communication (TIC) chez les futurs enseignants

Plus en détail

a)390 + 520 + 150 b)702 + 159 +100

a)390 + 520 + 150 b)702 + 159 +100 Ex 1 : Calcule un ordre de grandeur du résultat et indique s il sera supérieur à 1 000 L addition est une opération qui permet de calculer la somme de plusieurs nombres. On peut changer l ordre de ses

Plus en détail

Première éducation à la route Je suis piéton

Première éducation à la route Je suis piéton séance 1 Première éducation à la route Je suis piéton Je découvre Observe attentivement ce dessin puis décris ce qui se passe dans cette rue. Est-ce que tu as repéré des situations dangereuses? Lesquelles?

Plus en détail

DANS QUELLE MESURE LA CROISSANCE ECONOMIQUE PERMET-ELLE LE DEVELOPPEMENT?

DANS QUELLE MESURE LA CROISSANCE ECONOMIQUE PERMET-ELLE LE DEVELOPPEMENT? DANS QUELLE MESURE LA CROISSANCE ECONOMIQUE PERMET-ELLE LE DEVELOPPEMENT? Notions Celles que vous devez déjà connaître : Liste page 12 du manuel : si vous ne les connaissez pas, il faut reprendre vos cours

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

Sélection d un moteur de recherche pour intranet : Les sept points à prendre en compte

Sélection d un moteur de recherche pour intranet : Les sept points à prendre en compte Sélection d un moteur de recherche pour intranet : Les sept points à prendre en compte 1Les bases : vos objectifs 2 Sélection d un moteur de recherche pour intranet : Les sept points à prendre en compte

Plus en détail

Guide. d enseignement efficace des mathématiques. de la 4 e à la 6 e année. Mesure

Guide. d enseignement efficace des mathématiques. de la 4 e à la 6 e année. Mesure Guide d enseignement efficace des mathématiques de la 4 e à la 6 e année 2010 Guide d enseignement efficace des mathématiques, de la 4 e à la 6 e année Le Guide d enseignement efficace des mathématiques,

Plus en détail

Poker. A rendre pour le 25 avril

Poker. A rendre pour le 25 avril Poker A rendre pour le 25 avril 0 Avant propos 0.1 Notation Les parties sans * sont obligatoires (ne rendez pas un projet qui ne contient pas toutes les fonctions sans *). Celles avec (*) sont moins faciles

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

S entraîner au calcul mental

S entraîner au calcul mental E F C I - R E H S E S O S A PHOTOCOPIER S R U C Une collection dirigée par Jean-Luc Caron S entraîner au calcul mental CM Jean-François Quilfen Illustrations : Julie Olivier Sommaire Introduction au calcul

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Une stratégie d enseignement de la pensée critique

Une stratégie d enseignement de la pensée critique Une stratégie d enseignement de la pensée critique Jacques Boisvert Professeur de psychologie Cégep Saint-Jean-sur-Richelieu La pensée critique fait partie des capacités à développer dans la formation

Plus en détail

CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES

CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)

Plus en détail

Eléments de présentation du projet de socle commun de connaissances, de compétences et de culture par le Conseil supérieur des programmes

Eléments de présentation du projet de socle commun de connaissances, de compétences et de culture par le Conseil supérieur des programmes Eléments de présentation du projet de socle commun de connaissances, de compétences et de culture par le Conseil supérieur des programmes Le projet de socle de connaissances, de compétences et de culture,

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................

Plus en détail

Programme de la formation. Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE

Programme de la formation. Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE Programme de la formation Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE o 36 h pour la préparation à l'épreuve écrite de français Cette préparation comprend : - un travail sur la discipline

Plus en détail

LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION

LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION DES NOMBRES par Jean-Luc BREGEON professeur formateur à l IUFM d Auvergne LE PROBLÈME DE LA REPRÉSENTATION DES NOMBRES On ne conçoit pas un premier enseignement

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

eduscol Ressources pour la voie professionnelle Français Ressources pour les classes préparatoires au baccalauréat professionnel

eduscol Ressources pour la voie professionnelle Français Ressources pour les classes préparatoires au baccalauréat professionnel eduscol Ressources pour la voie professionnelle Ressources pour les classes préparatoires au baccalauréat professionnel Français Présentation des programmes 2009 du baccalauréat professionnel Ces documents

Plus en détail

Je fais le point 1. PrénoM :... Il y a... oiseaux. Guide de l enseignant p.64. Écris les nombres dictés. Écris les nombres effacés par Gribouille.

Je fais le point 1. PrénoM :... Il y a... oiseaux. Guide de l enseignant p.64. Écris les nombres dictés. Écris les nombres effacés par Gribouille. 1 Guide de l enseignant p.64 Écris les nombres dictés. Je fais le point 1 PrénoM :.... 2 Écris les nombres effacés par Gribouille. 2 20 1 4 11 10 1 16 1 3 Écris combien il y a d oiseaux. sur l image d

Plus en détail

LES CLES D UNE BONNE STRATEGIE A L EXPORT

LES CLES D UNE BONNE STRATEGIE A L EXPORT LES CLES D UNE BONNE STRATEGIE A L EXPORT CCI TOURAINE, pour le Colloque Techniloire, le 09/07/2009 Une bonne stratégie à l export ne s improvise pas CCI TOURAINE, pour le Colloque Techniloire, le 09/07/2009

Plus en détail

Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi!

Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi! Jour Prêt(e) pour le CE Tu es maintenant au CE. vant de commencer les leçons, nous allons réviser avec toi! Géométrie Retrouver un itinéraire en tenant compte des informations. Lis les explications de

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Les problèmes de la finale du 21éme RMT

Les problèmes de la finale du 21éme RMT 21 e RMT Finale mai - juin 2013 armt2013 1 Les problèmes de la finale du 21éme RMT Titre Catégorie Ar Alg Geo Lo/Co Origine 1. La boucle (I) 3 4 x x rc 2. Les verres 3 4 x RZ 3. Les autocollants 3 4 x

Plus en détail

MATHEMATIQUES GRANDEURS ET MESURES

MATHEMATIQUES GRANDEURS ET MESURES FICHE GM.01 Objectif : Choisir la bonne unité de mesure Pour chaque objet, choisis entre les trois propositions celle qui te paraît la plus juste : ta règle ton cahier une coccinelle ta trousse la Tour

Plus en détail

Révélez l actif qui est en vous

Révélez l actif qui est en vous Révélez l actif qui est en vous *Votre service régional > formation > Basse-Normandie Dans un monde du travail qui exige de plus en plus de compétences, la Région Basse-Normandie fait de la formation professionnelle

Plus en détail

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005

UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS. Dossier n 1 Juin 2005 UNITÉS ET MESURES UNITÉS DE MESURE DES LONGUEURS Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

Plus en détail

Préparation au CAP Installateur sanitaire (Incluant modules dépannage chaudières et chauffe-eau solaire / thermodynamique)

Préparation au CAP Installateur sanitaire (Incluant modules dépannage chaudières et chauffe-eau solaire / thermodynamique) Préparation au CAP Installateur sanitaire (Incluant modules dépannage chaudières et chauffe-eau solaire / thermodynamique) Sommaire 1. PREAMBULE... 2 2. INTRODUCTION... 2 3. L INSTALLATEUR SANITAIRE...

Plus en détail

Défi 1 Qu est-ce que l électricité statique?

Défi 1 Qu est-ce que l électricité statique? Défi 1 Qu estce que l électricité statique? Frotte un ballon de baudruche contre la laine ou tes cheveux et approchele des morceaux de papier. Décris ce que tu constates : Fiche professeur Après avoir

Plus en détail

Descripteur global Interaction orale générale

Descripteur global Interaction orale générale Descripteur global Peut produire des expressions simples isolées sur les gens et les choses. Peut se décrire, décrire ce qu il fait, ainsi que son lieu d habitation. Interaction orale générale Peut interagir

Plus en détail

Annexe 3. Le concept : exemple d une situation d apprentissage.

Annexe 3. Le concept : exemple d une situation d apprentissage. Annexe 3. Le concept : exemple d une situation d apprentissage. Le concept choisi ici comme exemple est une figure arbitrairement définie, appelée «WEZ», reprise d une expérience de Smoke cité dans un

Plus en détail

LES REPRESENTATIONS DES NOMBRES

LES REPRESENTATIONS DES NOMBRES LES CARTES A POINTS POUR VOIR LES NOMBRES INTRODUCTION On ne concevrait pas en maternelle une manipulation des nombres sans représentation spatiale. L enfant manipule des collections qu il va comparer,

Plus en détail

PARTIE NUMERIQUE (18 points)

PARTIE NUMERIQUE (18 points) 4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème

Plus en détail

LES NOMBRES DECIMAUX. I. Les programmes

LES NOMBRES DECIMAUX. I. Les programmes LES NOMBRES DECIMAUX I. Les programmes Au cycle des approfondissements (Cours Moyen), une toute première approche des fractions est entreprise, dans le but d aider à la compréhension des nombres décimaux.

Plus en détail

Stage à la Société Générale Ingénierie Financière. Note de Prise de Recul

Stage à la Société Générale Ingénierie Financière. Note de Prise de Recul Stage à la Société Générale Ingénierie Financière Note de Prise de Recul I. Rôle et Missions Assignés a. Description de l environnement de travail Au cours de mon stage, je travaille au sein du département

Plus en détail

Eléments de débat ACPR. Vous trouverez dans ce document :

Eléments de débat ACPR. Vous trouverez dans ce document : Eléments de débat ACPR Vous trouverez dans ce document : 1. Le courrier de l ACP (Autorité de Contrôle Prudentiel) qui fournit un premier cadre en vue d une reconnaissance légale (ou non) de nos projets

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

APPRENDRE LA CHIMIE EN ZEP

APPRENDRE LA CHIMIE EN ZEP Résumé du rapport de recherche destiné au Centre Alain Savary, INRP APPRENDRE LA CHIMIE EN ZEP Martine Méheut, Olivier Prézeau INRP, Centre Alain Savary Apprendre la chimie en ZEP Résumé 1 Dans une perspective

Plus en détail

Nombres et calcul numérique

Nombres et calcul numérique Accompagnement personnalisé PFEG - Math A quoi sert une banque? Nombres et calcul numérique Organisation et gestion de données Fonctions Grandeurs et mesures Calcul littéral Remerciements à Mesdames Hélène

Plus en détail

Tests de logique. Valérie CLISSON Arnaud DUVAL. Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4

Tests de logique. Valérie CLISSON Arnaud DUVAL. Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4 Valérie CLISSON Arnaud DUVAL Tests de logique Groupe Eyrolles, 2003 ISBN : 2-7081-3524-4 CHAPITRE 1 Mise en bouche Les exemples qui suivent constituent un panorama de l ensemble des tests de logique habituellement

Plus en détail

Primaire. analyse a priori. Lucie Passaplan et Sébastien Toninato 1

Primaire. analyse a priori. Lucie Passaplan et Sébastien Toninato 1 Primaire l ESCALIER Une activité sur les multiples et diviseurs en fin de primaire Lucie Passaplan et Sébastien Toninato 1 Dans le but d observer les stratégies usitées dans la résolution d un problème

Plus en détail

INFO 2 : Traitement des images

INFO 2 : Traitement des images INFO 2 : Traitement des images Objectifs : Comprendre la différence entre image vectorielle et bipmap. Comprendre les caractéristiques d'une image : résolution, définition, nombre de couleurs, poids Etre

Plus en détail

Réseau d Éducation Prioritaire de Harnes. Défis-math 2001-2009. Énoncés

Réseau d Éducation Prioritaire de Harnes. Défis-math 2001-2009. Énoncés Réseau d Éducation Prioritaire de Harnes Défis-math 2001-2009 Énoncés Défi-math 2001 Défi-math 2001 Défi n 1 On ne peut se déplacer dans ce labyrinthe qu en montant vers une case contenant un nombre plus

Plus en détail

Guide d enseignement efficace des mathématiques

Guide d enseignement efficace des mathématiques Guide d enseignement efficace des mathématiques de la maternelle à la 3 e année 11 12 1 10 2 9 3 8 4 7 6 5 Guide d enseignement efficace des mathématiques, de la maternelle à la 3 e année Le Guide d enseignement

Plus en détail

L intégration des TIC chez les futurs enseignants : votre point de vue

L intégration des TIC chez les futurs enseignants : votre point de vue L intégration des TIC chez les futurs enseignants : votre point de vue Réservé à l administration Associés Questionnaire - Enseignants associés 1 QUESTIONNAIRE ENSEIGNANTS ASSOCIÉS Ce questionnaire permettra

Plus en détail

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

Bombyx, rallye mathématique de Ganges et de l académie de Montpellier.

Bombyx, rallye mathématique de Ganges et de l académie de Montpellier. Bombyx-Texte_Mise en page 1 21/04/15 06:32 Page184 184 Dossier : Rallyes et compétitions entre équipes Bombyx le rallye mathématique de Ganges et de l académie de Montpellier Jean Versac 1. Présentation

Plus en détail

PROGRAMME INTERNATIONAL POUR LE SUIVI DES ACQUIS DES ÉLÈVES QUESTIONS ET RÉPONSES DE L ÉVALUATION PISA 2012 DE LA CULTURE FINANCIÈRE

PROGRAMME INTERNATIONAL POUR LE SUIVI DES ACQUIS DES ÉLÈVES QUESTIONS ET RÉPONSES DE L ÉVALUATION PISA 2012 DE LA CULTURE FINANCIÈRE PROGRAMME INTERNATIONAL POUR LE SUIVI DES ACQUIS DES ÉLÈVES QUESTIONS ET RÉPONSES DE L ÉVALUATION PISA 2012 DE LA CULTURE FINANCIÈRE TABLE DES MATIÈRES INTRODUCTION... 3 QUESTION NIVEAU 1: FACTURE... 4

Plus en détail