Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.

Dimension: px
Commencer à balayer dès la page:

Download "Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7."

Transcription

1 Statistique Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.fr Cours Statistique, 2010 p. 1/52

2 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 2/52

3 Bibliographie B. Lacaze, M. Maubourguet, C. Mailhes et J.-Y. Tourneret, Probabilités et Statistique appliquées, Cépadues, Athanasios Papoulis and S. Unnikrishna Pillai, Probability, Random Variable and Stochastic Processes, McGraw Hill Higher Education, 4th edition, Cours Statistique, 2010 p. 3/52

4 Modèle Statistique Observations x 1,...,x n Échantillon X 1,...,X n n va iid associées aux observations Estimateur θ(x 1,...,X n ) ou θ n ou θ Cours Statistique, 2010 p. 4/52

5 Qualités d un estimateur θ R Biais (erreur systématique) : b n (θ) = E Variance v n (θ) = E [ ( θn E ( θn )) 2 ] = E ( θn ) [ θ 2 n ] E Erreur quadratique moyenne (précision) [ ) ] 2 e n (θ) = E ( θn θ = v n (θ) + b 2 n(θ) θ ( θn ) 2 CS de convergence : θ n est un estimateur convergent si lim b n(θ) = lim v n(θ) = 0 n + n + Cours Statistique, 2010 p. 5/52

6 Qualités d un estimateur θ R p Biais b n (θ) = E ( θn ) θ R p Matrice de covariance E [ ( θn E ( θn )) ( θn E ( θn )) T ] Cours Statistique, 2010 p. 6/52

7 Exemples Exemple 1 : X i N(m,σ 2 ), θ = m et σ 2 connue Moyenne empirique θ n = 1 n X i n Autre estimateur θ n = i=1 2 n(n + 1) n ix i i=1 Exemple 2 : X i N(m,σ 2 ), θ = σ 2, m connue ou inconnue Exemple 3 : X i N(m,σ 2 ), θ = (m,σ 2 ) T Cours Statistique, 2010 p. 7/52

8 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 8/52

9 Inégalité de Cramér Rao Vraisemblance L(x 1,...,x n ;θ) = { X i va discrète : P[X 1 = x 1,...,X n = x n ] X i va continue : p(x 1,...,x n ) Inégalité pour θ R Définition ) Var ( θn E [1 + b n(θ)] 2 [ 2 ln L(X 1,...,X n ;θ) θ 2 ] = BCR(θ) BCR(θ) est appelée Borne de Cramér Rao de θ Hypothèses Log-vraisemblance deux fois dérivable et support de la loi indépendant de θ (contre-exemple : loi U[0,θ]) Cours Statistique, 2010 p. 9/52

10 Inégalité de Cramér Rao Estimateur ) Efficace : estimateur sans biais tel que Var ( θn = BCR(θ) (Il est unique!) Exemple : X i N(m,σ 2 ), θ = m et σ 2 connue Cas où (X 1,...,X n ) est un échantillon Var ( θn ) ne [1 + b n(θ)] 2 [ 2 ln L(X 1 ;θ) θ 2 ] = BCR(θ) Cours Statistique, 2010 p. 10/52

11 Cas multivarié Inégalité pour un estimateur non biaisé de θ R p ) Cov ( θ I 1 n (θ) [ ] avec I ij = E 2 ln L(X 1,...,X n ;θ) θ i θ j pour i,j = 1,...,p et A B signifie A B matrice semi définie positive x T (A B)x 0, x R p On en déduit Var ( θi ) [ I 1 n (θ) ] ii Exemple : X i N(m,σ 2 ), θ = (m,σ 2 ) T. Cours Statistique, 2010 p. 11/52

12 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 12/52

13 Méthode du Maximum de Vraisemblance Définition θ MV = arg max θ L(X 1,...,X n ;θ) Recherche du maximum pour θ R Si L(X 1,...,X n ;θ) est deux fois dérivable et si les bornes de la loi de X i sont indépendantes de θ L(X 1,...,X n ;θ) θ = 0 ou ln L(X 1,...,X n ;θ) θ = 0 On vérifie qu on a bien un maximum en étudiant ln L(X 1,...,X n ;θ) θ 0 ou 2 ln L(X 1,...,X n ; θ MV ) θ 2 < 0 Cours Statistique, 2010 p. 13/52

14 Méthode du Maximum de Vraisemblance Recherche du maximum pour θ R p L(X 1,...,X n ;θ) = 0 ou ln L(X 1,...,X n ;θ i ) θ i θ = 0 pour i = 1,...,p Exemples Exemple 1 : X i P(λ), θ = λ Exemple 2 : X i N(m,σ 2 ), θ = (m,σ 2 ) T Cours Statistique, 2010 p. 14/52

15 Propriétés Estimateur asymptotiquement non biaisé Estimateur convergent ] lim [ θmv E n + θ = 0 Estimateur asymptotiquement efficace ) ( θi lim n + Normalité Asymptotique Var [ I 1 n (θ) ] ii = 1 Cours Statistique, 2010 p. 15/52

16 Propriétés Invariance Fonctionnelle Si µ = h(θ), où h est une fonction bijective d un ouvert O R p dans un ouvert V R p, alors ) µ MV = h ( θmv Conclusions L estimateur du maximum de vraisemblance θ MV possède beaucoup de bonnes propriétés asymptotiques mais peut être difficile à étudier car il est la solution d un problème d optimisation. Cours Statistique, 2010 p. 16/52

17 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 17/52

18 Méthode des moments Définition : supposons que X 1,...,X n ont la même loi de paramètre inconnu θ R p. En général, le vecteur paramètre à estimer θ est lié aux premiers moments de la loi commune des va X i par une relation notée θ = h(m 1,...,m q ) avec m k = E[Xi k ] et q p. Un estimateur des moments de θ est défini par n θ Mo = h( m 1,..., m q ) avec m k = 1 n Exemple : X i N(m,σ 2 ), θ = (m,σ 2 ) T i=1 X k i Cours Statistique, 2010 p. 18/52

19 Propriétés Estimateur convergent Normalité Asymptotique Conclusion : peu de propriétés mais cet estimateur est généralement facile à étudier. Cours Statistique, 2010 p. 19/52

20 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 20/52

21 Estimation Bayésienne Principe : l estimation Bayésienne consiste à estimer un vecteur paramètre inconnu θ R p à l aide de la vraisemblance de X 1,...,X n (paramétrée par θ) et d une loi a priori ( p(θ). Pour cela, on minimise une fonction de coût c θ, θ ) qui représente l erreur entre θ et θ. Estimateur MMSE : l estimateur qui minimise l erreur ( quadratique moyenne c θ, θ ) [ ( = E θ θ ) ] 2 est θ MMSE = E (θ X 1,...,X n ) Remarque : p (θ x 1,...,x n ) est la loi a posteriori de θ Preuve : voir cours Cours Statistique, 2010 p. 21/52

22 Estimation Bayésienne Estimateur MAP : l estimateur du maximum a posteriori (MAP) est défini par θ MAP = arg max θ p(θ X 1,...,X n ) Cet estimateur minimise la fonction de coût ( c θ, θ ) 1 si θ θ > = 0 si θ θ < avec arbitrairement petit. Preuve : voir livre de H. Van Trees Cours Statistique, 2010 p. 22/52

23 Exemple Vraisemblance Loi a priori Loi a posteriori X i N(θ,σ 2 ) θ N(µ,ν 2 ) θ X 1,...,X n N ( m p,σp 2 ) Estimateurs Bayésiens θ MAP = θ MMSE = m p = X ( nν 2 nν 2 + σ 2 ) + µ ( σ 2 ) σ 2 + nν 2 Cours Statistique, 2010 p. 23/52

24 Plan du cours Chapitre 1 : Estimation Modèle statistique, qualités d un estimateur, exemples Inégalité de Cramér Rao Maximum de vraisemblance Méthode des moments Estimation Bayésienne Intervalles de confiance Chapitre 2 : Tests Statistiques Cours Statistique, 2010 p. 24/52

25 Intervalles de confiance Principe : un intervalle de confiance [a,b] pour le paramètre θ R est un intervalle tel que P[a < θ < b] = α, où α est le paramètre de confiance (en général α = 0.99 ou α = 0.95). Détermination pratique de l intervalle : on cherche un estimateur de θ noté θ (par la méthode des moments, du maximum de vraisemblance,...), on en déduit une statistique T(X 1,...,X n ) qui dépend de θ de loi connue, on cherche c(θ) et d(θ) tels que P[c(θ) < T(X 1,...,X n ) < d(θ)] = α On en déduit l intervalle [a, b]. Cours Statistique, 2010 p. 25/52

26 Exemples Exemple 1 : X i N(m,σ 2 ), m inconnue, σ 2 connue. T = 1 n n i=1 X i m σ/ n N(0, 1) Exemple 3 : X i N(m,σ 2 ), IC pour m, σ 2 inconnue. donc T N(0, 1) et U = 1 n ( Xi σ 2 X ) 2 χ 2 n 1 T U n 1 i=1 t n 1 suit une loi de Student à n 1 degrés de liberté. Cours Statistique, 2010 p. 26/52

27 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 27/52

28 Généralités Principe : un test statistique est un mécanisme qui permet de décider entre plusieurs hypothèses H 0,H 1,... à partir de n observations x 1,...,x n. On se limitera dans ce cours à deux hypothèses H 0 et H 1. Effectuer un test, c est déterminer une statistique de test T(X 1,...,X n ) et un ensemble tel que H 0 rejetée si T(X 1,...,X n ) H 0 acceptée si T(X 1,...,X n ) /. (1) Vocabulaire H 0 est l hypothèse nulle H 1 est l hypothèse alternative {(x 1,...,x n ) T(x 1,...,x n ) } : région critique Cours Statistique, 2010 p. 28/52

29 Définitions Tests paramétriques et non paramétriques Hypothèses simples et hypothèses composites Risque de première espèce = probabilité de fausse alarme α = PFA = P[Rejeter H 0 H 0 vraie] Risque de seconde espèce = probabilité de non-détection β = PND = P[Rejeter H 1 H 1 vraie] Puissance du test = probabilité de détection : π = 1 β Cours Statistique, 2010 p. 29/52

30 Exemple Hypothèses X i N(m,σ 2 ), σ 2 connue Stratégie du test H 0 : m = m 0, H 1 : m = m 1 > m 0 Rejet de H 0 si X = 1 n n i=1 X i > S α Problèmes Déterminer le seuil S α, le risque β et la puissance du test π. Cours Statistique, 2010 p. 30/52

31 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 31/52

32 Courbes COR Caractéristiques opérationnelles du récepteur PD = h(pfa) Exemple : X i N(m,σ 2 ), σ 2 connue H 0 : m = m 0, H 1 : m = m 1 > m 0 Probabilité de fausse alarme S α = m 0 + σ F 1 (1 α) n Probabilité de détection PD = π = F ( ) S α m 1 σ n Cours Statistique, 2010 p. 32/52

33 Représentation graphique ROC s for iid and correlated sequences Probability of Detection iid sequence λ 1 =22 correlated sequence λ 1 =22 iid sequence λ 1 =23 correlated sequence λ 1 = Probability of False Alarm Cours Statistique, 2010 p. 33/52

34 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 34/52

35 Théorème de Neyman-Pearson Test paramétrique à hypothèses simples H 0 : θ = θ 0 et H 1 : θ = θ 1 (2) Variables aléatoires continues Théorème : à α fixé, le test qui minimise β (ou maximise π) est défini par Rejet de H 0 si L(x 1,...,x n H 1 ) L(x 1,...,x n H 0 ) > S α Remarque : L(x 1,...,x n H i ) = f(x 1,...,x n θ i ) Exemple : X i N(m,σ 2 ), σ 2 connue H 0 : m = m 0, H 1 : m = m 1 > m 0 Cours Statistique, 2010 p. 35/52

36 Résumé Effectuer un test de Neyman-Pearson, c est 1) Déterminer la statistique et la région critique du test 2) Déterminer la relation entre le seuil S α et le risque α 3) Calculer le risque β et la puissance π du test (ou la courbe COR) 4) Application numérique : on accepte ou rejette l hypothèse H 0 en précisant le risque α donné Cours Statistique, 2010 p. 36/52

37 Théorème de Neyman-Pearson Variables aléatoires discrètes Théorème : parmi tous les tests de risque de première espèce α fixé, le test de puissance maximale est défini par Remarque : Rejet de H 0 si L(x 1,...,x n H 1 ) L(x 1,...,x n H 0 ) > S α L(x 1,...,x n H i ) = P [X 1 = x 1,...,X n = x n θ i ] Exemple : X i P(λ), H 0 : λ = λ 0, H 1 : λ = λ 1 > λ 0 Loi asymptotique : quand n est suffisamment grand, utilisation du théorème de la limite centrale Cours Statistique, 2010 p. 37/52

38 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 38/52

39 Test du rapport de vraisemblance généralisé Test paramétrique à hypothèses composites H 0 : θ Θ 0 et H 1 : θ Θ 1 (3) Définition (Test GLR) Rejet de H 0 si L L ) (x 1,...,x n θ MV 1 (x 1,...,x n θ MV 0 ) > S α MV MV où θ 0 et θ 1 sont les estimateurs du maximum de vraisemblance de θ sous les hypothèses H 0 et H 1. Remarque L ) (x 1,...,x n θ MV i = sup θ Θ i L (x 1,...,x n θ) Cours Statistique, 2010 p. 39/52

40 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 40/52

41 Test du χ 2 Le test du χ 2 est un test non paramétrique d ajustement (ou d adéquation) qui permet de tester les deux hypothèses suivantes H 0 : L = L 0, H 1 : L L 0 où L 0 est une loi donnée. Le test consiste à déterminer si (x 1,...,x n ) est de loi L 0 ou non. On se limitera dans ce cours au cas simple où x i R. Définition Rejet de H 0 si φ n = K k=1 (Z k np k ) 2 np k > S α Remarque : L 0 peut être une loi discrète ou continue Cours Statistique, 2010 p. 41/52

42 Test du χ 2 Statistique de test Z k : nombre d observations x i appartenant à la classe C k, k = 1,...,K p k : probabilité qu une observation x i appartienne à la classe C k sachant X i L 0 P [X i C k X i L 0 ] n : nombre total d observations Loi de la statistique de test φ n L n χ 2 K 1 Cours Statistique, 2010 p. 42/52

43 Remarques Interprétation de φ φ n = K k=1 n p k ( ) 2 Zk n p k Distance entre probabilités théoriques et empiriques Loi asymptotique de φ n : voir notes de cours ou livres Nombre d observations fini Une heuristique dit que la loi asymptotique de φ n est une bonne approximation pour n fini si 80% des classes vérifient np k 5 et si p k > 0, k = 1,...,K Classes équiprobables Cours Statistique, 2010 p. 43/52

44 Remarques Correction Lorsque les paramètres de la loi L 0 sont inconnus φ n L n χ 2 K 1 n p où n p est le nombre de paramètres inconnus estimés par la méthode du maximum de vraisemblance Puissance du test Non calculable Cours Statistique, 2010 p. 44/52

45 Exemple Est-il raisonnable de penser que ces observations sont issues d une population de loi N (1, 4)? Solution Classes C 1 : ], 0.34],C 2 : ] 0.34, 1],C 3 : ]1, 2.34],C 4 : ]2.34, [ Nombres d observations Z 1 = 7, Z 2 = 12, Z 3 = 10, Z 4 = 11 Cours Statistique, 2010 p. 45/52

46 Exemple Statistique de test φ n = 1.4 Seuils χ 2 2 χ 2 3 S S donc on accepte l hypothèse H 0 avec les risques α = 0.01 et α = Cours Statistique, 2010 p. 46/52

47 Plan du cours Chapitre 1 : Estimation Chapitre 2 : Tests Statistiques Généralités, exemple Courbes COR Théorème de Neyman Pearson Test du rapport de vraisemblance généralisé Test du χ 2 Test de Kolmogorov Cours Statistique, 2010 p. 47/52

48 Test de Kolmogorov Le test de Kolmogorov est un test non paramétrique d ajustement (ou d adéquation) qui permet de tester les deux hypothèses suivantes H 0 : L = L 0, H 1 : L L 0 où L 0 est une loi donnée. Le test consiste à déterminer si (x 1,...,x n ) est de loi L 0 ou non. On se limitera dans ce cours au cas simple où x i R. Définition Rejet de H 0 si D n = sup F(x) F 0 (x) > S α x R Remarque : L 0 doit être une loi continue Cours Statistique, 2010 p. 48/52

49 Remarques Statistique de test F 0 (x) est la fonction de répartition théorique associée à L 0 et F(x) est la fonction de répartition empirique de (x 1,...,x n ) Loi asymptotique de D n : voir livres P[ nd n < y] n + k= ( 1) k exp( 2k 2 y) = K(y) Détermination du seuil S α : S α = 1 n K 1 (1 α) Le seuil dépend de α et de n. Cours Statistique, 2010 p. 49/52

50 Remarques Calcul de D n E + i = F ( x + i D n = max i {1,...,n} max{e+ i,e i } ) F0 (x i), E i = F ( x i ) F0 (x i) Rq : x 1,...,x n est la statistique d ordre de x 1,...,x n. Rq : F ( x + ) ( ) i = i/n et F x i = (i 1)/n. Puissance du test Non calculable Cours Statistique, 2010 p. 50/52

51 Exemple Est-il raisonnable de penser que ces observations sont issues d une population de loi uniforme sur [0, 1]? x i E i E + i Max(E + i, E i ) x i E i E + i e 3 Max(E + i, E i ) Cours Statistique, 2010 p. 51/52

52 Exemple Statistique de test D n = 0.17 Seuils pour n = 20 S S donc on accepte l hypothèse H 0 avec les risques α = 0.01 et α = Cours Statistique, 2010 p. 52/52

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Cours d introduction à la théorie de la détection

Cours d introduction à la théorie de la détection Olivier J.J. MICHEL Département EEA, UNSA v1.mars 06 olivier.michel@unice.fr Laboratoire LUAN UMR6525-CNRS Cours d introduction à la théorie de la détection L ensemble du document s appuie très largement

Plus en détail

choisir H 1 quand H 0 est vraie - fausse alarme

choisir H 1 quand H 0 est vraie - fausse alarme étection et Estimation GEL-64943 Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts

Plus en détail

Théorie de l estimation et de la décision statistique

Théorie de l estimation et de la décision statistique Théorie de l estimation et de la décision statistique Paul Honeine en collaboration avec Régis Lengellé Université de technologie de Troyes 2013-2014 Quelques références Decision and estimation theory

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux

Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux hétérogènes Laurent Déjean Thales Airborne Systems/ENST-Bretagne Le 20 novembre 2006 Laurent Déjean Détection en

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Cours de méthodes de scoring

Cours de méthodes de scoring UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Classification non supervisée

Classification non supervisée AgroParisTech Classification non supervisée E. Lebarbier, T. Mary-Huard Table des matières 1 Introduction 4 2 Méthodes de partitionnement 5 2.1 Mesures de similarité et de dissimilarité, distances.................

Plus en détail

Économetrie non paramétrique I. Estimation d une densité

Économetrie non paramétrique I. Estimation d une densité Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

Econométrie et applications

Econométrie et applications Econométrie et applications Ecole des Ponts ParisTech Département Sciences Economiques Gestion Finance Nicolas Jacquemet (nicolas.jacquemet@univ-paris1.fr) Université Paris 1 & Ecole d Economie de Paris

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Cours de Tests paramétriques

Cours de Tests paramétriques Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

STATISTIQUES. UE Modélisation pour la biologie

STATISTIQUES. UE Modélisation pour la biologie STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE UNIVERSITÉ DU QUÉBEC À MONTRÉAL TESTS EN ÉCHANTILLONS FINIS DU MEDAF SANS LA NORMALITÉ ET SANS LA CONVERGENCE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIE PAR MATHIEU SISTO NOVEMBRE

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Modèles et Méthodes de Réservation

Modèles et Méthodes de Réservation Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE

ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE JEAN-DENIS FOUKS, EMMANUEL LESIGNE ET MARC PEIGNÉ J.-D. Fouks. École Supérieure d Ingénieurs de Poitiers. 40 avenue du Recteur Pineau, 860 Poitiers

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

2 TABLE DES MATIÈRES. I.8.2 Exemple... 38

2 TABLE DES MATIÈRES. I.8.2 Exemple... 38 Table des matières I Séries chronologiques 3 I.1 Introduction................................... 3 I.1.1 Motivations et objectifs......................... 3 I.1.2 Exemples de séries temporelles.....................

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Bases : Probabilités, Estimation et Tests.

Bases : Probabilités, Estimation et Tests. Université René Descartes LMD Sciences de la Vie et de la Santé UFR Biomédicale, M1 de Santé Publique 45 rue des Saints-Père, 75 006 Paris Spécialité Biostatistique M1 COURS de BIOSTATISTIQUE I Bases :

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Le Modèle Linéaire par l exemple :

Le Modèle Linéaire par l exemple : Publications du Laboratoire de Statistique et Probabilités Le Modèle Linéaire par l exemple : Régression, Analyse de la Variance,... Jean-Marc Azaïs et Jean-Marc Bardet Laboratoire de Statistique et Probabilités

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

Équation de Langevin avec petites perturbations browniennes ou

Équation de Langevin avec petites perturbations browniennes ou Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,

Plus en détail

Lagrange, où λ 1 est pour la contrainte sur µ p ).

Lagrange, où λ 1 est pour la contrainte sur µ p ). Chapitre 1 Exercice 1 : Portefeuilles financiers Considérons trois types d actions qui sont négociées à la bourse et dont les rentabilités r 1, r 2 et r 3 sont des variables aléatoires d espérances µ i

Plus en détail

MAP 553 Apprentissage statistique

MAP 553 Apprentissage statistique MAP 553 Apprentissage statistique Université Paris Sud et Ecole Polytechnique http://www.cmap.polytechnique.fr/~giraud/map553/map553.html PC1 1/39 Apprentissage? 2/39 Apprentissage? L apprentissage au

Plus en détail

Modélisation de séries financières par un modèle multifractal. Céline Azizieh

Modélisation de séries financières par un modèle multifractal. Céline Azizieh Modélisation de séries financières par un modèle multifractal Céline Azizieh Mémoire présenté à l Université Libre de Bruxelles en vue d obtenir le diplôme d actuaire Supervision: W. Breymann (RiskLab,

Plus en détail

Tests semi-paramétriques d indépendance

Tests semi-paramétriques d indépendance Tests semi-paramétriques d indépendance Bernard Colin et Ernest Monga Département de Mathématiques Université de Sherbrooke Sherbrooke J1K-2R1 (Québec) Canada Rapport de recherche N o 139 Abstract Let

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Validation probabiliste d un Système de Prévision d Ensemble

Validation probabiliste d un Système de Prévision d Ensemble Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail