DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE"

Transcription

1 UNIVERSITE DE TUNIS Faculé des sciences économiques e de gesion de Tunis MODELE DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE Ezzeddine MBAREK

2 INTRODUCTION Le modèle que je propose préend de rouver une soluion adéquae e saisfaisane aux différenes quesions posées par les chercheurs e surou les professionnels quan à l éude des projecions e des simulaions des recees, des dépenses e de l équilibre des régimes de la sécurié sociale en enan compe de l évoluion des variables démographiques, économiques e aures. Ce modèle rès flexible perme en oure de déerminer selon des schémas éablis e en enan compe des différens scénarios le aux de coisaions d équilibre e de prévoir les déficis à ou insan. De même, ce modèle s adape aux simulaions par ses équaions linéaires en offran des opporuniés à des applicaions informaiques les plus redouables e à la programmaion. C es un ouil facile à manipuler pour mesurer l impac e les effes des changemens qui inrviennen au niveau de la poliique sociale pour mieux prévoir l avenir dans un environnemen de plus en plus incerain. SECTION 1 : LES COTISATIONS Les coisaions au profi de la sécurié sociale son assises pour ous les régimes sur les salaires ou le gain compe enu d un aux de coisaion fixé par la législaion en vigueur. En général, il y a deux aux de coisaion, l un pour l employeur e l aure pour l assuré. La masse oale des coisaions es proporionnelle au nombre des coisans. Pour un individu i, la somme qui revien à la sécurié sociale à l insan es : Ci = h. Si ( 1 ) h = he + ha ( 2 ) 2

3 Avec emps. Ci : coisaions se rapporan à l individu i au Si : salaire bru de l individu i au emps. he : aux de coisaion employeur ha : aux de coisaion assuré h : aux de coisaion global La coisaion oale es : N C = Ci i = 1,.., ( 3 ) I=1 Avec N : la populaion coisane à l insan. Remplaçons mainenan Ci par sa valeur dans ( 3 ), on aura : N C = h. Si i = 1,., ( 4 ) N I=1 On pose S = Si qui consiue la masse salariale, d où I=1 ( 4 ) devien : 3

4 C = h. S ( 5 ) On peu ransformer l équaion (5 ) pour obenir C en foncion de h, du salaire moyen SM e du nombre de coisans N comme sui : C = h. S. N / N = h. ( S / N ). N S / N consiue le salaire moyen SM au emps. D où C = h. SM. N ( 6 ) A parir de ce modèle, on peu en déduire facilemen les projecions des coisaions. Supposons mainenan que le nombre de coisans e le salaire moyen évoluen respecivemen avec un aux d accroissemen annuel moyen de a1 e de b1. On uilise le schéma suivan pour décrire cee évoluion : N = No. ( 1 + a1 ) ( 7 ) 4

5 SM = SMo. ( 1 + b1 ) ( 8 ) De ce fai l équaion ( 6 ) devien : C = h. No. SMo. ( 1 + a1 ). ( 1 + b1 ) C = h. No. SMo. ( 1 + a1 ). ( 1 + b1 ) ( 9 ) On peu simplifier cee relaion à parir des ransformaions logarihmiques e exponenielles comme sui : Log C = Log h + Log No + Log SMo +.Log ( 1 + a1 ). ( 1+ b1) ( 10 ) Si h, No, SMo, a1 e b1 son des consanes, on peu considérer que : x1 = Log h + Log No + Log SMo e Log ( 1 + b1 ) y1 = Log ( 1 + a1 ) ( 1 + b1 ) = Log ( 1 + a1 ) + son aussi des consanes. Alors ( 10 ) devien : Log C = x1 +. y1 ( 11 ) Une ransformaion exponenielle adéquae de ( 11 ) nous monrera C en foncion du emps : Exp ( Log C ) = Exp ( x1 +. y1 ) C = Exp ( x1 +. y1 ) ( 12 ) Donc si on connaî x1 e y1, on peu déerminer C facilemen. SECTION 2 : LES PRESTATIONS Pour les presaions, il fau disinguer les variables explicaives de chaque régime à par. 5

6 En effe chaque régime diffère des aures compe enu de ses caracérisiques propres au niveau des dépenses. En Tunisie, on peu disinguer quare régimes à savoir : 1. régime de vieillesse 2. régime décès 3. régime de maladie 4. régime des allocaions familiales D une manière générale, les dépenses d un régime donné en cas d un modèle simplifié son le produi d une valeur moyenne de la presaion par le nombre de bénéficiaires de cee presaion. a. Régime de reraie La valeur de la pension oale PR à l insan es donnée par la formule suivane : PR = PRM. NR ( 13 ) Avec PRM : la pension moyenne au emps NR : effecif des reraiés au emps 6

7 La pension moyenne PRM es une foncion du salaire moyen SM e du aux moyen de rendemen des annuiés liquidables z, soi : PRM = z. SM ( 14 ) d ou PR = z. SM. NR ( 15 ) Si a2 e b2 les aux d accroissemen annuels moyens respecivemen de NR e SM ; e si le schéma d évoluion du salaire moyen e du nombre des reraiés es comme sui : NR = NRo. ( 1 + a2 ) ( 16 ) SM = SMo. ( 1 + b2 ) (17 ) On aura : PR = z. NRo. ( 1 + a2 ). SMo. ( 1 + b2 ) ( 18 ) PR = z. NRo. SMo. ( 1 + a2 ) ( 1 + b2 ) 7

8 Si on considère que z, NRo, SMo, a2, e b2 son des consanes e que : Log SMo x2 = Log ( z. NRo. SMo ) = Log z + Log NRo + y2 = Log ( 1 + a2 ). ( 1 + b2 ) = Log ( 1 + a2 ) + Log ( 1 + b2 ) On obien après des ransformaions logarihmiques e exponenielles : Log PR = Log ( z. NRo. SMo ) +. Log ( 1 + a2 ). ( 1+ b2 ) Log PR = x2 +. y2 (19 ) Exp Log PR = Exp ( x2 +. y2 ) PR = Exp ( x2 +. y2 ) ( 20 ) b. Régime de décès Le capial décès oal PD es le produi du capial moyen PDM par le nombre de décès ND, soi : PD = PDM. ND ( 21 ) Le monan du capial décès moyen PDM dépend de plusieurs faceurs don noammen : - durée des services rendus ; 8

9 - nombre d enfans à charge ; - décès en acivié ou en reraie ; - décès naurel ou par acciden ; - gain de l inéressé au momen du décès : salaire ou pension. Le faceur gain moyen GM es la base du calcul du capial décès, par conre, les aures faceurs consiuen un coefficien de pondéraion qu on noe w, d ou : PDM = w. GM ( 22 ) Le nombre de décès ND es le produi du aux de moralié m par l effecif des acifs e des reraiés NAR, soi : ND = m. NAR ( 23 ) Ainsi ( 21 ) devien come enu de ( 22 ) e de ( 23 ) : PD = w. GM. m. NAR PD = w. m. GM. NAR ( 24 ) Si a3 e b3 son les aux d accroissemen annuels moyens 9

10 respecivemen de NAR e de GM ; e si on applique le schéma d évoluion suivan : ) NAR = NARo. ( 1 + a3 ) ( 25 ) GM = GM. ( 1 + b3 ) ( 26 La relaion ( 24 ) devien : PD = w. m. NARo. GMo. ( 1 + a3 ). ( 1 + b3 ) ( 27 ) On pose : x3 = Log ( w. NARo. GMo. m ) = Log w + Log NARo + Log GMo + Log m y3 = Log ( 1 + a3 ).( 1 + b3 ) = Log ( 1 + a3 ) + Log (1 + b3 ) Après des ransformaions logarihmiques e exponenielles de ( 27 ), on aura : Log PD =Log( w.m.naro. GMo)+. Log (1+ a3). (1+b3) Log PD = x3 +. y3 ( 28 ) Exp Log PD = Exp ( x3 +. y3 ) 10

11 ( 29 ) PD = Exp ( x3 +. y3 ) c. Régime d assurance maladie Les presaions d assurance maladie dépenden dans une large mesure de la consommaion de soins de sané. La plus grande parie de la consommaion médicale es liée à l évoluion des revenus, du nombre des personnes bénéficiaires e de la srucure de la populaion couvere. Le prix joue aussi un rôle imporan e il pourra êre inégré dans la relaion des presaions maladie d une manière séparée ou au niveau du coû moyen des presaions. D une manière simplifiée, les presaions maladie résulen du produi du coû moyen PMM par le nombre de bénéficiaires NM, soi : PM = PMM. NM ( 30 ) PMM es une foncion de plusieurs faceurs don noammen : - revenu des ménages - volume de la consommaion des ménages - niveau général des prix - progrès echnique - offre de soins - srucure des assurés : nombre d enfans, siuaion familiale - éa de sané de la populaion couvere 11

12 Si on considère que le coû moyen PMM es proporionnel au revenu des ménages, on aura : PMM = v. RM ( 31 ) Avec v : coefficien de pondéraion RM : revenu moyen De ce fai : PM = v. RM. NM ( 32 ) Si a4 e b4 son les aux d accroissemen annuels moyens respecivemen de NM e de RM on aura : NM = NMo. ( 1 + a4 ) RM = RMo. ( 1 + b4 ) Ainsi ( 32 ) devien : ( 33 ) PM = v. RMo. NMo ( 1 + a4 ). ( 1 + b4 ) Après les ransformaions logarihmiques e exponenielles on obiendra : Log PM = Log ( v. RMo. NMo ) +. Log ( 1 + a4 ). ( 1 + b4 ) 12

13 Si on pose : Log NMo x4 = Log (v. RMo. NMo ) = Log v + Log RMo + ( 1 + b4 ) y4 = Log (1+a4). (1+b4) = Log ( 1 + a4 ) + Log On aura : Log PM = x4 +. y4 ( 34 ) Exp Log PM = Exp ( x4 +. y4 ) ) PM = Exp ( x4 +. y4 ) ( 35 d. Les presaions familiales Les presaions familiales résulen du produi de la valeur moyenne de la presaion par le nombre de bénéficiaires, soi : PF = PFM. NF ( 36 ) Avec : PFM : presaion familiale moyenne NF : nombre de bénéficiaires 13

14 La presaion familiale moyenne dépend esseniellemen du nombre d enfans à charge NE, d ou on peu écrire l équaion ( 36 ) comme sui : PF = PME. NE ( 37 ) Avec : PME : presaion moyenne par enfan à charge Le nombre d enfans à charge NE dépend du aux de naalié n de la populaion coisane à la sécurié sociale, d où : NE = n. NAR ( 38 ) De ce fai : PF = PME. n. NAR ( 39 ) Si on sui le schéma d évoluion suivan : NAR = NARo. ( 1 + a5 ) ( 40 ) PME = PMEo. ( 1 + b5 ) ( 41 ) Avec : a5 e b5 les aux d accroissemen annuels moyens respecivemen de NAR e de PME. L équaion ( 39 ) sera alors : PF = n. NARo. PMEo. ( 1 + a5 ). ( 1 + b5 ) ( 42 ) Log PF = Log ( n. NARo. PMEo ) +. Log (1+a5 ). ( 1 + b5 ) 14

15 Si on pose : x5 = Log ( n. NARo. PMEo ) = Log n + Log NARo +Log PMEo y5 = Log ( 1 + a5 ). ( 1 + b5 ) = Log ( 1 + a5 ) + Log ( 1 + b5 ) Après des ransformaions logarihmiques e exponenielles on aura : Log PF = x5 +. y5 ( 43 ) Exp Log PF = Exp ( x5 +. y5 ) PF = Exp ( x5 +. y5 ) ( 44 ) SECTION 3 : UTILITE DU MODELE Le modèle ainsi consrui pourra êre uilisé pour faire ceraines applicaions : - projecion des recees e des dépenses des différens régimes de la sécurié sociale compe enu des hypohèses sur l accroissemen don dépenden les coisaions e les presaions comme les salaires, le aux de naalié, le aux de moralié, le nombre de coisans, le nombre de bénéficiaires des presaions, le niveau général des prix,.ec. - déerminaion du aux de coisaion d équilibre pour chaque régime à par ou aux d équilibre global. éude de simulaion : c es le cas de eser l effe du 15

16 changemen au niveau de la législaion, de mesurer l impac d une poliique économique donnée ou encore d apprécier l effe de la variaion des paramères démographiques. Le modèle s adape facilemen à la programmaion informaique par ses relaions linéaires. SECTION 4 : EXEMPLES D APPLICATIONS 1. Recherche du aux d équilibre de coisaion On considère le régime de reraie don les recees e les dépenses son décries par les équaions ( 6 ) e ( 15 ) comme sui : C = h. SM. N ( 6 ) PR = z. SM. NR ( 15 ) A l équilibre, on a Recees = Dépenses, ce qui donne : h. SM. NR = z. SM. NR 16

17 D où h = z. NR / N : aux de coisaion d équilibre au emps du régime de reraie. Avec : NR : nombre des reraiés ou des pensionnés N : nombre des coisans au régime de reraie liquidables z : aux moyen de rendemen des annuiés du emps On peu déerminer le aux de coisaion h en foncion en uilisan les relaions ( 9 ) e ( 18 ) : C = h. No. SMo. ( 1 + a1 ). ( 1 + b1 ) ( 9 ) PR = z. NRo. SMo. ( 1 + a2 ). ( 1 + b1 ) (18 ) Le salaire dans les deux relaions évolue suivan le même aux b1. 17

18 A L équilibre : C = PR, on aura : h = z. NRo. ( 1 + a2 ) / No. ( 1 + a1 ) Donc, pour un emps donné, on déermine aisémen le aux de coisaion d équilibre h puisque ous les aures paramères ( z, NRo, No, a1 e a2 ) son connus. 2- Eudes de simulaion a. cas d une augmenaion du salaire moyen ( le double ) SM* = 2. SM Dans ce cas les recees e les dépenses seron : C* = h. SM*. N ( 6 ) PR* = z. SM*. NR ( 15 ) D ou : C* = 2. h. SM. N PR* = 2. z. SM. NR A L équilibre h = z. NR / N 18

19 Les recees e les dépenses son proporionnelles au même variable Salaire. Donc le aux de coisaion d équilibre ne sera pas affecé à la suie de ce changemen. b. cas d une augmenaion du aux de rendemen des annuiés liquidables soi z > z ; Les dépenses seron PR = z. SM. NR. Les recees ne seron pas affecées car elles son indépendanes de z. A l équilibre on a : h = z. NR / N Puisque NR e N son resées inchangées alors que seulemen le paramère z a connu une hausse. On a alors h > h. Donc, un aux de rendemen supérieur nécessie, si oues choses 19

20 égales par ailleurs, une augmenaion du aux de coisaion sinon le régime sera sans doue déficiaire. SECTION 5 : CONCLUSION Le modèle consrui consiue un moyen efficace pour pouvoir faire des prévisions, des projecions e des éudes de simulaions en maière de sécurié sociale. La souplesse de ce modèle e sa flexibilié les rend adapable aux différenes siuaions qu exigen les démarches à enreprendre e les invesigaions à réaliser pour des raisons affirmées par les décideurs. On peu aussi l inégrer sans aucun problème comme un bloc à par dans un modèle plus large comme par exemple le modèle d équilibre général calculable ouchan oue l économie naionale. Aussi, il peu êre ransformé en un modèle économérique avec des relaions linéaires e d esimer les paramères. Il es rès efficace surou pour les régimes de reraie don les paramères démographiques son assez sables car ils varien lenemen en foncion du emps comme les aux de naalié e de moralié. Alors qu en cas des régimes de maladie où les paramères don incerains e rès variables à long erme la ache sera ardue e difficile. En effe, les prévisions concernan les variables économiques son faiblemen accepables e crédibles à long erme. Il fau en conséquence prendre beaucoup de précauions en manipulan ce genre d exercices vu le caracère insable de ces variables e qui son corrélées avec l acivié économique e le comporemen des individus. 20

21 21

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite DOCUMENT DE TRAVAIL 2003-12 Impac du vieillissemen démographique sur l impô prélevé sur les rerais des régimes privés de reraie Séphane Girard Direcion de l analyse e du suivi des finances publiques Ce

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Séquence 2. Pourcentages. Sommaire

Séquence 2. Pourcentages. Sommaire Séquence 2 Pourcenages Sommaire Pré-requis Évoluions e pourcenages Évoluions successives, évoluion réciproque Complémen sur calcularices e ableur Synhèse du cours Exercices d approfondissemen 1 1 Pré-requis

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA

Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA Un modèle de proecion pour des conras de reraie dans le cadre de l ORSA - François Bonnin (Hiram Finance) - Floren Combes (MNRA) - Frédéric lanche (Universié Lyon 1, Laboraoire SAF) - Monassar Tammar (rim

Plus en détail

Le mécanisme du multiplicateur (dit "multiplicateur keynésien") revisité

Le mécanisme du multiplicateur (dit multiplicateur keynésien) revisité Le mécanisme du muliplicaeur (di "muliplicaeur kenésien") revisié Gabriel Galand (Ocobre 202) Résumé Le muliplicaeur kenésien remone à Kenes lui-même mais il es encore uilisé de nos jours, au moins par

Plus en détail

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle Aricle «Les effes à long erme des fonds de pension» Pascal Belan, Philippe Michel e Berrand Wigniolle L'Acualié économique, vol 79, n 4, 003, p 457-480 Pour cier ce aricle, uiliser l'informaion suivane

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Estimation des matrices de trafics

Estimation des matrices de trafics Cédric Foruny 1/5 Esimaion des marices de rafics Cedric FORTUNY Direceur(s) de hèse : Jean Marie GARCIA e Olivier BRUN Laboraoire d accueil : LAAS & QoSDesign 7, av du Colonel Roche 31077 TOULOUSE Cedex

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

Ned s Expat L assurance des Néerlandais en France

Ned s Expat L assurance des Néerlandais en France [ LA MOBILITÉ ] PARTICULIERS Ned s Expa L assurance des Néerlandais en France 2015 Découvrez en vidéo pourquoi les expariés en France choisissen APRIL Inernaional pour leur assurance sané : Suivez-nous

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE Ce aricle es disponible en ligne à l adresse : hp://www.cairn.info/aricle.php?id_revue=ecop&id_numpublie=ecop_149&id_article=ecop_149_0073 Risque associé au conra d assurance-vie pour la compagnie d assurance

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

3 POLITIQUE D'ÉPARGNE

3 POLITIQUE D'ÉPARGNE 3 POLITIQUE D'ÉPARGNE 3. L épargne exogène e l'inefficience dynamique 3. Le modèle de Ramsey 3.3 L épargne opimale dans le modèle AK L'épargne des sociéés dépend largemen des goûs des agens, de faceurs

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau Ecole des HEC Universié de Lausanne FINANCE EMPIRIQUE Eric Jondeau FINANCE EMPIRIQUE La prévisibilié des rendemens Eric Jondeau L hypohèse d efficience des marchés Moivaion L idée de base de l hypohèse

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie Copules e dépendances : applicaion praique à la déerminaion du besoin en fonds propres d un assureur non vie David Cadoux Insiu des Acuaires (IA) GE Insurance Soluions 07 rue Sain-Lazare, 75009 Paris FRANCE

Plus en détail

EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS

EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS CEDRIC TAPSOBA Diplômé IDS Inern/ CARE Regional Program Coordinaor and Gender Specialiy Service from USAID zzz WA-WASH Program Tel: 70 77 73 03/

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

CHELEM Commerce International

CHELEM Commerce International CHELEM Commerce Inernaional Méhodes de consrucion de la base de données du CEPII Alix de SAINT VAULRY Novembre 2013 1 Conenu de la base de données Flux croisés de commerce inernaional (exporaeur, imporaeur,

Plus en détail

GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, août 2003

GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, août 2003 GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, aoû 2003 Thomas JEANJEAN 2 Cahier de recherche du CEREG n 2003-13 Résumé : Depuis une vingaine d années, la noion d accruals discréionnaires

Plus en détail

SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE

SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE Le seul ballon hybride solaire-hermodynamique cerifié NF Elecricié Performance Ballon hermodynamique 223 lires inox 316L Plaque évaporarice

Plus en détail

Pouvoir de marché et transmission asymétrique des prix sur les marchés de produits vivriers au Bénin

Pouvoir de marché et transmission asymétrique des prix sur les marchés de produits vivriers au Bénin C N R S U N I V E R S I T E D A U V E R G N E F A C U L T E D E S S C I E N C E S E C O N O M I Q U E S E T D E G E S T I O N CENTRE D ETUDES ET DE RECHERCHES SUR LE DEVELOPPEMENT INTER NATIONAL Pouvoir

Plus en détail

TRANSMISSION DE LA POLITIQUE MONETAIRE AU SECTEUR REEL AU SENEGAL

TRANSMISSION DE LA POLITIQUE MONETAIRE AU SECTEUR REEL AU SENEGAL REPUBLIQUE DU SENEGAL ------------------ MINISTERE DE L ECONOMIE ET DES FINANCES ------------------ AGENCE NATIONALE DE LA STATISTIQUE ET DE LA DEMOGRAPHIE Direcion des Saisiques Economiques e de la Compabilié

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

Relation entre la Volatilité Implicite et la Volatilité Réalisée.

Relation entre la Volatilité Implicite et la Volatilité Réalisée. Relaion enre la Volailié Implicie e la Volailié Réalisée. Le cas des séries avec la coinégraion fracionnaire. Rappor de Recherche Présené par : Mario Vázquez Velasco Direceur de Recherche : Benoî Perron

Plus en détail

Sélection de portefeuilles et prédictibilité des rendements via la durée de l avantage concurrentiel 1

Sélection de portefeuilles et prédictibilité des rendements via la durée de l avantage concurrentiel 1 ASAC 008 Halifax, Nouvelle-Écosse Jacques Sain-Pierre (Professeur Tiulaire) Chawki Mouelhi (Éudian au Ph.D.) Faculé des sciences de l adminisraion Universié Laval Sélecion de porefeuilles e prédicibilié

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

Chapitre 9. Contrôle des risques immobiliers et marchés financiers

Chapitre 9. Contrôle des risques immobiliers et marchés financiers Capire 9 Conrôle des risques immobiliers e marcés financiers Les indices de prix immobiliers ne son pas uniquemen des indicaeurs consruis dans un bu descripif, mais peuven servir de référence pour le conrôle

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

EPARGNE RETRAITE ET REDISTRIBUTION *

EPARGNE RETRAITE ET REDISTRIBUTION * EPARGNE RETRAITE ET REDISTRIBUTION * Alexis Direr (1) Version février 2008 Docweb no 0804 Alexis Direr (1) : Universié de Grenoble e LEA (INRA, PSE). Adresse : LEA, 48 bd Jourdan 75014 Paris. Téléphone

Plus en détail

Une union pour les employeurs de l' conomie sociale. - grande Conférence sociale - les positionnements et propositions de l usgeres

Une union pour les employeurs de l' conomie sociale. - grande Conférence sociale - les positionnements et propositions de l usgeres Une union pour les employeurs de l' conomie sociale - grande Conférence sociale - les posiionnemens e proposiions de l usgeres Juille 212 1 «développer l emploi e en priorié l emploi des jeunes» le posiionnemen

Plus en détail

Groupe International Fiduciaire. pour l Expertise comptable et le Commissariat aux comptes

Groupe International Fiduciaire. pour l Expertise comptable et le Commissariat aux comptes Groupe Inernaional Fiduciaire pour l Experise compable e le Commissaria aux compes L imporan es de ne jamais arrêer de se poser des quesions Alber EINSTEIN QUI SOMMES-NOUS? DES HOMMES > Une ÉQUIPE solidaire

Plus en détail

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE 009-01 EFFICIENCE INFORMATIONNELLE DES MARCHES DE L OR A PARIS ET A LONDRES, 1948-008 UNE VERIFICATION ECONOMETRIQUE DE LA FORME FAIBLE Thi Hong Van HOANG Efficience informaionnelle des marchés de l or

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................

Plus en détail

Les Comptes Nationaux Trimestriels

Les Comptes Nationaux Trimestriels REPUBLIQUE DU CAMEROUN Paix - Travail Parie ---------- INSTITUT NATIONAL DE LA STATISTIQUE ---------- REPUBLIC OF CAMEROON Peace - Work Faherland ---------- NATIONAL INSTITUTE OF STATISTICS ----------

Plus en détail

CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES

CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES Thomas Jeanjean To cie his version: Thomas Jeanjean. CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES. 22ÈME

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

Les deux déficits, budgétaire et du compte courant, sont-ils jumeaux? Une étude empirique dans le cas d une petite économie en développement

Les deux déficits, budgétaire et du compte courant, sont-ils jumeaux? Une étude empirique dans le cas d une petite économie en développement Les deux déficis, budgéaire e du compe couran, sonils jumeaux? Une éude empirique dans le cas d une peie économie en développemen (Version préliminaire) Aueur: Wissem AJILI Docorane CREFED Universié Paris

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

N d ordre Année 2008 THESE. présentée. devant l UNIVERSITE CLAUDE BERNARD - LYON 1. pour l obtention. du DIPLOME DE DOCTORAT. (arrêté du 7 août 2006)

N d ordre Année 2008 THESE. présentée. devant l UNIVERSITE CLAUDE BERNARD - LYON 1. pour l obtention. du DIPLOME DE DOCTORAT. (arrêté du 7 août 2006) N d ordre Année 28 HESE présenée devan l UNIVERSIE CLAUDE BERNARD - LYON pour l obenion du DILOME DE DOCORA (arrêé du 7 aoû 26) présenée e souenue publiquemen le par M. Mohamed HOUKARI IRE : Mesure du

Plus en détail

SURVOL DE LA LITTÉRATURE SUR LES MODÈLES DE TAUX DE CHANGE D ÉQUILIBRE: ASPECTS THÉORIQUES ET DISCUSSIONS COMPARATIVES

SURVOL DE LA LITTÉRATURE SUR LES MODÈLES DE TAUX DE CHANGE D ÉQUILIBRE: ASPECTS THÉORIQUES ET DISCUSSIONS COMPARATIVES Ankara Üniversiesi SBF Dergisi, Cil 66, No. 4, 2011, s. 125-152 SURVOL DE LA LITTÉRATURE SUR LES MODÈLES DE TAUX DE CHANGE D ÉQUILIBRE: ASPECTS THÉORIQUES ET DISCUSSIONS COMPARATIVES Dr. Akın Usupbeyli

Plus en détail

Séminaire d Économie Publique

Séminaire d Économie Publique Séminaire d Économie Publique Les niveaux de dépenses d'infrasrucure son-ils opimaux dans les pays en développemen? Sonia Bassi, LAEP Discuan : Evans Salies, MATISSE & ADIS, U. Paris 11 Mardi 8 février

Plus en détail

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa No 996 3 Décembre La coordinaion inerne e exerne des poliiques économiques : une analyse dynamique Fabrice Capoën Pierre Villa CEPII, documen de ravail n 96-3 SOMMAIRE Résumé...5 Summary...7. La problémaique...9

Plus en détail

Mémoire présenté et soutenu en vue de l obtention

Mémoire présenté et soutenu en vue de l obtention République du Cameroun Paix - Travail - Parie Universié de Yaoundé I Faculé des sciences Déparemen de Mahémaiques Maser de saisique Appliquée Republic of Cameroon Peace Wor Faherland The Universiy of Yaoundé

Plus en détail

DE L'ÉVALUATION DU RISQUE DE CRÉDIT

DE L'ÉVALUATION DU RISQUE DE CRÉDIT DE L'ÉALUAION DU RISQUE DE CRÉDI François-Éric Racico * Déparemen des sciences adminisraives Universié du Québec, Ouaouais Raymond héore Déparemen Sraégie des Affaires Universié du Québec, Monréal RePAd

Plus en détail

CHAPITRE 4 RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES?

CHAPITRE 4 RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES? CHAPITRE RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES? Les réponses de la poliique monéaire aux chocs d inflaion mondiaux on varié d un pays à l aure Le degré d exposiion

Plus en détail

Le passage des retraites de la répartition à la capitalisation obligatoire : des simulations à l'aide d'une maquette

Le passage des retraites de la répartition à la capitalisation obligatoire : des simulations à l'aide d'une maquette No 2000 02 Janvier Le passage des reraies de la répariion à la capialisaion obligaoire : des simulaions à l'aide d'une maquee Pierre Villa CEPII, documen de ravail n 2000-02 TABLE DES MATIÈRES Résumé...

Plus en détail

GUIDE DES INDICES BOURSIERS

GUIDE DES INDICES BOURSIERS GUIDE DES INDICES BOURSIERS SOMMAIRE LA GAMME D INDICES.2 LA GESTION DES INDICES : LE COMITE DES INDICES BOURSIERS.4 METHODOLOGIE ET CALCUL DE L INDICE TUNINDEX ET DES INDICES SECTORIELS..5 I. COMPOSITION

Plus en détail

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB) Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un

Plus en détail

Impact des futures normes IFRS sur la tarification et le provisionnement des contrats d assurance vie : mise en oeuvre de méthodes par simulation

Impact des futures normes IFRS sur la tarification et le provisionnement des contrats d assurance vie : mise en oeuvre de méthodes par simulation Impac des fuures normes IFRS sur la arificaion e le provisionnemen des conras d assurance vie : mise en oeuvre de méhodes par simulaion Pierre-Emmanuel Thérond To cie his version: Pierre-Emmanuel Thérond.

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Programmation, organisation et optimisation de son processus Achat (Ref : M64) Découvrez le programme

Programmation, organisation et optimisation de son processus Achat (Ref : M64) Découvrez le programme Programmaion, organisaion e opimisaion de son processus Acha (Ref : M64) OBJECTIFS LES PLUS DE LA FORMATION Appréhender la foncion achas e son environnemen Opimiser son processus achas Développer un acha

Plus en détail

Institut Supérieur de Gestion

Institut Supérieur de Gestion UNIVERSITE DE TUNIS Insiu Supérieur de Gesion 4 EME ANNEE SCIENCES COMPTABLES COURS MARCHES FINANCIER ET EVALUATION DES ACTIFS NOTES DE COURS : MOUNIR BEN SASSI YOUSSEF ZEKRI CHAPITRE 1 : LE MARCHE FINANCIER

Plus en détail

Document de travail FRANCE ET ALLEMAGNE : UNE HISTOIRE DU DÉSAJUSTEMENT EUROPEEN. Mathilde Le Moigne OFCE et ENS ULM

Document de travail FRANCE ET ALLEMAGNE : UNE HISTOIRE DU DÉSAJUSTEMENT EUROPEEN. Mathilde Le Moigne OFCE et ENS ULM Documen de ravail 2015 17 FRANCE ET ALLEMAGNE : UNE HISTOIRE DU DÉSAJUSTEMENT EUROPEEN Mahilde Le Moigne OFCE e ENS ULM Xavier Rago Présiden OFCE e chercheur CNRS Juin 2015 France e Allemagne : Une hisoire

Plus en détail

Calcul Stochastique 2 Annie Millet

Calcul Stochastique 2 Annie Millet M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3

Plus en détail

Intégration de Net2 avec un système d alarme intrusion

Intégration de Net2 avec un système d alarme intrusion Ne2 AN35-F Inégraion de Ne2 avec un sysème d alarme inrusion Vue d'ensemble En uilisan l'inégraion d'alarme Ne2, Ne2 surveillera si l'alarme inrusion es armée ou désarmée. Si l'alarme es armée, Ne2 permera

Plus en détail

Estimation d une fonction de demande de monnaie pour la zone euro : une synthèse des résultats

Estimation d une fonction de demande de monnaie pour la zone euro : une synthèse des résultats Esimaion d une foncion de demande de monnaie pour la zone euro : une synhèse des résulas Ce aricle propose une synhèse des résulas des esimaions d une foncion de demande de monnaie de la zone euro dans

Plus en détail

MINISTERE DE L ECONOMIE ET DES FINANCES

MINISTERE DE L ECONOMIE ET DES FINANCES Un Peuple - Un Bu Une Foi MINISTERE DE L ECONOMIE ET DES FINANCES DIRECTION DE LA PREVISION ET DES ETUDES ECONOMIQUES Documen d Eude N 08 ENJEUX ECONOMIQUES ET COMMERCIAUX DE L ACCORD DE PARTENARIAT ECONOMIQUE

Plus en détail

Le développement de l assurance des catastrophes naturelles: facteur de développement économique

Le développement de l assurance des catastrophes naturelles: facteur de développement économique ARTICLES ARTICLES PROFESSIONNELS ACADÉMIQUES PROFESSIONAL ACADEMIC ARTICLES ARTICLES Assurances e gesion des risques, vol. 79(1-2), avril-juille 2011, 1-30 Insurance and Risk Managemen, vol. 79(1-2), April-July

Plus en détail

Essai surlefficience informationnelle du march boursier marocain

Essai surlefficience informationnelle du march boursier marocain Global Journal of Managemen and Business Research : c Finance Volume 14 Issue 1 Version 1.0 Year 2014 Type: Double Blind Peer Reviewed Inernaional Research Journal Publisher: Global Journals Inc. (USA)

Plus en détail

PREMIÈRE PARTIE LIQUIDITÉ ET MICROSTRUCTURE. La Liquidité - De la Microstructure à la Gestion du Risque de Liquidité

PREMIÈRE PARTIE LIQUIDITÉ ET MICROSTRUCTURE. La Liquidité - De la Microstructure à la Gestion du Risque de Liquidité PREMIÈRE PARTIE LIQUIDITÉ ET MICROSTRUCTURE Erwan Le Saou - Novembre 2000. 13 La microsrucure des marchés financiers ne serai cerainemen pas au cenre d une liéraure abondane si le concep de liquidié n

Plus en détail

Réseau de coachs. Vous êtes formés dans les métiers du sport et/ou de la préparation physique (Brevet d état, Licence, Master STAPS)

Réseau de coachs. Vous êtes formés dans les métiers du sport et/ou de la préparation physique (Brevet d état, Licence, Master STAPS) Réseau de coachs Vous êes formés dans les méiers du spor e/ou de la préparaion physique (Breve d éa, Licence, Maser STAPS) Vous connaissez la course à pied Vous souhaiez créer e/ou animer des acions de

Plus en détail

Vous vous installez en france? Société Générale vous accompagne (1)

Vous vous installez en france? Société Générale vous accompagne (1) Parenaria Sociéé Générale Execuive relocaions Vous vous insallez en france? Sociéé Générale vous accompagne (1) offre valable jusqu au 29/02/2012 offre valable jusqu au 29/02/2012 offre valable jusqu au

Plus en détail

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD LA COUCHE PHYSIQUE 1 FONCTIONS GENERALES Cee couche es chargée de la conversion enre bis informaiques e signaux physiques Foncions principales de la couche physique : définiion des caracérisiques de la

Plus en détail

travailler à Paris travailler à Paris

travailler à Paris travailler à Paris ravailler à Paris Trouver un emploi, en changer, se former, ravailler, demander un coup de pouce, faire valoir ses drois, créer son acivié Parce que la capiale es dynamique e créarice d emplois, mais aussi

Plus en détail

Une assurance chômage pour la zone euro

Une assurance chômage pour la zone euro n 132 Juin 2014 Une assurance chômage pour la zone euro La muualisaion au niveau de la zone euro d'une composane de l'assurance chômage permerai de doer la zone euro d'un insrumen de solidarié nouveau,

Plus en détail

Pour 2014, le rythme de la reprise économique qui semble s annoncer,

Pour 2014, le rythme de la reprise économique qui semble s annoncer, En France, l invesissemen des enreprises reparira--il en 2014? Jean-François Eudeline Yaëlle Gorin Gabriel Sklénard Adrien Zakharchouk Déparemen de la conjoncure Pour 2014, le ryhme de la reprise économique

Plus en détail

Surface de Volatilité et Introduction au Risque de Crédit

Surface de Volatilité et Introduction au Risque de Crédit Modèles de Taux, Surface de Volailié e Inroducion au Risque de Crédi Alexis Fauh Universié Lille I Maser 2 Mahémaiques e Finance Spécialiés Mahémaiques du Risque & Finance Compuaionelle 214/215 spread

Plus en détail

Coaching - accompagnement personnalisé (Ref : MEF29) Accompagner les agents et les cadres dans le développement de leur potentiel OBJECTIFS

Coaching - accompagnement personnalisé (Ref : MEF29) Accompagner les agents et les cadres dans le développement de leur potentiel OBJECTIFS Coaching - accompagnemen personnalisé (Ref : MEF29) Accompagner les agens e les cadres dans le développemen de leur poeniel OBJECTIFS LES PLUS DE LA FORMATION Le coaching es une démarche s'inscrivan dans

Plus en détail

L impact de l activisme des fonds de pension américains : l exemple du Conseil des Investisseurs Institutionnels.

L impact de l activisme des fonds de pension américains : l exemple du Conseil des Investisseurs Institutionnels. L impac de l acivisme des fonds de pension américains : l exemple du Conseil des Invesisseurs Insiuionnels. Fabrice HERVE * Docoran * Je iens à remercier ou pariculièremen Anne Lavigne e Consanin Mellios

Plus en détail

Une analyse historique du comportement d épargne des ménages américains

Une analyse historique du comportement d épargne des ménages américains 1 ocobre 1 N. 51 Une analyse hisorique du comporemen d épargne des ménages américains Le aux d épargne des ménages américains a riplé depuis le déclenchemen de la crise, inerrompan un mouvemen de baisse

Plus en détail

CAHIER 13-2000 ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE

CAHIER 13-2000 ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE Jean-Michel BOSCO N'GOMA CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS

Plus en détail

travailler à Paris 2012/2013

travailler à Paris 2012/2013 ravailler à Paris 2012/2013 DEVENEZ VOLONTAIRE EN SERVICE CIVIQUE! UN ENGAGEMENT CITOYEN UNE CHANCE DE VIVRE DE NOUVELLES EXPÉRIENCES RENSEIGNEMENTS SUR : PARIS.FR/SERVICE CIVIQUE LA DÉCOUVERTE DE MISSIONS

Plus en détail

Evaluation des Options avec Prime de Risque Variable

Evaluation des Options avec Prime de Risque Variable Evaluaion des Opions avec Prime de Risque Variable Lahouel NOUREDDINE Correspondance : LEGI-Ecole Polyechnique de Tunisie, BP : 743,078 La Marsa, Tunisie, Insiu Supérieur de Finance e de Fiscalié de Sousse.

Plus en détail

LE PARADOXE DES DEUX TRAINS

LE PARADOXE DES DEUX TRAINS LE PARADOXE DES DEUX TRAINS Énoné du paradoxe Déaillons ou d abord le problème dans les ermes où il es souen présené On dispose de deux oies de hemins de fer parallèles e infinimen longues Enre les deux

Plus en détail

CANAUX DE TRANSMISSION BRUITES

CANAUX DE TRANSMISSION BRUITES Canaux de ransmissions bruiés Ocobre 03 CUX DE TRSISSIO RUITES CORRECTIO TRVUX DIRIGES. oyer Canaux de ransmissions bruiés Ocobre 03. RUIT DE FOD Calculer le niveau absolu de brui hermique obenu pour une

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

DOCUMENT TECHNIQUE N O 2 GUIDE DE MESURE POUR L INTÉGRATION DES TECHNOLOGIES DE L INFORMATION ET DE LA COMMUNICATION (TIC) EN ÉDUCATION

DOCUMENT TECHNIQUE N O 2 GUIDE DE MESURE POUR L INTÉGRATION DES TECHNOLOGIES DE L INFORMATION ET DE LA COMMUNICATION (TIC) EN ÉDUCATION DOCUMENT TECHNIQUE N O 2 GUIDE DE MESURE POUR L INTÉGRATION DES TECHNOLOGIES DE L INFORMATION ET DE LA COMMUNICATION (TIC) EN ÉDUCATION GUIDE DE MESURE POUR L INTÉGRATION DES TECHNOLOGIES DE L INFORMATION

Plus en détail

UNIVERSITÉ D ORLÉANS. THÈSE présentée par :

UNIVERSITÉ D ORLÉANS. THÈSE présentée par : UNIVERSITÉ D ORLÉANS ÉCOLE DOCTORALE SCIENCES DE L HOMME ET DE LA SOCIETÉ LABORATOIRE D ECONOMIE D ORLEANS THÈSE présenée par : Issiaka SOMBIÉ souenue le : 5 décembre 2013 à 14h00 pour obenir le grade

Plus en détail

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A UIMBERTEAU UIMBERTEAU TRAVAUX PRATIQUES 5 ISTALLATIO ELECTRIQUE DE LA CAE D'ESCALIER DU BATIMET A ELECTROTECHIQUE Seconde B.E.P. méiers de l'elecroechnique ELECTROTECHIQUE HABITAT Ver.. UIMBERTEAU TRAVAUX

Plus en détail

La fonction de production dans l analyse néo-classique

La fonction de production dans l analyse néo-classique La oncion de producion dans l analyse néo-classique Jean-Marie Harribey La oncion de producion es une relaion mahémaique éablie enre la quanié produie e le ou les aceurs de producion uilisés, ou encore

Plus en détail

N 2008 09 Juin. Base de données CHELEM commerce international du CEPII. Alix de SAINT VAULRY

N 2008 09 Juin. Base de données CHELEM commerce international du CEPII. Alix de SAINT VAULRY N 2008 09 Juin Base de données CHELEM commerce inernaional du CEPII Alix de SAINT VAULRY Base de données CHELEM commerce inernaional du CEPII Alix de SAINT VAULRY N 2008-09 Juin Base de données CHELEM

Plus en détail