Le contexte. Le questionnement du P.E.R. :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Le contexte. Le questionnement du P.E.R. :"

Transcription

1 Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et vérifier l exactitude d une mesure Construire ou reproduire des figures astreintes à des conditions Comparer des grandeurs Exprimer une grandeur en fonction d une autre (lien avec les fonctions) Des raisons d être de la géométrie des triangles Polygone «le plus simple» et permettant d étudier les autres polygones par décomposition Permettant de modéliser de nombreuses situations, notamment le triangle rectangle (verticalité, horizontalité ) Permettant de calculer des grandeurs inaccessibles

2 Le contexte Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Les «types» de grandeurs étudiées en géométrie euclidienne au collège : Longueurs Aires Volumes Angles Certaines techniques relatives au type de tâche «calculer une longueur» : Egalité de Pythagore Théorème de Thalès Utilisation des propriétés des symétries Utilisation des propriétés des polygones particuliers Utilisation des propriétés des droites particulières Utilisation des propriétés du cercle

3 Le contexte Le P.E.R. a également permis : D établir des liens entre divers types de tâches : Calculer une aire/un volume et calculer une longueur Montrer que 2 droites sont parallèles et calculer une longueur/aire/volume Montrer que 2 droites sont perpendiculaires et calculer une longueur/aire/volume

4 Le contexte Le questionnement du P.E.R. : Qu étudie-t-on en géométrie et pourquoi? Pourquoi passe-t-on autant de temps à étudier le triangle? Triangle rectangle? Peut-on calculer des grandeurs inaccessibles? Existe-t-il des relations entre les différentes grandeurs permettant de calculer des grandeurs inaccessibles?

5 Le contexte Des phases d institutionnalisation organisées sous la forme d un «inventaire des techniques relatives à un type de tâches» et mettant en lien les différents types de tâches : «Nuage des techniques» - carte mentale «Nuage des types de tâches» - carte mentale Aide au chaînage arrière

6 Peu d élèves sont capables de créer les liens entre les différentes phases d institutionnalisation qui sont relatives au même type de tâches ou au même type de problèmes : A quel type de tâches ou de problèmes la connaissance ou la capacité découverte/travaillée répond-elle? Quelles sont les autres connaissances ou capacités répondant au même type de tâches ou de problèmes que nous connaissions? Lesquelles doit-on garder en mémoire («agrégation»)? Doit-on les hiérarchiser («ordonnancement»)? Les réponses à ces questions ne peuvent être laissées à l initiative (ou à la charge) individuelle des élèves, c est le collectif «classe professeur» qui doit y répondre dans le cadre des phases d institutionnalisation. 6

7 Un exemple en 3 ème : Un inventaire des techniques relatives au type de tâches «montrer que deux droites sont parallèles réalisé sous forme de carte mentale à la fin d un chapitre s intitulant «Démontrer que des droites sont parallèles» et ayant permis de remobiliser les propriétés sur les angles et le parallélisme, le théorème des milieux, les propriétés des quadrilatères particuliers et de découvrir la réciproque du théorème de Thalès.

8 L utilisation possible d un logiciel de cartes heuristiques pour réaliser des cartes mentales avec les élèves :

9 L utilisation possible d un logiciel de cartes heuristiques pour réaliser des cartes mentales avec les élèves :

10 L utilisation possible d un logiciel de cartes heuristiques pour réaliser des cartes mentales avec les élèves :

11 L utilisation possible d un logiciel de cartes heuristiques pour réaliser des cartes mentales avec les élèves :

12 Institutionnalisation et inventaire des types de tâches L utilisation possible d un logiciel de cartes heuristiques pour les types de tâches

13 Pourquoi et comment une institutionnalisation par type de tâches ou de problèmes peut aider les élèves à raisonner notamment par chaînage arrière? Ex : ABCD est un parallélogramme, tracer la droite (AC) : 13

14 Ex : ABCD est un parallélogramme, tracer la droite (AC) : Quel est le type de problème? Construire ou reproduire une figure astreinte à des conditions. Quel est la type de tâches? Tracer une droite. Quelles sont les techniques permettant de tracer une droite et les conditions suffisantes pour pouvoir les utiliser? 14

15 Passant par un point et formant un angle connu avec une autre droite. Connaître un point et l angle. Passant par un point et parallèle à une droite. Connaître un point et la droite parallèle. Tracer une droite Passant par 2 points. Connaître 2 points de cette droite. Image d une droite par une transformation. Connaître la droite d origine et la transformation. 15

16 Appliquer le théorème des milieux. Connaître un triangle, un milieu, une parallèle. Tracer l intersection de 2 diagonales d un parallélogramme. Connaître les 2 diagonales. Milieu d un segment. Savoir qu on a un milieu. Intersection d une médiatrice et d un segment. Connaître le segment. Partager un segment. Connaître la longueur du segment. Placer un point 16 Sur une droite, à une distance connue d un point de la droite. Connaître la distance et la droite. Intersection de 2 objets. Connaître les deux objets. Image d un point par une transformation. Connaître le point d origine et la transformation.

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

ACTIVITES NUMERIQUES ( 18 points )

ACTIVITES NUMERIQUES ( 18 points ) Copie numéro :.. 4 points sont attribués pour l orthographe, le soin, les notations et la rédaction. L utilisation de la calculatrice est autorisée. NE PAS OUBLIER DE RENDRE L ANNEXE AVEC LA COPIE! ACTIVITES

Plus en détail

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2 MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

CORRECTION BREVET BLANC

CORRECTION BREVET BLANC Partie numérique Exercice 1 : CORRECTION BREVET BLANC Question 1 : on teste les trois valeurs en remplaçant x par la valeur. La solution est Question 2 : Les solutions sont et -2 Question 3 : on fait deux

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

TOP SECRET. Réservés aux élèves de la classe de 6 ème 3

TOP SECRET. Réservés aux élèves de la classe de 6 ème 3 TOP SECRET Réservés aux élèves de la classe de 6 ème 3 Étude d une œuvre de Piet Mondrian La mission qui vous est confiée : Reproduire une œuvre de Piet Mondrian à l aide du logiciel GeoGebra sur le salon

Plus en détail

Ce livret appartient à

Ce livret appartient à Ce livret appartient à N N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24 N25 N26 N27 N28 N29 N30 N31 N32 N33 N34 Lire et écrire des nombres entiers Système de numération

Plus en détail

Vecteurs Translation et rotation

Vecteurs Translation et rotation HPTR 10 Vecteurs Translation et rotation bjectifs Établir une relation entre les vecteurs et la translation. onstruire un représentant du vecteur somme à l aide d un parallélogramme. onstruire et caractériser

Plus en détail

Livret d'évaluation et du socle commun en mathématiques

Livret d'évaluation et du socle commun en mathématiques Photo? Livret d'évaluation et du socle commun en mathématiques Niveau Cycle d'adaptation - 6ème Nom et prénom Classe Année scolaire 2... - 2... Il y a dans ce livret 4 grands thèmes : Nombres et Calculs

Plus en détail

Chapitre V. Polygones semblables

Chapitre V. Polygones semblables hapitre V Polygones semblables 1. Photocopieuse. Sur la photocopieuse du collège, on peut lire les pourcentages d agrandissement ou de réduction préprogrammés : 141%, 115%, 100%, 93%, 82%, 75%, 71%, et

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB Chapitre 3 La notion de vecteurs CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Vecteurs Définition de la translation qui transforme un point A du plan en un point B. Vecteur AB associé. Égalité de deux vecteurs

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème Lundi Matin - «Comparatif des programmes de CM2 et 6 ème» Page 1 Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème CM2 6 ème Plus tard... Vocabulaire divers Le vocabulaire

Plus en détail

Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e

Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e SOMMAIRE I Les programmes et les différences de conditions pédagogiques II La géométrie dans le plan III La

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2009

DIPLÔME NATIONAL DU BREVET SESSION 2009 DIPLÔME NATIONAL DU BREVET SESSION 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 6 pages numérotées de 1/6 à 6/6. Dès que ce sujet

Plus en détail

Comment démontrer que deux droites sont perpendiculaires?

Comment démontrer que deux droites sont perpendiculaires? omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré

Plus en détail

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation :

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation : Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3 Déroulement de l animation : - 0] Préambule (30 min) a) Introduction b) Programme du cycle 3 - I] Première prise

Plus en détail

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit..

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit.. Correction-Exercices sur les droites remarquables 1. Construire un triangle ABC tel que AB = 5cm, BC = 6cm et AC= 8 cm et le cercle circonscrit à ce triangle Il suffit de tracer deux médiatrices pour obtenir

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y DM Devoir maison 4 lire une abscisse placer un point d'abscisse connu convertir un nombre dans une unité donnée le triangle isocèle construction à partir d'un dessin milieu d'un segment le cercle,construction

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

THEOREME DE PYTHAGORE

THEOREME DE PYTHAGORE 1 FHE 9 THEOREME DE PYTHGORE Dans ce chapitre, - nous découvrirons le théorème de Pythagore - nous apprendrons à calculer la mesure de l un des côtés d un triangle connaissant les deux autres - nous apprendrons

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges ASIE Juin 2014 Durée : 2h00 Calculatrice autorisée Exercice 1 On laisse tomber une balle d une hauteur de 1 mètre. 3 points A chaque rebond elle rebondit des

Plus en détail

AU SEC ET AU CHAUD, SON MON TOIT

AU SEC ET AU CHAUD, SON MON TOIT AU SEC ET AU CHAUD, SON MON TOIT FICHE PROFESSEUR NIVEAUX ET OBJECTIFS PEDAGOGIQUES 3 e : Trigonométrie, calcul d aire, de volume ; pourcentage ; prélèvement d informations. MODALITES DE GESTION POSSIBLES

Plus en détail

Calculer à la règle non graduée et au compas.

Calculer à la règle non graduée et au compas. Calculer à la règle non graduée et au compas. Elèves : RUNDSTADLER Ilina 5 ème MARION Alice 4 ème THOMMES Emeline 4 ème GRANDJEAN Bixente 3 ème MACEL Eric 3 ème WU Louise 3 ème Enseignants : HIRIART Louisette

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com THEOREE DE THLES Emilien Suquet, suquet@automaths.com I Le théorème de Thalès? Thalès est un mathématicien grec qui aurait vécu au VI ème siècle avant Jésus hrist. ous ne le connaissons qu à travers les

Plus en détail

Ressources pour l école élémentaire

Ressources pour l école élémentaire Ressources pour l école élémentaire éduscol Mathématiques Progressions pour le cours élémentaire deuxième année et le cours moyen Ces documents peuvent être utilisés et modifiés librement dans le cadre

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace A l école primaire Cycle 2 (programme du 19/06/2008) CP CE1 Reconnaître et nommer le cube et le pavé droit. Reconnaître, décrire, nommer quelques solides droits : cube, pavé Manuel

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

Cabri et le programme de géométrie au secondaire au Québec

Cabri et le programme de géométrie au secondaire au Québec Cabri et le programme de géométrie au secondaire au Québec Benoît Côté Département de mathématiques, UQAM, Québec cote.benoit@uqam.ca 1. Introduction - Exercice de didactique fiction Que signifie intégrer

Plus en détail

Prénom :. Livret de CE2. Ecole du Verderet Année scolaire 2014 2015. Livret de leçons de mathématiques CE2 M. HANNESSE Page 1

Prénom :. Livret de CE2. Ecole du Verderet Année scolaire 2014 2015. Livret de leçons de mathématiques CE2 M. HANNESSE Page 1 Nom : Prénom :. Livret de le math ons de matiques CE2 Ecole du Verderet Année scolaire 2014 2015 Livret de leçons de mathématiques CE2 M. HANNESSE Page 1 SOMMAIRE 1. Les nombres : N1 : l écriture des nombres

Plus en détail

En mathématiques, pour savoir si un énoncé est vrai ou faux, on utilise certaines règles. En voici quelques-unes :

En mathématiques, pour savoir si un énoncé est vrai ou faux, on utilise certaines règles. En voici quelques-unes : 1. Les règles du débat mathématique En mathématiques, pour savoir si un énoncé est vrai ou faux, on utilise certaines règles. En voici quelques-unes : (1) Un énoncé mathématique est soit vrai, soit faux

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Séminaire inter-académique LYON (12-13 décembre 2007) Expérimentation en mathématiques, épreuve pratique de mathématiques : formation des élèves

Séminaire inter-académique LYON (12-13 décembre 2007) Expérimentation en mathématiques, épreuve pratique de mathématiques : formation des élèves Séminaire inter-académique LYON (12-13 décembre 2007) Expérimentation en mathématiques, épreuve pratique de mathématiques : formation des élèves (atelier animé par l académie de Besançon) Le fil conducteur

Plus en détail

Test E22 NOM : Classe :...

Test E22 NOM : Classe :... Test E22 NOM : Classe :... Exercice 1: ABCDEFGH est le cube ci-contre. 1. a) Donner deux droites parallèles. ---------------------------------------------------------- b) Donner deux droites sécantes.

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 01 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

Mme. Lemonnier Progression mathématiques : «A portée de maths» CM2

Mme. Lemonnier Progression mathématiques : «A portée de maths» CM2 Mme. Lemonnier Progression mathématiques : «A portée de maths» CM2 Nombres et Calcul et OGD (lundi) Géométrie/Grandeurs et mesures (mardi) Nombres et Calcul et OGD (jeudi) Géométrie/Grandeurs et mesures

Plus en détail

Différents niveaux de géométrie

Différents niveaux de géométrie Géométrie et TUIC Qui suis-je? Différents niveaux de géométrie Cela se voit. Je le sais parce que je l ai vu et que je possède des connaissances antérieures. Géométrie de la perception Est vrai ce qui

Plus en détail

Son et Lumière. L optique géométrique

Son et Lumière. L optique géométrique Son et Lumière Leçon N 3 L optique géométrique Introdution Nous allons au cours de cette leçon poser les bases de l optique géométrique en en rappelant les principes fondamentaux pour ensuite nous concentrer

Plus en détail

Module 8 : Périmètre et aire de figures planes

Module 8 : Périmètre et aire de figures planes RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 8 : Périmètre et aire de figures planes Guide de l élève Module 8 Périmètre et aire de figures planes Évaluation diagnostique...3 Aire de parallélogrammes,

Plus en détail

Brevet Blanc de Mathématiques n 1

Brevet Blanc de Mathématiques n 1 Collège français Sadi Carnot Diego Suarez 21/11/2015 Brevet Blanc de Mathématiques n 1 Série collège Durée de l épreuve : 2 h 00 Conseils au candidat : - Le sujet comporte quatre pages numérotées de 1/4

Plus en détail

UNE LENTILLE MINCE CONVERGENTE

UNE LENTILLE MINCE CONVERGENTE TS Spécialité-ptique 1-formation d une image T.P-cours de Physique n 1 : IMGE RMEE PR UNE LENTILLE MINCE CNVERGENTE Partie : Produire des Il faudra être capable de : images et observer Positionner sur

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

ÉPREUVE EXTERNE COMMUNE CE1D 2010

ÉPREUVE EXTERNE COMMUNE CE1D 2010 NOM : Prénom : Classe : MINISTÈRE DE LA COMMUNAUTÉ FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Pour cette première partie : la calculatrice est interdite tu auras besoin de ton

Plus en détail

Quels polygones sont formés par les milieux des côtés d un autre polygone?

Quels polygones sont formés par les milieux des côtés d un autre polygone? La recherche à l'école page 13 Quels polygones sont formés par les milieux des côtés d un autre polygone? par d es co llèg es n dré o ucet de Nanterre et Victor ugo de Noisy-le-rand enseignants : Martine

Plus en détail

Calcul de longueurs :

Calcul de longueurs : Calcul de longueurs : Exercice : (Japon 96) C est un triangle rectangle en A. On donne 5 cm et A B ˆC 5. 1) Construire la figure en vraie grandeur. 2) Déterminer la longueur, arrondie au dixième de centimètre.

Plus en détail

Plusieurs façons de tracer deux parallèles CM1-CM2

Plusieurs façons de tracer deux parallèles CM1-CM2 Plusieurs façons de tracer deux parallèles CM1-CM2 Séance 1 : l écart constant entre deux droites parallèles donner une définition fonctionnelle du parallélisme de deux droites ; exhiber un procédé de

Plus en détail

Eléments de logique et de raisonnement dans les nouveaux programmes de mathématiques

Eléments de logique et de raisonnement dans les nouveaux programmes de mathématiques Eléments de logique et de raisonnement dans les nouveaux programmes de mathématiques Les programmes de collège Utilisation des propriétés et définitions Propriétés caractéristiques Équivalence (théorème

Plus en détail

LES PAVAGES DU PLAN EXERCICES PROPOSES Exercices 1

LES PAVAGES DU PLAN EXERCICES PROPOSES Exercices 1 LES PAVAGES DU PLAN Ces travaux sont mis en place dans la circonscription de Vitry sur Seine (94) au niveau des classes de cycle 2 (grandes sections, CP et CE1). Cette réflexion a été mise en place à partir

Plus en détail

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES L usage de la calculatrice est autorisé. Durée : 2 heures. Le barème tient compte de la qualité de la rédaction et de la présentation

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

LES RACCORDEMENTS FICHE CONTRAT. Objectif : L élève doit être capable de tracer des raccordements en suivant une méthodologie.

LES RACCORDEMENTS FICHE CONTRAT. Objectif : L élève doit être capable de tracer des raccordements en suivant une méthodologie. CAP S2.4 S2.6 1/11 Durée : 3 heures FICHE CONTRAT Objectif : L élève doit être capable de tracer des raccordements en suivant une méthodologie. Pour chaque exercice, On donne : Des explications écrites

Plus en détail

JEU DU MANCHON. On peut augmenter le nombre d enfants, mais il faut augmenter le nombre de manchons (un manchon par enfant).

JEU DU MANCHON. On peut augmenter le nombre d enfants, mais il faut augmenter le nombre de manchons (un manchon par enfant). JEU DU MANCHON Ce jeu "tactile" est prévu pour 1 à 4 enfants à partir de 4 ans. On peut augmenter le nombre d enfants, mais il faut augmenter le nombre de manchons (un manchon par enfant). Contenu : 25

Plus en détail

Une organisation de l année de 6 ème autour des grandeurs

Une organisation de l année de 6 ème autour des grandeurs Une organisation de l année de 6 ème autour des grandeurs Historiquement XIX ème siècle 1970 Les grandeurs développent les nombres et le calcul Construction des nombres basée sur les entiers Création d

Plus en détail

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

CHAPITRE 3 Repères, points et droites

CHAPITRE 3 Repères, points et droites CHAPITRE 3 Repères, points et droites A) Repères et coordonnées des points 1) Repères Pour représenter le plan en géométrie analytique, on a besoin de définir deux axes, qu'on appelle axe des abscisses

Plus en détail

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( )

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( ) HPITRE IV TRINGLES OMPÉTENES ÉVLUÉES DNS E HPITRE : (T : compétences transversales, N : activités numériques, G : activités géométriques, F : gestion de données et fonctions) Intitulé des compétences Eval.1

Plus en détail

Du triangle au carré, en trois coups de ciseaux

Du triangle au carré, en trois coups de ciseaux PEP Dans nos classes 191 Du triangle au carré, en trois coups de ciseaux Jean-Pierre Friedelmeyer (*) Premier défi : En trois coups de ciseaux, découper un triangle quelconque en quatre morceaux qui, réarrangés,

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE 3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE Administration Générale de l Enseignement et de la Recherche Scientifique Service général des Affaires

Plus en détail

Observatoire des ressources numériques adaptées

Observatoire des ressources numériques adaptées Observatoire des ressources numériques adaptées INS HEA 58-60 avenue des Landes 92150 Suresnes orna@inshea.fr IDENTIFIANT DE LA FICHE Geonext : un logiciel de géométrie dynamique DATE DE PUBLICATION DE

Plus en détail

a. Avec la règle et l équerre : La médiatrice d une segment [AB] est la droite (d) perpendiculaire à ce segment et passant par son milieu.

a. Avec la règle et l équerre : La médiatrice d une segment [AB] est la droite (d) perpendiculaire à ce segment et passant par son milieu. :.. 6 - TR - SYTR XL URS STRUT L TR U ST []. a. vec la règle et l équerre : La médiatrice d une segment [] est la droite perpendiculaire à ce segment et passant par son milieu.. n mesure le segment []

Plus en détail

Utilisation des ateliers 2D en classe. Stage au collège de Saint-Denis-en-Val 13 novembre 2007 Juliette Hernando

Utilisation des ateliers 2D en classe. Stage au collège de Saint-Denis-en-Val 13 novembre 2007 Juliette Hernando Utilisation des ateliers 2D en classe Stage au collège de Saint-Denis-en-Val 13 novembre 2007 Juliette Hernando Déroulement de la demi-journée mardi 13 novembre 2007 Présentation openoffice (15 minutes)

Plus en détail

ETABLIR UN DEVIS Fiche professeur

ETABLIR UN DEVIS Fiche professeur Fiche professeur NIVEAU Classe de 6 ème MODALITES DE GESTION POSSIBLES Travail individuel ou en binôme 1 ère étape : distribution, lecture et compréhension du sujet 2 ème étape : temps de recherche des

Plus en détail

Quelques activités. Activité n 1 : Le potager des frères TERIEUR

Quelques activités. Activité n 1 : Le potager des frères TERIEUR Quelques activités ctivité n 1 : Le potager des frères TERIEUR La famille Térieur, possédant une superbe ferme à la campagne, veut réorganiser leur potager. Les deux enfants, frères jumeaux, décident alors

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

Brevet Blanc n 1. Mathématiques

Brevet Blanc n 1. Mathématiques Brevet Blanc n 1 Novembre 2010 Mathématiques Durée de l'épreuve : 2h00 Le candidat répondra sur une copie L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Activités

Plus en détail

BAREME (Présentation et rédaction : 4 pts)

BAREME (Présentation et rédaction : 4 pts) 10 décembre 2013 Corrigé du Devoir Commun de Mathématiques 3 ème Exercice 1 (3 pts) BAREME (Présentation et rédaction : 4 pts) Le débit d une connexion internet varie en fonction de la distance du modem

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Exercice 1 : ACTIVITES NUMERIQUES (12 points) 1. (3x + 5)² = (3x) 2 + 2 3x 5 + 5 2 = 9x² + 30x + 25 2. 4(4 + 1) = 20 (4 + 1)(4 2) = 10 (4 + 1)² =

Plus en détail

GRANDEURS ET MESURE ET RESOLUTION DE PROBLEME. Enseigner la notion de contenance et celle de sa mesure par la résolution de problème CYCLE 2

GRANDEURS ET MESURE ET RESOLUTION DE PROBLEME. Enseigner la notion de contenance et celle de sa mesure par la résolution de problème CYCLE 2 GRANDEURS ET MESURE ET RESOLUTION DE PROBLEME Enseigner la notion de contenance et celle de sa mesure par la résolution de problème CYCLE 2 Compétence : Apprendre et comparer les unités usuelles de longueur

Plus en détail

Thème N 2 : FIGURES PLANES (1)

Thème N 2 : FIGURES PLANES (1) Thème N 2 : FGURES PLNES (1) NTTN L EMNSTRTN TRNGLE ET RTES PRLLELES (1) : RTE ES MLEUX la fin du thème, tu dois savoir : Notion de émonstration : onnaître les Règles du débat mathématiques Savoir donner

Plus en détail

Activités de généralisation pour l aire

Activités de généralisation pour l aire Activités de généralisation pour l aire L aire du rectangle et du carré But Cette activité permet de développer la formule pour calculer l aire de la surface du rectangle et celle du carré. Matériel Rectangles

Plus en détail

Géométrie des Transformations

Géométrie des Transformations Géométrie des Transformations Plan des activités de PREMIÈRE ANNÉE SECONDAIRE Thème 1 Dans le plan et dans l'espace: droites, demi droites, segments de droites et plans Plans dans l'espace Droites, demi

Plus en détail

Le modèle des lentilles minces convergentes

Le modèle des lentilles minces convergentes 1 Le modèle des lentilles minces convergentes LES LENTILLES MINCES CNVERGENTES résumés de cours Définition Une lentille est un milieu transparent limité par deux faces dont l'une au moins est sphérique.

Plus en détail

Géométrie 3D : représentation plane d'un solide

Géométrie 3D : représentation plane d'un solide Géométrie 3D : représentation plane d'un solide 1. perspective cavalière - règles sommet G face EHDA arête GC I est le milieu de EC ABCDEFGH est un pavé droit représenté en perspective cavalière. Les plans

Plus en détail

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011 Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 010-011 novembre 010 I Définition d une conique en terme d équation cartésienne On se place dans le repère orthonormé direct (0, i, j ).

Plus en détail