0A-ETT : Bases D Electrotechnique

Dimension: px
Commencer à balayer dès la page:

Download "0A-ETT : Bases D Electrotechnique"

Transcription

1 Génie Electrique Génie Electrique Module ET3 0A-ETT : Bases D Electrotechnique Alexandre LEREDDE leredde@univ-tln.fr 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 1

2 Electrotechnique Electrotechnique Application des lois de la physique à la production, au traitement, au transport et à l utilisation de l énergie électrique Application des lois de l électricité : Lois de Kirchoff ( loi des mailles et loi des nœud), loi d Ohm, Application des lois de la mécanique : principe fondamental de la dynamique, Application des lois de l électromagnétisme : loi de Faraday, loi de Laplace, loi de Lenz, Autres domaines : thermodynamique, mécanique des fluides, chimie 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 2

3 Application de l Electrotechnique Alimentation de batterie (1 à 100W) Véhicule électrique (qqkw à 10kW) Production électrique solaire (du MW à 500MW) Du W au GW Appareil électroménager (100 à 1kW) Production électrique éolienne (qqkw à 10MW) Centrale nucléaire (qq100kw à 2GW) 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 3

4 Représentation générale d un signal Signaux décomposables en deux termes t Tout le signal est la composante continue (DC) ou valeur moyenne X moy = X = X = x t = 1 T est la composante alternative (AC) (valeur moyenne nulle) ou ondulation 0 T x t dt + t = Tout le signal t Composante alternative 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 4

5 Grandeurs électriques continues Alimentation continue : Alimentation avec des grandeurs considérées constantes (ondulation nulle ou très faible) Exemple de convertisseurs permettant d'obtenir une tension continue Machines à courant continu Redresseurs Hacheurs Grandeurs caractéristiques Valeur moyenne = valeur efficace en continu 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 5

6 Grandeurs électriques alternatives Valeur efficace d une grandeur Exemple 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 6

7 Signal sinusoïdal Différentes représentations possibles Représentation mathématique : Représentation temporelle : Représentation vectorielle (Fresnel ou plan complexe) : à t = /2014 0A-ETT Bases d'électrotechnique A. LEREDDE 7

8 Déphasage entre 2 signaux sinusoïdaux Représentation temporelle Représentation vectorielle (Fresnel ou plan complexe) 2/1 Y 1 y 1 1 y 2 2/1 t O 2 Y t Y 3 = Y 2 Y /2014 0A-ETT Bases d'électrotechnique A. LEREDDE 8

9 Exemple courant et tension aux bornes d un dipôle Représentation temporelle i/u Représentation vectorielle (Fresnel ou plan complexe) u U i t 0 t C j u ωt U u( t ) U 2 cos u Ue i O 1 I i/u = u - i C i( t ) I 2 cos ωt i I Ie j 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 9

10 Composants électriques : les sources d énergie Deux types de sources de tension distinctes La Source de tension : impose la tension à ses bornes La Source de courant : impose le courant qui la parcourt Définies par la valeur moyenne en continu Définies par la valeur efficace en alternatif 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 10

11 Impédance et admittance complexes de dipôles Impédance Z Z U I Admittance Y Y 1 Z I U Z Zcos jzsin R jx Y * Ycos * jysin G jb R X Zcos Zsin R est la Résistance X est la Réactance G B * Y cos * Ysin G est la conductance B est la susceptance Z R 2 X 2 Y G 2 B 2 arctg X R * arctg B G 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 11

12 La résistance (ou conducteur ohmique) Caractéristiques de la résistance Symbole de la résistance Relation entre la tension et le courant en temporelle Relation entre la tension et le courant en complexe Représentation dans le plan complexe v(t) = Ri(t) V = RI i/u = 0 i u U t t O 1 I i = u 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 12

13 L inductance (ou bobine) Relation entre l inductance et la réactance Caractéristiques de l inductance et de la réactance Symbole de l'inductance ou la réactance Relation entre la tension et le courant en temporelle Relation entre la tension et le courant en complexe Représentation dans le plan complexe v(t) = L di(t) dt π i/u = 2 V = jlωi = jxi U u i 0 t t O 1 = + 2 π I 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 13

14 Le condensateur Caractéristiques du condensateur Symbole du condensateur Relation entre la tension et le courant en temporelle Relation entre la tension et le courant en complexe Représentation dans le plan complexe i(t) = C dv(t) dt V = 1 jcω I 0 u i i/u = - π 2 t t I = - 2 π O 1 U 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 14

15 Puissance électrique instantanée p(t) p(t) = v(t).i(t) conducteur parfait i S 1 S 2 «Source» v «Utilisation» orientation G orientation R Transfert d énergie électrique AMONT sens positif pour p(t) AVAL 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 15

16 Puissance électrique en continu Pour un dipôle électrique avec une tension V à ses bornes et parcouru par un courant I Sa puissance électrique est donnée par le produit courant tension P = VI 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 16

17 Puissance électrique en alternatif (réseau monophasé) Pour un dipôle électrique avec une tension par un courant déphasé d un angle I V à ses bornes et parcouru Définitions des puissances : Puissance instantanée : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 17

18 Puissance électrique en alternatif (réseau monophasé) i/u u i t t p P = (p) moy + t 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 18

19 Puissance en alternatif (réseau monophasé) Puissance active = valeur moyenne de la puissance instantanée en [W] P u ( t) i( t) moy Puissance réactive en [VAR] Puissance apparente = produit des valeurs efficaces S V eff I eff V I en [VA] Relation entre les puissances S S(cos jsin ) P jq Facteur de puissance : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 19

20 Composants électriques usuels Résistance Uniquement de la puissance active absorbée Différentes formulations possibles Exemple 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 20

21 Composants électriques usuels Inductance Uniquement de la puissance réactive absorbée Différentes formulations possibles Condensateur Uniquement de la puissance réactive fournie Différentes formulations possibles 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 21

22 Réseau triphasé Avantages des réseaux triphasés : Au niveau de la production : moins volumineux et moins cher Au niveau du transport : section de conducteur plus faible Au niveau de l utilisation : deux niveaux de tensions différents Réseau Triphasé L 1 L 2 L 3 N V 1 N V 2 N V 3 N U 12 U U Deux types de tension : Tension simple : Tension entre une phase et le neutre et notée V in Tension composée : Tension entre deux phases et notée U ij Relation entre Tension simple et composée : U ij V in V jn 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 22

23 Représentations des tensions Différentes représentations possibles Représentation temporelle Représentation mathématique 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 23

24 Représentations des tensions Différentes représentations possibles Représentation vectorielle Relation entre les tensions efficaces simple et composée : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 24

25 Puissance en alternatif (réseau triphasé) : Déphasage entre une tension simple sur une phase et le courant de la même phase Expression en fonction de la tension simple ou composée Définitions des puissances : Puissance instantanée : Puissance active : Puissance réactive : Puissance apparente : Relation entre les puissances : Facteur de puissance : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 25

26 Couplage Etoile Différentes possibilités pour coupler les enroulements d une charge ou d un générateur Couplage Etoile Schéma de Câblage Caractéristiques du couplage Etoile Tension efficace au bornes d un enroulement : Courant efficace dans un enroulement : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 26

27 Couplage Triangle Couplage Triangle Schéma de Câblage Caractéristiques du couplage Triangle : Tension efficace aux bornes d un enroulement : Courant efficace dans un enroulement : Au niveau des phases Couplage Triangle : possibilité d avoir un courant de phase plus important Couplage Etoile : possibilité d avoir une tension entre phases plus importante 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 27

28 Lois de l électricité : Loi des mailles Enoncé : la somme des tensions dans une boucle de circuit est nulle Exemple de circuit Représentation vectorielle 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 28

29 Lois de l électricité : Loi des nœuds Enoncé : ll n y a pas d accumulation de courant dans un nœud. Ainsi, la somme des courants qui y entrent est égale à la somme des courants qui en sortent Exemple de nœud Représentation vectorielle 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 29

30 Lois de l électricité : Théorème de Boucherot Pour la puissance active : La somme de la puissance active totale absorbée par un ensemble de charges est égale à la somme des puissances actives absorbées par chaque élément de cet ensemble P T P Pour la puissance réactive : La somme de la puissance réactive totale absorbée par un ensemble de charges est égale à la somme des puissances réactives absorbées par chaque élément de cet ensemble i Q T Q i Pas transposable à la puissance apparente 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 30

31 Un peu d électromagnétisme. Pour l étude des machines électriques, on se limitera au 4 lois de l électromagnétisme suivantes : Les lois d Ampère, Biot et Savart : «on peut créer un champ magnétique avec du courant électrique» Utilisation de ce principe avec des bobines pour créer les électroaimants Application pour certains inducteurs (excitation) des machines électriques La loi de Laplace : «on peut déplacer des circuits électriques à l aide d un courant et d un champ magnétique» B dl F IdL F = I. dl B 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 31

32 Un peu d électromagnétisme. La loi de Faraday : «Un circuit soumis à un flux magnétique variable est le siège d une force électrique variable» e B A B B S n e = dφ dt La loi de Lenz : «tout action sur un milieu se traduit par une réaction de celuici ayant tendance à s opposer à l action, qui lui donne naissance» I A B e > 0 B B S n 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 32

33 Généralités Modification de la forme de l énergie électrique: Possibilité de modifier l amplitude Conservation de la fréquence Attention : Le transformateur ne fonctionne pas en régime continu (il ne conserve pas la valeur moyenne du signal) Similarité avec le réducteur dans les systèmes mécanique : Entrée : Haute tension/ Courant faible comme Vitesse élevée/petit couple Sortie : Basse tension/ Fort Courant comme Petite vitesse/fort Couple 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 33

34 Utilisation du transformateur Adapter le niveau de tension : un transformateur permet d élever ou de diminuer le niveau de tension entre l entrée et la sortie Exemple : le transport de l énergie électrique : 225kV (HT) ou 20kV (MT) Utilisation : 400V (tension entre phases) Isolation galvanique deux circuits électriques : Pas de liaison électrique entre deux circuits électriques (pas les mêmes masses) Changement de régime de neutre Alimentation flottante Pour changer le nombre de phase : Un système monophasé à un système diphasé Un système triphasé à un système hexaphasé ou dodécaphasé 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 34

35 Caractéristiques d un transformateur Excellent rendement (95%). Coût de fabrication modéré et très grande robustesse. Le transformateur alimenté par une source de tension parfaite : comportement au niveau du secondaire comme une source de tension parfaite avec une légère chute de tension. Courant absorbé à vide très faible voir négligeable (pertes à vide faible). Possibilité d avoir un courant d'appel assez important lors de la mise sous tension. Un transformateur est souvent caractérisé par sa puissance apparente au secondaire : en monophasé : en triphasé : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 35

36 Circuits d un transformateur Composé de deux circuits électriques relié par un circuit magnétique : Le circuit primaire (ou primaire) : Circuit d entrée du transformateur : reçoit la tension d entrée Le circuit secondaire (ou secondaire) : Circuit de sortie du transformateur : délivre la tension de sortie Le circuit magnétique composé le plus souvent d'un empilement de tôle magnétique : Pour canaliser au mieux les lignes de champ, Perméabilité relative la plus grande possible (transformateur parfait ) 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 36

37 Repérage et notation Les bornes homologues repérés par un point : Un courant entrant par le point crée un flux positif (sort par le point) Un flux sortant par le point crée un courant positif (rentre par le point) Pour simplifier les schémas, on adopte les représentations suivantes : Les grandeurs au primaire repérées avec l indice 1 ou P et celle du secondaire avec l indice 2 ou S Au niveau des conventions le primaire noté en convention récepteur et le secondaire en convention générateur 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 37

38 Le transformateur parfait Un transformateur sans aucune perte Uniquement une modification de la forme de l'énergie électrique (valeur efficace) Une transformation sans pertes veut dire que : La résistance des bobinages primaire et secondaire nulle (pas de pertes joules) Pas d'hystérésis magnétique Pas de pertes par courant de Foucault Lignes de champ parfaitement canalisés, Pas de fuite magnétique Rendement d'un transformateur parfait étant proche de l'unité 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 38

39 Magnétisation du transformateur Fonctionnement à vide lors de la mise sous tension : Tension sinusoïdale imposée aux bornes de l'enroulement primaire Circulation d'un courant car circuit électrique fermé Théorème d ampère : création d'un flux magnétique variable dans le circuit magnétique Loi de Faraday : création de forces électromotrices aux bornes des deux enroulement. Au secondaire : tension sinusoïdale et de même fréquence que celle appliquée au niveau du primaire. Loi de Lenz : au primaire la force électromotrice aura tendance à s'opposer à l'évolution du courant primaire jusqu'à annuler celui-ci. Transformateur magnétisé : courant primaire nul 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 39

40 Application de la loi de Faraday Loi de Faraday : une variation du flux magnétique crée une force électromotrice dans chaque bobinage : Il est possible décrire pour chacun, la loi de Faraday : Pour le primaire : Pour le secondaire : En écrivant l'égalité au niveau de la variation du flux : le rapport de transformation : rapport entre la tension efficace au secondaire et la tension efficace au primaire 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 40

41 Application du théorème d Ampère Formulation du théorème d'ampère par la loi d'hopkinson dans le circuit magnétique : En le transposant à notre cas : Cas d'un transformateur parfait : Courant en entrée du transformateur (dans le cas d'un transformateur parfait) : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 41

42 Type de transformateur et schéma électrique Type de transformateur en fonction du rapport de transformation : : transformateur élévateur : transformateur abaisseur : transformateur d'isolement Le schéma électrique équivalent peut alors se représenter ainsi : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 42

43 Formule de Boucherot Tension imposée par la source de tension au primaire : Application de la loi de Faraday : Intégration pour avoir le flux total : Flux circulant dans le circuit magnétique : L'induction magnétique : Relation entre l'induction maximal et la valeur efficace de la tension : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 43

44 Les transformateur spéciaux : l Autotransformateur Permet de partager des spires entre le primaire et le secondaire Pas d isolation galvanique Les avantages de l autotransformateur Diminution du nombre de spire pour réaliser la transformation (spire en commun) Diminution de la masse de cuivre Diminution des coûts Spire en commun parcouru par un courant réduit (application de la loi des nœuds) Circuit magnétique réduit Possibilité d avoir une tension réglable (ATV) 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 44

45 Les transformateur spéciaux : le transformateur de potentiel Transformateur utilisé pour mesurer des tensions élevés Impossibilité de placer un voltmètre en haute tension Pour mesurer cette tension, on utilise parfois un transformateur de potentiel Transformateur abaisseur où circule très peut de courant : impédance du voltmètre très grande Elément d une chaine de mesure : construction très soignée 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 45

46 Le transformateur de courant Utilisé pour mesurer des courants élevés Composé d un enroulement au primaire et de plusieurs enroulements au secondaire Si on applique le théorème d ampère : Si le transformateur est bien construit, la réluctance très faible alors : Nécessité de court-circuiter le secondaire : le plus souvent par un ampèremètre Risque d échauffement magnétique, Tension augmentant jusqu au claquage Pas de conservation de la composante continue d un signal 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 46

47 Transformateur à plusieurs secondaires Transformateur qui permet d avoir plusieurs tensions isolées entre elles Gain de place car un seul circuit magnétique pour plusieurs enroulements Possible surdimensionnement de l enroulement primaire Tension pour chaque secondaire : Théorème d Ampère : Le courant au primaire du transformateur peut alors s écrire : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 47

48 Transformateur à point milieu Cas particulier du transformateur à plusieurs enroulements Transformation d une tension monophasé en un système diphasé Transformateur qui peut être utilisé pour augmenter la puissance en sortie : Deux enroulement en série (doublement de la tension en sortie) Deux enroulement en parallèle (doublement du courant en sortie) 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 48

49 Le transformateur réel Pertes dans les circuits électriques : Echauffement des câbles au primaire et au secondaire Effets d auto-induction (faible) Pertes dans le circuit magnétique Pertes par hystérésis Pertes par courant de Foucault Différence par rapport au transformateur réel Rendement inferieur à 100% Chute de tension au secondaire Déphasage différent entre le primaire et le secondaire Courant à vide au niveau du primaire 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 49

50 Schéma équivalent général Rendre compte des différentes imperfections du transformateur : Imperfections magnétiques magnétisme, elles sont modélisées par deux éléments : : réactance magnétisante : perméabilité relative du matériau non infini : résistance des pertes fer : pertes magnétiques Imperfections dues à l électricité, elles sont modélisées par deux éléments au niveau du primaire et du secondaire : et : Réactances de fuite : lignes de champ vues par un seul enroulement et : résistances des enroulements : pertes Joules 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 50

51 Schéma équivalent simplifié Simplification possible : Permutation de l impédance avec l impédance Passage au secondaire de l impédance: résistance des pertes fer : pertes magnétiques Regroupement des impédances de même nature 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 51

52 Schéma équivalent de Kapp Schéma équivalent simplifié sans les éléments au primaire : Pas de modélisation des imperfections magnétiques Utile pour étudier la chute de tension Hypothèse de Kapp : Quand le courant en charge est dix fois plus grand que courant à vide 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 52

53 Fonctionnement à vide Transformateur sans charge : Courant faible pour la magnétisation du matériau magnétique La relation d Hopkinson : Aux pertes magnétiques près, courant appelé courant magnétisant Déphasage entre la tension et le courant à vide Pas de chute de tension Détermination du rapport de transformation à partir du fonctionnement à vide : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 53

54 Fonctionnement en charge Impose la tension du secondaire à un récepteur La relation d Hopkinson : Le courant primaire peut alors s écrire : En l exprimant en fonction du rapport de transformation : Le courant au primaire peut alors s exprimer : Présence d un courant magnétisant : limite le courant participant au fonctionnement du transformateur 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 54

55 Chute de tension Schéma équivalent de Kapp rappelé ci-dessous. Loi des mailles au niveau du secondaire : Loi des mailles dans le repère de Fresnel (diagramme de Kapp) 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 55

56 Chute de tension Définition de la chute de tension de tension dans un transformateur : Approximation : Les tensions et en phase : Vecteurs colinéaires. Si on zoom sur le diagramme de Kapp On peut donc écrire la chute de tension : En utilisant les formules trigonométriques il est aussi possible de dire : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 56

57 Chute de tension Chute de tension en fonction des éléments du schéma équivalent : La tension efficace au secondaire peut donc s écrire : La caractéristique de sortie de ce transformateur peut se tracer ainsi : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 57

58 Mise sous tension du transformateur Attention à la mise sous tension d un transformateur : Régime transitoire qui entraine une surintensité qui dépasse largement le courant nominal Pas de discontinuité du flux dans le circuit magnétique mais flux forcé par la tension du primaire : Pour atteindre les plus grandes valeurs de flux le courant évolue de la manière suivante : Solution pour limiter le courant : Mise sous tension progressive Résistance lors de la mise sous tension Démarreur électronique 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 58

59 Puissance Au niveau des puissances : : puissance au primaire absorbée par le transformateur : puissance au secondaire fournit à la charge Les différentes pertes dans le transformateur : : pertes Joules dues à la résistance de l enroulement primaire : pertes Joules dues à la résistance de l enroulement secondaire : pertes fer ou magnétiques (courant de Foucault et Hystérésis) 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 59

60 Rendement Le rendement : le rapport entre la puissance d entrée et de sortie Possibilité de regrouper les pertes joules du primaire et du secondaire sous un seul terme L arbre des puissances peut alors se simplifier comme ceci. Expression possible du rendement 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 60

61 Mesure du rendement : Méthode directe Mesure directe avec de 2 Wattmètres de et Méthode peu utilisable Le rendement d un transformateur étant proche de 1, difficile d évaluer la différence entre et, et l incertitude de mesure. Difficulté d avoir une charge capable d absorber le courant nominal. Pas de localisation des pertes possible 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 61

62 Méthode des pertes séparées : essai à vide Essai réalisé sans charge et sous tension primaire nominale Détermination des pertes fer lorsque la tension primaire est à sa valeur nominale La puissance absorbée sert uniquement à compenser les pertes fer et les pertes Joule au primaire. Courant absorbé à vide faible, les pertes joules au niveau du primaire peuvent être négligées. 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 62

63 Méthode des pertes séparées : essai en court circuit Court-circuit du secondaire et Tension primaire réduite afin d avoir le courant secondaire au courant nominal Essai réalisé sous tension réduite, car courant absorbé important (courtcircuit) La puissance débitée au primaire correspond à la somme des pertes : Pertes fer faibles car essai effectué sous tension réduite : Possibilité d approximer les pertes Joules : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 63

64 Méthode des pertes séparées : essai en charge Mesure de la puissance en entrée ou en sortie Arbre des puissances équivalent Détermination du rendement : 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 64

65 Détermination des éléments du schéma équivalent Connaitre au mieux le comportement du transformateur Les différentes mesures effectuées : Mesure de la tension efficace au primaire et au secondaire Mesure du courant efficace au primaire et au secondaire Mesure de la puissance active au primaire Deux essais réalisés Essai à vide (tension primaire à la valeur nominale) pour déterminer les éléments situés au primaire Essai en court-circuit (courant secondaire à la valeur nominale) pour déterminer les éléments situés au secondaire 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 65

66 Détermination des éléments au primaire Le rapport de transformation défini comme le rapport entre la tension efficace au secondaire à vide par rapport à celle au primaire : Pour l essai à vide, la puissance active absorbée par le transformateur correspond aux pertes magnétiques ou pertes fer : Courant secondaire nul : Pas de puissance active ou réactive absorbée par les éléments situés au secondaire Avec un bilan de puissance on peut déterminer 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 66

67 Détermination des éléments au secondaire Les pertes magnétiques négligeables car essai effectué sous tension réduite Utilisation du schéma équivalent de Kapp. La puissance étant identique d un côté ou de l autre du transformateur idéal (symbole) A partir d un bilan de puissance 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 67

68 La conversion électromécanique La conversion électromécanique permet la conversion de l énergie mécanique en énergie électrique ou de l énergie électrique en énergie mécanique : c est une conversion réversible Energie Mécanique Conversion Electromécanique Energie électrique Mode Générateur (ou alternateur) Mode Moteur Dans le cas des moteurs électriques, l énergie mécanique est sous forme d une énergie en rotation. Selon le type de la machine, l énergie peut être soit continue soit alternative 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 68

69 Les différents types de machines Les Machines à Courant Continu Cette machine possède des grandeurs électriques continues Historiquement un des premiers moteurs qui a pu être asservie en couple et en vitesse : moteur assez utilisé mais de plus en plus remplacé par les moteurs à courants alternatifs Applications : Haute précision (robotique) Engin de levage (couple élevé au démarrage) Les Machines Synchrones Grandeurs électriques alternatives : Conversion électromécanique avec un bon rendement Fonctionnement en moteur plus complexe: Grâce à l électronique de puissance, utilisation plus fréquente Fonctionnement en générateur très largement utilisé Les Machines Asynchrones Grandeurs électriques alternatives : Fonctionnement en moteur assez simple : Couplage sur le réseau assez simple. La machine possède un couple non nul au démarrage. Régulation de vitesse est bien maitrisée Fonctionnement en générateur sous certaines conditions mais moins avantageux que pour la machine synchrone 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 69

70 Au niveau des puissances La puissance absorbée est la puissance en entrée de la machine (absorbée par la machine) Pour un fonctionnement en mode moteur : P abs = P elec Pour un fonctionnement en mode générateur : P abs = P meca La puissance utile est la puissance en sortie de la machine (disponible pour l utilisateur) Pour un fonctionnement en mode moteur : P u = P meca Pour un fonctionnement en mode générateur : P u = P elec La puissance électromagnétique est la puissance convertie : elle est à la fois de type mécanique et électrique Le rendement de la machine est calculé en fonction de la puissance absorbée et utile : η = P u P abs 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 70

71 Vocabulaire lié au machines électriques Stator : Partie statique (fixe) de la machine Rotor : Partie mobile de la machine, elle a une vitesse de rotation par rapport au stator que l on notera Ω (en rd/s) ou N (en tr/min) Inducteur : L inducteur a pour but de créer le champ magnétique qui permettra le transfert d énergie électrique entre le stator et le rotor Induit : L induit est le siège de l induction magnétique. Il est soumis au champ inducteur 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 71

72 Généralités sur La machine à courant continu (MCC) La machine à courant continu est une machine largement répandue car elle à un fonctionnement assez simple. Ces équations de fonctionnement le sont aussi. Energie électrique (continu) Machines à courant continu Energie Mécanique (rotation) Les applications de la machine à courant continu sont assez variées : Robotiques (précision) Asservissement de couple, vitesse et position Electroménager Véhicule électrique (automobile, train) Nécessite une alimentation électrique continue (les grandeurs importantes sont continues : tension et courant) 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 72

73 Création d une force électromagnétique Pour créer une force électromagnétique, on applique la loi de Laplace : I E B I F I On place une barre métallique mobile sur deux rails conducteurs fixes, le tout placé dans un champ magnétique perpendiculaire au plan des deux rails et de la barre Entre ces deux rails conducteurs, on applique une tension Le circuit étant fermé, un courant circule dans le circuit D après la loi de Laplace, tout les éléments traversés par un courant subissent des forces électromagnétiques Déplacement de la barre métallique La force de Laplace est d autant plus intense si l intensité du courant et le champ magnétique est intense Le sens de la force dépend du sens du courant et du sens du champ magnétique (règle de la main droite) si on inverse le courant ou le champ magnétique, la force est orientée dans l autre sens 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 73

74 Création d une force électromotrice Pour mettre en évidence, la création d une force électromotrice, on reprend le dispositif expérimental précédent : x x + dx V M e P B N O Pour voir la force électromotrice, on remplace la source de tension par un voltmètre L ensemble est toujours plongé dans un champ magnétique constant et uniforme, perpendiculaire au plan des rails et de la barre La surface MNOP est donc soumise à un flux magnétique φ qui est perpendiculaire à celle-ci. De plus l intensité de ce flux est égale à φ = B. S Lorsque l on déplace le barreau, la surface MNOP est modifiée ce qui entraine une variation du flux magnétique D après la loi de Faraday, cette modification entraine la création d une force électromotrice entre M et P e = dφ dt 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 74

75 Constitution de la machine à courant continu i a Une machine à courant continu est composée de deux parties : U a inducteur MCC induit Ω Tu L inducteur : il a pour but de créer un champ magnétique constant. L inducteur est situé au stator de la machine. Pour créer ce champ magnétique, il y a deux solutions : avec un aimant permanent ou avec un bobinage (principe de l électroaimant). C est la partie passive L induit : c est l induit qui réalise la conversion électromécanique, l induit est situé au rotor de la machine. C est la partie active de la machine Pour réaliser la conversion électromécanique, l induit a besoin que l inducteur crée un champ magnétique 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 75

76 Application à la MCC Création de la force magnétique : Création de la force électromotrice : La force est maintenant un couple électromagnétique que l on note T em Ce couple électromagnétique est fonction du courant d induit : T em = K T. I La force électromotrice est créée par une variation de l orientation de la surface variation du flux magnétique La fem sera proportionnel à la vitesse de rotation : E = K E. Ω 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 76

77 Application à la MCC Avec un fonctionnement en charge de la machine : couple et vitesse non nuls pour la partie mécanique et tension et courant non nuls pour la partie électrique On aura à la fois la création d un couple électromagnétique et d une force électromotrice Ces deux phénomènes se superposeront La puissance électromagnétique peut s écrire de deux manières : Si on regarde le côté électrique : P em = E. I a = K E. Ω. I a Si on regarde le côté mécanique : P em = T em. Ω = K T. I a. Ω On peut en déduire que K E = K T = K et que P em = K. Ω. I a 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 77

78 Schéma fonctionnel de la transformation électromécanique Tension d alimentation U a + E Circuit électrique : Résistance (pertes) + inductance Courant d induit i a LAPLACE Couple électromagnétique T em = K. i a Courant d excitation Champ magnétique E = K. Ω Force Electromotrice FARADAY Ω Vitesse de rotation Arbre mécanique : Pertes mécanique + Inertie + T em T ch Couple de Charge Schéma fonctionnel qui permet de décrire le fonctionnement de la machine à courant continu 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 78

79 Principe de fonctionnement : Mode moteur Couple de charge T ch Tension d alimentation + Courant d induit i a Force Electromotrice U a Couple T em électromagnétique + Rotation du rotor Ω E On applique une tension d induit (tension d alimentation) Cette tension fait circuler un courant car on a la présence de composants électriques (voir modélisation) Ce courant crée un couple moteur (couple électromagnétique au pertes près) Si ce couple est supérieur au couple de charge (ou couple résistant), le rotor se met en rotation Cette rotation vient créer une force électromotrice qui vient s opposer au courant (diminution) sans pouvoir l annuler (c est-à-dire U a > E Application de la loi de Lenz : les effets magnétiques s oppose à la cause qui leur a donné naissance 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 79

80 Principe de fonctionnement : Mode générateur Tension de charge U ch Couple d entrainement + Rotation du rotor Ω Force Electromotrice + Courant d induit i a T E Par l intermédiaire du rotor, on applique un couple d entrainement (autre machine, éolienne, ) Ce couple entraine une rotation du rotor de la machine Cette rotation va entrainer la création d une force électromotrice Si le circuit est fermé en sortie de la machine, on aura une tension de charge aux bornes de la machine et un courant prendra naissance Ce courant crée un couple électromagnétique qui s oppose au couple d entrainement de la machine Couple T électromagnétique m Application de la loi de Lenz : les effets magnétiques s oppose à la cause qui leur a donné naissance 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 80

81 Technologie de la MCC : Constitution d une MCC Vue générale de la machine à courant continu corne Inducteur Pôle auxiliaire de commutation Pôle principal Entrefer Plan de coupe transversal Encoche 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 81

82 Technologie de la MCC : L inducteur Le stator est l inducteur L inducteur a pour rôle de créer le champ magnétique Le système inducteur est la partie passive de la machine. Il est composé de 2 éléments : L excitation qui est la source du champ magnétique. L excitation peut être faite soit par un aimant permanent (excitation n est pas réglable), soit par un bobinage jouant le rôle d électroaimant Le circuit magnétique qui a pour but de canaliser le champ magnétique. Il est composé d une partie fixe (matériau magnétique du stator) et d une partie mobile (matériau magnétique du rotor) et d un entrefer qui doit être le plus petit possible (air entre le rotor et le stator) Dans le cas d une excitation avec un électroaimant, il y a différentes manières de placer le bobinage : en parallèle avec l induit, en série avec l induit ou indépendant de l induit (dépend de la machine) 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 82

83 Technologie de la MCC : L inducteur L excitation est importante car elle joue directement sur la constante K qui relie le couple au courant et la force électromotrice à la vitesse de rotation Si l excitation est réalisée par un aimant permanent : le champ magnétique est fixe et la constante K ne varie pas Dans le cas d une excitation avec un électroaimant, le champ magnétique est fonction du courant circulant dans la bobine Deux parties sur la courbe : zone linéaire et une zone de saturation (phénomène d hystérésis) K (Wb) Si l électroaimant est en série avec l induit, le courant d excitation dépend du point de fonctionnement (fonctionnement à flux lié), si l électroaimant est en parallèle ou séparée (fonctionnement à flux indépendant) 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 83 I ex (A)

84 Technologie de la MCC : L induit Le rotor est l induit L induit est la partie active de la machine, c est dans l induit que se réalise la conversion électromécanique L induit est composé d un ensemble de cadres conducteurs placé dans les encoches du rotor Chaque cadre forme une spire qui est embrassée par un champ magnétique créé par l inducteur Les différentes spires sont uniformément réparties autour du rotor lames spire Lorsque qu un courant circule dans la spire, il y a création d une force électromotrice qui entraine la rotation du rotor de la machine L entrée d une spire est reliée à la sortie de la précédente sur une lame de cuivre 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 84

85 Nécessité d un collecteur Si on prend le fonctionnement moteur et que l on s intéresse uniquement au rotor B F La loi de Laplace dit que si un conducteur parcouru par un courant est placé dans un champ magnétique alors il se crée une force électromagnétique perpendiculaire au courant et au champ magnétique Dans le premier cas le circuit électrique crée un couple de force qui permet la rotation du rotor de la machine B F i a le couple est dans ce cas maximal et non nul (le rotor peut tourner sur son axe) A O I F 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 85

86 Nécessité d un collecteur B F i a O A I Il tourne jusqu à un point d équilibre ou le moment du couple s annule Dans ce le deuxième cas présenté, le couple est nul (pas de projection sur l axe perpendiculaire à OA) F Dans le 3 ème cas : si on inverse le sens du courant, les forces s orienteront dans le sens inverse i a B F Si il y a un léger décalage, les forces entraineront le rotor jusqu au nouveau point d équilibre F I 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 86

87 Technologie de la MCC : Les balais et le collecteur Pour faire fonctionner la machine à courant continu, il est nécessaire d avoir un contact électrique entre le rotor et le stator Le rotor étant en mouvement, ce contact ne peut pas être fait avec des câbles électriques De plus, pour permettre un mouvement continu de la machine, il faut s assurer que les enroulements soient alimentés au meilleur instant (moment du couple maximum) et dans le bon sens La solution est d utiliser des balais (conducteur fixe) qui viennent frotter les lames conductrices au rotor A chaque instant les balais sont en contact avec la spire qui permet d avoir la force électromagnétique la plus grande possible Alimentation électrique Un balai est composé d un support qui permet le support contact entre le fil d alimentation et un charbon qui balai vient frotter sur les lames du collecteur 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 87

88 La réaction mécanique d induit La réaction magnétique d induit est un phénomène parasite qui est du à l expression de loi de Lenz : Les courants circulant dans l induit s opposent, par leur effets aux phénomènes qui leurs ont donnés naissance 1 er effet de la loi de Lenz Apparition pour le mode générateur d un couple électromagnétique et pour le mode moteur, d une force contre électromotrice 2 eme effet de la loi de Lenz Naissance d un champ parasite due à la circulation de courant dans l induit venant atténuer le champ inducteur Solution pour contrer ce deuxième effet Placement de pôles auxiliaires pour annuler ce flux parasite corne Inducteur Entrefer Pôle auxiliaire de commutation Pôle principal Encoche 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 88

89 Schémas électriques équivalents U a i a i ex u ex inducteur MCC Si une machine est correctement excitée (présence d un champ magnétique uniforme et constant), il est possible de modéliser la machine à courant continu avec des éléments simples induit Ω Tu Modélisation de l inducteur L inducteur est modélisé par une résistance r ex. Elle a à ses bornes une tension u ex et est traversée par un courant i ex Convention récepteur (moteur) u ex i ex r ex inducteur i a U a L E = K. Ω R a induit Modélisation de l induit L induit est un dipôle actif modélisable (si on reprend le modèle de Thévenin) par une inductance L, une résistance R a et une source de tension E La source de tension correspond à la force électromotrice (dans le cas générateur) ou contre électromotrice (dans le cas moteur) et : E = K. Ω 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 89

90 Equation de fonctionnement : Equation électrique Pour l étude de la machine à courant continu, on s intéresse principalement à l induit. Dans la plupart des cas (excitation parallèle, séparé ou par aimant permanent), on considère que l excitation est établie et constante Convention récepteur (moteur) i a L R a L équation électrique peut alors s écrire : U a E = K. Ω U a = L di a dt + R ai a + E Où R a représente la résistance de l induit, L l inductance de l induit et E la force contre électromotrice (moteur) ou électromotrice (générateur) En régime permanent établi, cette équation peut se résoudre à : U a = R a i a + E Puisque i a = cste alors L di a dt = /2014 0A-ETT Bases d'électrotechnique A. LEREDDE 90

91 Equation de fonctionnement : Equation mécanique T em = Ki a Inertie J Frottements T p Pour trouver l équation mécanique de la machine à courant continu on applique le principe fondamental de la dynamique (PFD) Tch J dω dt = T em T p T ch Convention moteur On peut aussi écrire cette équation en régime permanent établi T em = T p + T ch Puisque Ω = cste alors J dω dt = 0 Le couple T p représente le couple de frottement (entre le stator et le rotor); c est un couple résistant ((signe moins dans le PFD) Dans le cas moteur, le couple de charge T ch est souvent appelé couple utile T u Mais T u = T em T p donc T u = T ch n est vrai qu en régime permanent 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 91

92 Equation de fonctionnement : Equation en régime permanent Convention récepteur (moteur) U a i a R a E = K. Ω En régime permanent, la machine peut être modélisée par 4 équations Une équation électrique U a = R a i a + E T em = Ki a Frottements T p Tch Une équation mécanique T ch = T em T p Et 2 équations permettant de relier les grandeurs électriques et mécaniques T em = K. i a E = K. Ω 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 92

93 Bilan des puissances : Puissance et couple électromagnétique Le couple électromagnétique Le couple électromagnétique T em correspond au couple appliqué par les forces de Laplace sur le rotor. Ce couple est soit moteur (fonctionnement moteur) quand il implique le déploiement d une puissance mécanique, soit résistant (fonctionnement générateur) quand il s oppose à la rotation et implique la consommation d une puissance mécanique. Puissance électromagnétique La puissance électromagnétique est celle convertie, elle est à la fois mécanique et électrique D un point de vue mécanique, cette puissance peut s écrire : P em = T em Ω D un point de vue électrique, cette puissance peut s écrire : P em = Ei a 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 93

94 Bilan des puissances : Les pertes Pertes Joule Ce sont les pertes par échauffement dans les conducteurs de l induit et de l inducteur Pertes Joule induit (rotor) P JR = R a i a 2 Pertes Joule inducteur (stator) P JS = u ex i ex = ri ex 2 Pertes mécaniques Ce sont les pertes dues aux imperfections des éléments mécaniques (frottement entre le rotor et le stator) Perte fer Ce sont les pertes dans le circuit magnétique (pertes par courant de Foucault et pertes par hystérésis) Les pertes communes peuvent être déterminées par une mesure de la puissance absorbée lorsque le moteur fonctionne à vide 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 94

95 Arbre des puissances : Mode moteur Excitation ui Puissance électrique absorbée P a P a = U a i a P em = Ei a Pertes Joule au stator P JS P JR = R a i a 2 Puissance électromagnétique P em P em = T em Ω Pertes Joule au rotor P JR Pertes mécaniques P meca Pertes fer P fer Puissance mécanique utile ui = ri 2 P u = T ch Ω 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 95

96 Arbre des puissances : Mode générateur Excitation ui Puissance mécanique absorbée P a P a = TΩ Pertes mécaniques P meca Pertes fer P fer P em = T em Ω Puissance électromagnétique P em P em = Ei a Pertes Joule au rotor P JR ui = ri 2 Pertes Joule au stator P JS P JR = R a i a 2 Puissance électrique utile P u P u = U a i a 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 96

97 Machine à Excitation séparée Il y a différentes manières d alimenter l excitation d une machine à courant continu : excitation séparée, parallèle et série L alimentation séparée (ou indépendante ) est l alimentation qui offre le plus de liberté : l inducteur et l induit ne sont pas alimenté par la même source d énergie Le courant d excitation est indépendant des variations des autres grandeurs électriques i a i ex i a i ex R a U a u ex MCC u ex r ex U a E inducteur induit inducteur induit L inconvénient de ce type d alimentation est la nécessité d avoir deux sources de tension différentes 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 97

98 Machine à Excitation parallèle (shunt) Pour l alimentation parallèle, dérivation ou shunt, l inducteur est mis en parallèle avec l induit de la machine Dans le cas d une alimentation shunt, la bobine de l inducteur est constituée de nombreuses spires d un fil fin Electriquement, on peut écrire que U a = u ex. Au niveau des courants, on a i ex i a i a i a i ex i ex R a U a u ex MCC U a = u ex inducteur r ex E inducteur induit induit Un réglage du courant d excitation est possible en plaçant une résistance variable (rhéostat) en série avec l inducteur 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 98

99 Machine à Excitation série Pour l alimentation série, l inducteur est mis en série avec l induit de la machine Dans le cas d une alimentation shunt, la bobine de l inducteur est constituée de peu de spires réalisées par un gros fil Electriquement, on peut écrire que i a = i ex. Au niveau des tensions, on a u ex U a i ex inducteur i a inducteur r ex i a = i ex u ex u ex R a U a MCC induit E U a induit Un réglage du courant d excitation est possible en plaçant une résistance variable (rhéostat) en parallèle avec l inducteur 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 99

100 Lecture d une plaque signalétique La plaque signalétique permet de savoir comment utiliser la machine électrique : Informations générales sur la machine : Valeur nominales de la machine : Puissance nominale Vitesse nominale Tension et courant nominaux d induit Grandeurs pour l excitation La machine est dimensionnée pour fonctionner avec les valeurs nominales, il est possible de dépasser momentanément ces valeurs mais le fonctionnement n est pas garantie par le constructeur 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 100

101 Machine à Excitation série : le moteur universel Le moteur universel est une utilisation particulière du moteur à excitation série Alimentation de l induit et de l inducteur en sinusoïdale ce qui entraine un courant sinusoïdal Le couple moyen est non nul et permet d entrainer le moteur à une vitesse non nulle Moteur très largement utilisé dans l électroménager (seche-cheveux, aspirateur, machine à laver) vitesse de rotation importante (> 3000tr/min) i ex inducteur i a u ex T em v e U a MCC induit i a 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 101

102 MCC : Comparaison des excitations Excitations shunt ou séparée Excitation série Résistance inducteur Elevée Faible Vitesse Stable avec la charge Contrôlée par la charge Emballement Si coupure de l excitation À vide Caractéristique Vitesse constante Puissance constante Couple T u i a T u i a 2 Démarrage Fort courant Fort couple Modification du sens de rotation Fonctionnement en Alternatif Freinage En inversant i ex ou i a impossible possible Recablage de la machine (ou commande) possible Par recablage (ou commande) 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 102

103 MCC : Avantages, inconvénient et application Avantage Commande simple Facilement réversible Freinage dynamique Peut démarrer en charge Stabilisation de la vitesse (excitation shunt) Stabilisation de la puissance (moteur série) Inconvénients Présence d un collecteur Cout de fabrication Coût d entretien Concurrence Moteur asynchrone Alternateur triphasé Quelques applications du moteur à courant continu Robotique : régulation de position et de vitesse Electroménager : utilisation du moteur universel Machine outil : moteur parallèle ou shunt car la vitesse est stable Traction/levage : moteur série car il possède un gros couple au démarrage 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 103

104 Les Machines électriques Les machines électriques permettent la conversion de l énergie mécanique en énergie électrique ou de l énergie électrique en énergie mécanique : cette une conversion réversible Energie Mécanique (rotation) Machine Electrique Mode Générateur (ou alternateur) Energie électrique Mode Moteur Les trois grands types de machines les plus couramment utilisées sont la machine à courant continu, la machine synchrone et la machine asynchrone 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 104

105 Vocabulaire Stator : Partie statique (fixe) de la machine Rotor : Partie mobile de la machine, elle a une vitesse de rotation par rapport au stator que l on notera Ω (en rd/s) ou N (en tr/min) Inducteur : L inducteur a pour but de créer le champ magnétique qui permettra le transfert d énergie électrique entre le stator et le rotor Induit : L induit est le siège de l induction magnétique. Il est soumis au champ inducteur 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 105

106 Rappel sur les lois de l électromagnétisme Les loi d Ampère, Biot et Savart : On peut créer un champ magnétique avec du courant électrique La loi de Laplace On peut déplacer des circuits électriques à l aide d un courant et d un champ magnétique La loi de Faraday Un circuit soumis à un flux magnétique variable est le siège d une force électromotrice La loi de Lenz Le sens du courant induit est tel que, par ses effets, il s oppose toujours à la cause qui lui a donné naissance 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 106

107 Spires dans un champ tournant B α 0 x On considère une bobine de N spires placée dans un champ d induction magnétique tournant à la vitesse angulaire Ωt. On appelle B la valeur du champ d induction magnétique : A tout instant on peut écrire l angle entre le champ d induction magnétique et l axe des spires Ox, B = α = Ωt On peut aussi écrire le flux d induction φ t à travers la bobine (de section S): φ t = NBS cos Ωt La bobine sera alors le siège d une force électromotrice e induite vérifiant la loi de Faraday dφ t e t = = NBSΩ sin Ωt dt La force électromotrice est de forme sinusoïdale : e t = E 2 sin ωt Avec E = B 2 NSΩ 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 107

108 Spires dans un champ tournant 2 z 1 0 α B Il est possible de mettre plusieurs bobinages dans un même champ magnétique : x Si on décale ces bobines de telle sorte que deux à deux leurs axes soient décalés de 120 (ou 2π 3 ) Oy, B = α 2π 3 = Ωt 2π 3 Oz, B = α 4π 3 = α + 2π 3 = Ωt + 2π 3 3 y On peut ainsi écrire les flux d induction pour chaque bobine: φ 1 t = NBS cos Ωt φ 2 t = NBS cos Ωt 2π 3 φ 3 t = NBS cos Ωt + 2π 3 En prenant la phase 1 comme origine des phases, Il est possible d écrire la force électromotrice dans chaque phase : e 1 t = E 2 cos ωt e 2 t = E 2 cos ωt 2π 3 Avec E = B 2 NSΩ e 3 t = E 2 cos ωt + 2π /2014 0A-ETT Bases d'électrotechnique A. LEREDDE 108

109 Théorème des champs tournants Théorème de Ferraris Un bobinage polyphasé (q phases) symétrique et multipolaire (p paires de pôles), alimenté par un système polyphasé équilibré de courants, crée dans l entrefer un champ multipolaire à répartition sinusoïdale, tournant à la vitesse de synchronisme Ω = ω p /2014 0A-ETT Bases d'électrotechnique A. LEREDDE 109

110 Paire de Pôles I B Nord Sud N S B Une spire ou un ensemble de spire où circule un courant peut être équivalent à un aimant (électroaimant). Un aimant possède deux pôles, un pôle nord et un pôle sud. Ces deux pôles sont appelés paire de pôles I B N Avec plusieurs enroulements, il est possible, en les disposant correctement, de créer un système avec plusieurs paires de pôles S S Si on regarde le flux magnétique, celui-ci ne varie plus selon l angle α mais pα. p étant le nombre de paire de pôles N Si on écrit la force électromotrice B e t = pωφ M sin pωt = E 2 sin ωt 2013/2014 0A-ETT Bases d'électrotechnique A. LEREDDE 110

111 Paire de Pôles /2014 0A-ETT Bases d'électrotechnique A. LEREDDE 111

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ Electrotechnique Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ 1 Sommaire 1 ère partie : machines électriques Chapitre 1 Machine à courant continu Chapitre 2 Puissances électriques

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

MATIE RE DU COURS DE PHYSIQUE

MATIE RE DU COURS DE PHYSIQUE MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

CH 11: PUIssance et Énergie électrique

CH 11: PUIssance et Énergie électrique Objectifs: CH 11: PUssance et Énergie électrique Les exercices Tests ou " Vérifie tes connaissances " de chaque chapitre sont à faire sur le cahier de brouillon pendant toute l année. Tous les schémas

Plus en détail

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1 1 Introduction Un convertisseur statique est un montage utilisant des interrupteurs à semiconducteurs permettant par une commande convenable de ces derniers de régler un transfert d énergie entre une source

Plus en détail

MESURE DE LA PUISSANCE

MESURE DE LA PUISSANCE Chapitre 9 I- INTRODUCTION : MESURE DE L PUISSNCE La mesure de la puissance fait appel à un appareil de type électrodynamique, qui est le wattmètre. Sur le cadran d un wattmètre, on trouve : la classe

Plus en détail

Les résistances de point neutre

Les résistances de point neutre Les résistances de point neutre Lorsque l on souhaite limiter fortement le courant dans le neutre du réseau, on utilise une résistance de point neutre. Les risques de résonance parallèle ou série sont

Plus en détail

Solutions pour la mesure. de courant et d énergie

Solutions pour la mesure. de courant et d énergie Solutions pour la mesure de courant et d énergie Mesure et analyse de signal Solutions WAGO pour la surveillance et l économie d énergie Boucles de mesure Rogowski, série 855 pour la mesure non intrusive

Plus en détail

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples. Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste

Plus en détail

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Introduction Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Le terme électricité provient du grec ἤλεκτρον

Plus en détail

Electrotechnique: Electricité Avion,

Electrotechnique: Electricité Avion, Electrotechnique: Electricité Avion, La machine à Courant Continu Dr Franck Cazaurang, Maître de conférences, Denis Michaud, Agrégé génie Electrique, Institut de Maintenance Aéronautique UFR de Physique,

Plus en détail

Les Mesures Électriques

Les Mesures Électriques Les Mesures Électriques Sommaire 1- La mesure de tension 2- La mesure de courant 3- La mesure de résistance 4- La mesure de puissance en monophasé 5- La mesure de puissance en triphasé 6- La mesure de

Plus en détail

Charges électriques - Courant électrique

Charges électriques - Courant électrique Courant électrique Charges électriques - Courant électrique Exercice 6 : Dans la chambre à vide d un microscope électronique, un faisceau continu d électrons transporte 3,0 µc de charges négatives pendant

Plus en détail

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes

Plus en détail

Convertisseurs Statiques & Machines

Convertisseurs Statiques & Machines MASTER EEA Parcours CESE Travaux Pratiques Convertisseurs Statiques & Machines EM7ECEBM V. BLEY D. RISALETTO D. MALEC J.P. CAMBRONNE B. JAMMES 0-0 TABLE DES MATIERES Rotation des TP Binôme Séance Séance

Plus en détail

M HAMED EL GADDAB & MONGI SLIM

M HAMED EL GADDAB & MONGI SLIM Sous la direction : M HAMED EL GADDAB & MONGI SLIM Préparation et élaboration : AMOR YOUSSEF Présentation et animation : MAHMOUD EL GAZAH MOHSEN BEN LAMINE AMOR YOUSSEF Année scolaire : 2007-2008 RECUEIL

Plus en détail

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle Série 77 - Relais statiques modulaires 5A Caractéristiques 77.01.x.xxx.8050 77.01.x.xxx.8051 Relais statiques modulaires, Sortie 1NO 5A Largeur 17.5mm Sortie AC Isolation entre entrée et sortie 5kV (1.2/

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Multitension Monofonction. Multitension Multifonction

Multitension Monofonction. Multitension Multifonction Série - Relais temporisés modulaires 16 A SERIE Caractéristiques.01.11 Relais temporisés multifonction et monofonction.01 - Multifonction et multitension.11 - Temporisé à la mise sous tension, multitension

Plus en détail

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres LE M O TE U R A C O U R A N T C O N TI N U La loi de LAPLACE Un conducteur traversé par un courant et placé dans un champ magnétique est soumis à une force dont le sens est déterminée par la règle des

Plus en détail

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT OBJECTIFS Savoir utiliser le multimètre pour mesurer des grandeurs électriques Obtenir expérimentalement

Plus en détail

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente? CHAPITRE 7 ÉNERGIE ET PUISSANCE ÉLECTRIQUE 2.4.0 Découvrir les grandeurs physiques qui influencent l'énergie et la puissance en électricité. Vous faites le grand ménage dans le sous-sol de la maison. Ton

Plus en détail

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES) Chapitre 3 LES APPARELS A DEVATON EN COURANT CONTNU ( LES APPRELS MAGNETOELECTRQUES) - PRNCPE DE FONCTONNEMENT : Le principe de fonctionnement d un appareil magnéto-électrique est basé sur les forces agissant

Plus en détail

Cahier technique n 18

Cahier technique n 18 Collection Technique... Cahier technique n 8 Analyse des réseaux triphasés en régime perturbé à l aide des composantes symétriques B. de Metz-Noblat Building a New lectric World * Les Cahiers Techniques

Plus en détail

CH IV) Courant alternatif Oscilloscope.

CH IV) Courant alternatif Oscilloscope. CH IV) Courant alternatif Oscilloscope. Il existe deux types de courant, le courant continu et le courant alternatif. I) Courant alternatif : Observons une coupe transversale d une «dynamo» de vélo. Galet

Plus en détail

Références pour la commande

Références pour la commande avec fonction de détection de défaillance G3PC Détecte les dysfonctionnements des relais statiques utilisés pour la régulation de température des éléments chauffants et émet simultanément des signaux d'alarme.

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

Travaux dirigés de magnétisme

Travaux dirigés de magnétisme Travaux dirigés de magnétisme Année 2011-2012 Christophe GATEL Arnaud LE PADELLEC gatel@cemesfr alepadellec@irapompeu Travaux dirigés de magnétisme page 2 Travaux dirigés de magnétisme page 3 P r é s e

Plus en détail

n 159 onduleurs et harmoniques (cas des charges non linéaires) photographie Jean Noël Fiorina

n 159 onduleurs et harmoniques (cas des charges non linéaires) photographie Jean Noël Fiorina n 159 photographie onduleurs et harmoniques (cas des charges non linéaires) Jean Noël Fiorina Entré chez Merlin Gerin en 1968 comme agent technique de laboratoire au département ACS - Alimentations Convertisseurs

Plus en détail

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

Monte charge de cuisine PRESENTATION DU MONTE CHARGE Nom.. Prénom.. Monte charge de cuisine Réalisation /0 Mise en service /0 Dépannage /0 PRESENTATION DU MONTE CHARGE M ~ S0 (Atu) S (appel pour monter) S (descente) H (descendez les déchets S.V.P.!) Sh Salle

Plus en détail

Électricité au service des machines. heig-vd. Chapitre 3. Alimentations électriques, courant alternatif 3-1

Électricité au service des machines. heig-vd. Chapitre 3. Alimentations électriques, courant alternatif 3-1 heig-vd Électricité au service des machines Chapitre 3 Alimentations électriques, courant alternatif 3-1 Électricité au service des machines Alimentations électriques, courant alternatif heig-vd 3 Alimentations

Plus en détail

WWW.ELCON.SE Multichronomètre SA10 Présentation générale

WWW.ELCON.SE Multichronomètre SA10 Présentation générale WWW.ELCON.SE Multichronomètre SA10 Présentation générale Le SA10 est un appareil portable destiné au test des disjoncteurs moyenne tension et haute tension. Quoiqu il soit conçu pour fonctionner couplé

Plus en détail

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER Introduction à l électronique de puissance Synthèse des convertisseurs statiques Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER 28 janvier 2007 Table des matières 1 Synthèse des convertisseurs

Plus en détail

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

Le triac en commutation : Commande des relais statiques : Princ ipe électronique LES RELAIS STATIQUES (SOLID STATE RELAY : SSR) Princ ipe électronique Les relais statiques sont des contacteurs qui se ferment électroniquement, par une simple commande en appliquant une tension continue

Plus en détail

GENERALITES SUR LA MESURE DE TEMPERATURE

GENERALITES SUR LA MESURE DE TEMPERATURE Distributeur exclusif de GENERALITES SUR LA MESURE DE TEMPERATURE INTRODUCTION...2 GENERALITES SUR LA MESURE DE TEMPERATURE...2 La température...2 Unités de mesure de température...3 Echelle de température...3

Plus en détail

Donner les limites de validité de la relation obtenue.

Donner les limites de validité de la relation obtenue. olutions! ours! - Multiplicateur 0 e s alculer en fonction de. Donner les limites de validité de la relation obtenue. Quelle est la valeur supérieure de? Quel est le rôle de 0? - Multiplicateur e 0 s alculer

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Cahier technique n 207

Cahier technique n 207 Collection Technique... Cahier technique n 207 Les moteurs électriques pour mieux les piloter et les protéger E. Gaucheron Building a New Electric World * Les Cahiers Techniques constituent une collection

Plus en détail

Physique, chapitre 8 : La tension alternative

Physique, chapitre 8 : La tension alternative Physique, chapitre 8 : La tension alternative 1. La tension alternative 1.1 Différence entre une tension continue et une tension alternative Une tension est dite continue quand sa valeur ne change pas.

Plus en détail

Gestion et entretien des Installations Electriques BT

Gestion et entretien des Installations Electriques BT Durée : 5 jours Gestion et entretien des Installations Electriques BT Réf : (TECH.01) ² Connaître les paramètres d une installation basse tension, apprendre les bonnes méthodes de gestion et entretien

Plus en détail

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F Chapitre 7 : CHARGES, COURANT, TENSION S 3 F I) Electrostatique : 1) Les charges électriques : On étudie l électricité statique qui apparaît par frottement sur un barreau d ébonite puis sur un barreau

Plus en détail

INSTALLATIONS INDUSTRIELLES

INSTALLATIONS INDUSTRIELLES Ministère de l Enseignement Supérieur et de la Recherche Scientifique Institut Supérieur des Etudes Technologiques de Nabeul Département : Génie Electrique Support de cours : INSTALLATIONS INDUSTRIELLES

Plus en détail

Génie Industriel et Maintenance

Génie Industriel et Maintenance Génie Industriel et Maintenance Pour qu aucun de ces systèmes ne tombe en panne. Plan de la visite 1 2 3 6 4 5 Guide visite du département Génie Industriel et Maintenance 1 Salles Informatiques Utilisation

Plus en détail

La compensation de l énergie réactive

La compensation de l énergie réactive S N 16 - Novembre 2006 p.1 Présentation p.2 L énergie réactive : définitions et rappels essentiels p.4 La compensation de l énergie réactive p.5 L approche fonctionnelle p.6 La problématique de l énergie

Plus en détail

7200S FRA. Contacteur Statique. Manuel Utilisateur. Contrôle 2 phases

7200S FRA. Contacteur Statique. Manuel Utilisateur. Contrôle 2 phases 7200S Contacteur Statique FRA Contrôle 2 phases Manuel Utilisateur Chapitre 2 2. INSTALLATI Sommaire Page 2.1. Sécurité lors de l installation...............................2-2 2.2. Montage.................................................2-3

Plus en détail

Notions fondamentales sur le démarrage des moteurs

Notions fondamentales sur le démarrage des moteurs Notions fondamentales sur le démarrage des moteurs Démarrage traditionnel Démarreur progressif, convertisseur de fréquence Motor Management TM Préface Ce manuel technique sur le démarrage des moteurs fait

Plus en détail

NO-BREAK KS. Système UPS dynamique PRÉSENTATION

NO-BREAK KS. Système UPS dynamique PRÉSENTATION NO-BREAK KS Système UPS dynamique PRÉSENTATION Table des matières Chapitre 1 : Description du système No-Break KS...3 Chapitre 2 : Fonctionnement lorsque le réseau est présent...4 Chapitre 3 : Fonctionnement

Plus en détail

Séquence 14 : puissance et énergie électrique Cours niveau troisième

Séquence 14 : puissance et énergie électrique Cours niveau troisième Séquence 14 : puissance et énergie électrique Cours niveau troisième Objectifs : - Savoir que : o Le watt (W) est l unité de puissance o Le joule (J) est l unité de l énergie o L intensité du courant électrique

Plus en détail

MODULE DES SCIENCES APPLIQUÉES

MODULE DES SCIENCES APPLIQUÉES MODULE DES SCIENCES APPLIQUÉES Machine synchrone/asynchrone PROJET DE FIN D ETUDE EN INGÉNIERIE DANS LE CADRE DU PROGRAMME EN GÉNIE ÉLECTROMÉCANIQUE Présenté par : Mouad Oubidar Sedik Bendaoud Superviseur:

Plus en détail

Cahier technique n 158

Cahier technique n 158 Collection Technique... Cahier technique n 158 Calcul des courants de court-circuit B. de Metz-Noblat F. Dumas C. Poulain Building a New Electric World * Les Cahiers Techniques constituent une collection

Plus en détail

Chauffage par induction

Chauffage par induction Guide Power Quality Section 7: Efficacité Energétique www.leonardo-energy.org/france Edition Août 2007 Chauffage par induction Jean Callebaut, Laborelec Décembre 2006 1 Introduction... 3 2 Principes physiques...

Plus en détail

Electricien automaticien Electricienne automaticienne

Electricien automaticien Electricienne automaticienne Projet : Ecole Compétences -Entreprise Industrie Secteur : 2 orientation d'études : Electricien automaticien Electricienne automaticienne COMPETENCE PARTICULIERE VISEE: CP2 Monter des ensembles électriques

Plus en détail

Champ électromagnétique?

Champ électromagnétique? Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques

Plus en détail

sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati

sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati ÉLECTRICITÉ GÉNÉRALE Analyse et synthèse des circuits ÉLECTRICITÉ GÉNÉRALE

Plus en détail

Electron ELECTRICITE. Pour les détails: www.electron.it. Design, Production & Trading. Catalogue Synthétique Rev 01/2007 Page 17

Electron ELECTRICITE. Pour les détails: www.electron.it. Design, Production & Trading. Catalogue Synthétique Rev 01/2007 Page 17 ELECTRICITE Catalogue Synthétique Rev 01/2007 Page 17 SYSTEME DIDACTIQUE FONDEMENTS DE L ELECTRICITE A11 INSTRUMENTS ELECTRIQUES A12 SYSTEME DIDACTIQUE D INSTALLATIONS ELECTRIQUES A21 A24 SYSTEME DIDACTIQUE

Plus en détail

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre

Plus en détail

Version MOVITRANS 04/2004. Description 1121 3027 / FR

Version MOVITRANS 04/2004. Description 1121 3027 / FR MOVITRANS Version 04/2004 Description 1121 3027 / FR SEW-USOCOME 1 Introduction... 4 1.1 Qu est-ce-que le MOVITRANS?... 4 1.2 Domaines d utilisation du MOVITRANS... 4 1.3 Principe de fonctionnement...

Plus en détail

CIRCUIT DE CHARGE BOSCH

CIRCUIT DE CHARGE BOSCH LA GUZZITHÈQUE 1/5 10/06/06 CIRCUIT DE CHARGE BOSCH Ce document est issu d un article de l Albatros, revue de liaison du MGCF, lui-même issu du Gambalunga, revue anglaise de liaison du MGC d Angleterre.

Plus en détail

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N Série 55 - Relais industriels 7-10 A Caractéristiques 55.12 55.13 55.14 Relais pour usage général avec 2, 3 ou 4 contacts Montage sur circuit imprimé 55.12-2 contacts 10 A 55.13-3 contacts 10 A 55.14-4

Plus en détail

1 000 W ; 1 500 W ; 2 000 W ; 2 500 W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

1 000 W ; 1 500 W ; 2 000 W ; 2 500 W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m. EXERCICES SUR LA PUISSANCE DU COURANT ÉLECTRIQUE Exercice 1 En zone tempérée pour une habitation moyennement isolée il faut compter 40 W/m 3. Sur un catalogue, 4 modèles de radiateurs électriques sont

Plus en détail

1 Savoirs fondamentaux

1 Savoirs fondamentaux Révisions sur l oscillogramme, la puissance et l énergie électrique 1 Savoirs fondamentaux Exercice 1 : choix multiples 1. Quelle est l unité de la puissance dans le système international? Volt Watt Ampère

Plus en détail

véhicule hybride (première

véhicule hybride (première La motorisation d un véhicule hybride (première HERVÉ DISCOURS [1] La cherté et la raréfaction du pétrole ainsi que la sensibilisation du public à l impact de son exploitation sur l environnement conduisent

Plus en détail

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel Simulation Matlab/Simulink une machine à inuction triphasée Constitution un référentiel Capocchi Laurent Laboratoire UMR CNRS 6134 Université e Corse 3 Octobre 7 1 Table es matières 1 Introuction 3 Moélisation

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

Installations et équipements électriques Brevet professionnel

Installations et équipements électriques Brevet professionnel Installations et équipements électriques Brevet professionnel MINISTÈRE DE L ÉDUCATION NATIONALE, DE LA RECHERCHE ET DE LA TECHNOLOGIE Direction des lycées et collèges Arrêté du 3 septembre 1997 portant

Plus en détail

Le transistor bipolaire

Le transistor bipolaire IUT Louis Pasteur Mesures Physiques Electronique Analogique 2ème semestre 3ème partie Damien JACOB 08-09 Le transistor bipolaire I. Description et symboles Effet transistor : effet physique découvert en

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Relais d'arrêt d'urgence, protecteurs mobiles

Relais d'arrêt d'urgence, protecteurs mobiles PNOZ Relais jusqu'en d'arrêt 11 catégorie d'urgence, 4, EN 954-1 protecteurs mobiles Bloc logique de sécurité pour la surveillance de poussoirs d'arrêt d'urgence et de protecteurs mobiles Homologations

Plus en détail

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE 4. LES PUISSANCES LA NOTION DE PUISSANCE 88 CHAPITRE 4 Rien ne se perd, rien ne se crée. Mais alors que consomme un appareil électrique si ce n est les électrons? La puissance pardi. Objectifs de ce chapitre

Plus en détail

NOTICE DOUBLE DIPLÔME

NOTICE DOUBLE DIPLÔME NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des

Plus en détail

COMMANDER la puissance par MODULATION COMMUNIQUER

COMMANDER la puissance par MODULATION COMMUNIQUER SERIE 4 MODULER - COMMUNIQUER Fonctions du programme abordées : COMMANDER la puissance par MODULATION COMMUNIQUER Objectifs : Réaliser le câblage d un modulateur d après le schéma de puissance et de commande,

Plus en détail

Electricité. Electrostatique

Electricité. Electrostatique 5G1 - Electrostatique - Page 1 Electricité Electrostatique Cette partie du cours de physique étudie le comportement des charges électriques au repos ainsi que l influence de celles-ci les unes sur les

Plus en détail

Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker

Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker DeCarvalho Adelino adelino.decarvalho@iutc.u-cergy.fr septembre 2005 Table des matières 1 Introduction

Plus en détail

Variation de vitesse des machines à courant alternatif. par

Variation de vitesse des machines à courant alternatif. par Variation de vitesse des machines à courant alternatif. par Philippe Ladoux Variation de vitesse des machines à courant alternatif. Introduction. Sommaire A : Principe de fonctionnement des machines à

Plus en détail

Equipement d un forage d eau potable

Equipement d un forage d eau potable Equipement d un d eau potable Mise en situation La Société des Sources de Soultzmatt est une Société d Economie Mixte (SEM) dont l activité est l extraction et l embouteillage d eau de source en vue de

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

Relais statiques SOLITRON, 1 ou 2 pôles Avec dissipateur intégré

Relais statiques SOLITRON, 1 ou 2 pôles Avec dissipateur intégré Relais statiques SOLITRON, 1 ou 2 pôles Avec dissipateur intégré Relais statique CA, 1 ou 2 pôles Commutation au zéro de tension pour applications de chauffage et de moteur (RN1A) Commutation instantanée

Plus en détail

Unités de mesure de l énergie Septembre 2009

Unités de mesure de l énergie Septembre 2009 Unités de mesure de l énergie Septembre 2009 Lorsque l on parle d installation en Energies Renouvelables on entend parler d unités de mesure telles que les Volts, les Ampères, les kilovolts-ampères, les

Plus en détail

Module 3 : L électricité

Module 3 : L électricité Sciences 9 e année Nom : Classe : Module 3 : L électricité Partie 1 : Électricité statique et courant électrique (chapitre 7 et début du chapitre 8) 1. L électrostatique a. Les charges et les décharges

Plus en détail

Electricité Générale

Electricité Générale Electricité Générale Electricité 1 Livret 4 Résistance Loi d Ohm Loi de Joule Mise à jour février 2007 *FC1207041.1* FC 1207 04 1.1 Centre National d Enseignement et de Formation A Distance Réalisation

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

CHAPITRE IX : Les appareils de mesures électriques

CHAPITRE IX : Les appareils de mesures électriques CHAPITRE IX : Les appareils de mesures électriques IX. 1 L'appareil de mesure qui permet de mesurer la différence de potentiel entre deux points d'un circuit est un voltmètre, celui qui mesure le courant

Plus en détail

IUT DE NÎMES DÉPARTEMENT GEII ÉLECTRONIQUE DE PUISSANCE CONVERSION AC/DC AMÉLIORATION DU FACTEUR DE PUISSANCE

IUT DE NÎMES DÉPARTEMENT GEII ÉLECTRONIQUE DE PUISSANCE CONVERSION AC/DC AMÉLIORATION DU FACTEUR DE PUISSANCE IU DE NÎMES DÉPAREMEN GEII ÉLECRONIQUE DE PUISSANCE AMÉLIORAION DU FACEUR DE PUISSANCE Yaël hiaux yael.thiaux@iut-nimes.fr 13 septembre 013 able des matières 1 Généralités 3 1.1 Historique........................................

Plus en détail

5. Les conducteurs électriques

5. Les conducteurs électriques 5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,

Plus en détail

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 TP A.1 Page 1/5 BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 Ce document comprend : - une fiche descriptive du sujet destinée à l examinateur : Page 2/5 - une

Plus en détail

électricité Pourquoi le courant, dans nos maison, est-il alternatif?

électricité Pourquoi le courant, dans nos maison, est-il alternatif? CHAPITRE 4 : Production de l él électricité Pourquoi le courant, dans nos maison, est-il alternatif? D où vient le courant? Comment arrive-t-il jusqu à nous? 1 la fabrication du courant 2 Les transformateurs

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

La température du filament mesurée et mémorisée par ce thermomètre Infra-Rouge(IR) est de 285 C. EST-CE POSSIBLE?

La température du filament mesurée et mémorisée par ce thermomètre Infra-Rouge(IR) est de 285 C. EST-CE POSSIBLE? INVESTIGATION De nombreux appareils domestiques, convecteurs, chauffe-biberon, cafetière convertissent l énergie électrique en chaleur. Comment interviennent les grandeurs électriques, tension, intensité,

Plus en détail

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension Cyril BUTTAY CEGELY VALEO 30 novembre 2004 Cyril BUTTAY Contribution à la conception

Plus en détail

Cours 9. Régimes du transistor MOS

Cours 9. Régimes du transistor MOS Cours 9. Régimes du transistor MOS Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 005 Dans ce document le transistor MOS est traité comme un composant électronique.

Plus en détail

Cahier technique n 185

Cahier technique n 185 Collection Technique... Cahier technique n 185 Stabilité dynamique des réseaux électriques industriels B. De Metz-Noblat G. Jeanjean Merlin Gerin Square D Telemecanique Les Cahiers Techniques constituent

Plus en détail

«LES ALTERNATEURS DE VOITURES»

«LES ALTERNATEURS DE VOITURES» MENUGE CECILE BELVAL FRANCOIS BRAS FRANCOIS CADART JULIEN GAIGNEUR GUILLAUME «LES ALTERNATEURS DE VOITURES» LYCEE EDOUARD BRANLY BOULOGNE SUR MER Aidés par nos professeurs : M Buridant, M Courtois, M Ducrocq

Plus en détail

PRINCIPE, REGULATION et RECHERCHE de PANNES

PRINCIPE, REGULATION et RECHERCHE de PANNES NOTICE TECHNIQUE N 003 Date : 08/04/03 Révisé le: 14/09/07 ALTERNATEUR PRINCIPE, REGULATION et RECHERCHE de PANNES 1 ) Principe : Contrairement à la dynamo qui produit du courant alternatif redressé par

Plus en détail

Cahier technique n 196

Cahier technique n 196 Collection Technique... Cahier technique n 196 Génération électrique intégrée aux sites industriels et bâtiments commerciaux T. Hazel Les Cahiers Techniques constituent une collection d une centaine de

Plus en détail