Continuité en un point

Dimension: px
Commencer à balayer dès la page:

Download "Continuité en un point"

Transcription

1 DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à valeurs dans R... Définition.. Continuité en un point de R Définition 4.. Soit f une fonction définie en un point x 0 R. On dit que f est continue en x 0 si f possède une limite quand x tend vers x 0. Comme x 0 D f, l existence d un limite en x 0 entraine que cette limite est égale à f(x 0 ) (proposition 3. du document 3). On peut donc traduire la continuité de f en x 0 par : ε > 0, η > 0 tel que x x 0 < η et x D f impliquent f(x) f(x 0 ) < ε. Cette définition peut aussi être écrite à l aide des voisinages définis dans le document 5 par : V V(f(x 0 )), U V(x 0 ) tel que f(d f U) V Remarquons que si x 0 D f {x 0 }, c est-à-dire si x 0 n est pas isolé dans D f, alors f est continue en x 0 si et seulement si lim f(x) existe et vaut f(x 0 ). x x 0,x x 0 Exemples. ) Les fonctions constantes et les fonctions affines sont continues en tout point. ) Soit f la fonction définie sur R par f(x) = xe(/x) si x 0 et f(0) =. Par définition de la partie entière, on a pour x 0, E(/x) /x < E(/x) +, d où, pour x > 0, f(x) < f(x) + x et, pour x < 0, f(x) + x < f(x). On en déduit que pour tout x R, f(0) f(x) x et donc, en prenant η = ε dans la définition de la continuité, on voit que f est continue en 0. 3). La fonction x x est continue en tout point x 0 R +. En effet soit ε > 0. Si x 0 0 alors x x 0 = x x 0 x + x0 x x 0 x0 et donc η = ε x 0 convient pour montrer la continuité en x 0. Maintenant pour x 0 = 0, si η = ε alors 0 x < η implique x < ε d où la continuité en 0... Continuité et restrictions.... Caractère local du concept de continuité. Proposition 4.. Soit f : D f R, A R et x 0 D f. Si f est continue en x 0 et si x 0 A alors la restriction de f à D f A, notée f A, est aussi continue en x 0. Réciproquement, si f A est continue en x 0 et si A contient un intervalle ouvert contenant x 0 alors f est aussi continue en x 0. 59

2 60 4. CONTINUITÉ EN UN POINT Preuve. Voir celle du résultat analogue concernant les limites. Remarques. ) Pour la réciproque, il est important que A contienne un intervalle ouvert contenant x 0. Si le résultat était vrai sans cette hypothèse alors toute fonction serait continue en chaque point de son ensemble de définition. En effet si A = {x 0 } alors f A est continue en x 0. ) La proposition précédente montre le caractère local de la notion de continuité : seul le comportement de f dans un voisinage de x 0 intervient pour la continuité de f en x Continuité à droite et à gauche. On considère f : D f R et x 0 D f. Soit A = [x 0, + [. Si lim x x 0 f A existe, on dit que f est continue à droite en x 0. La continuité à droite de f en x 0 se traduit donc par : ε > 0, η > 0 tel que x D f et x 0 x < x 0 + η impliquent f(x) f(x 0 ) < ε. Si x 0 D f ]x 0, + [, la continuité de f à droite en x 0 équivaut à l existence pour la fonction f d une limite à doite égale à f(x 0 ). On définit de façon analogue la continuité à gauche en x 0. La fonction f est continue à droite et à gauche en x 0 si et seulement si f est continue en x 0. Exemples. ) La fonction partie entière, E : x E(x), est continue en tout point x 0 Z car il existe un intervalle ouvert contenant x 0 sur lequel E est constante. Maintenant, si x 0 Z, alors E est continue à droite en x 0 car il existe un intervalle ouvert contenant x 0 sur lequel la restriction de E à [x 0, + [ est constante. En revanche, E n est pas continue à gauche en x 0 car, pour tout η > 0, il existe x tel que x 0 η < x < x 0 et E(x) E(x 0 ) > /. ) Dans le document 33 (fonctions convexes), on montre que si une fonction f est convexe sur un intervalle ouvert I alors f possède en chaque point x de I une dérivée à gauche f g(x) et une dérivée à droite f d (x). La fonction f g (resp. f d ) est continue à gauche (resp. à droite) en tout point de I. 3). En calcul des probabilités, la fonction de répartition d une variable aléatoire est continue à droite pour toute valeur de la variable..3. Prolongement par continuité. Proposition 4.. Soit f : D f R, a D f \ D f (ce qui signifie : a D f et η > 0, x D f tel que x a < η). La fonction f possède une limite en a si et seulement si il existe un prolongement de f à D f {a} continu en a. Lorsque ce prolongement existe, il est unique et est appelé le prolongement par continuité de f en a. Sa valeur en a est lim f(x). Si la fonction x a f est continue en x 0 D f alors il en est de même pour son prolongement par continuité en a. Preuve. Supposons que f possède un prolongement f à D f {a} continu en a. On a D b f {a} = D f et donc a D b f {a} (a n est pas isolé dans l ensemble de définition de f) et la continuité de f en a entraine f(a) = lim f(x) = lim f(x). x a,x a x a Réciproquement, supposons que f possède une limite en a. On peut définir un prolongement f de f à D f {a} par f(a) = lim x a f(x). On a : lim f(x) = lim f(x) = f(a) x a,x a x a

3 . OPÉRATIONS ALGÉBRIQUES ET COMPOSITION 6 ce qui montre que f est continue en a. Considérons maintenant x 0 D f. Si f est continue en x 0 alors sa restriction f l est aussi. Réciproquement, supposons f continue en x 0, posons η = x 0 a et soit ε > 0. Il existe η > 0 tel que x x 0 < η et x D f impliquent f(x) f(x 0 ) < ε. Soit η = min(η, η ). On a η > 0 et x x 0 < η entraine x a. Il en résulte que si x x 0 < η et x D b f alors f(x) f(x 0 ) < ε et la fonction f est continue en x 0. (On peut aussi dire que D f étant ouvert dans D f {a}, la continuité de f en un point de D f équivaut à celle de f.) Pour l unicité du prolongement, soit g un prolongement de f à D f {a}, continue en a. Comme a n est pas isolé dans D f {a} (tout voisinage de a contient des élément de D f et donc des éléments de D f {a} distincts de a) la continuité de g en a entraine : d où g = f. g(a) = lim g(x) = lim f(x) = f(a) x a,x a x a Exemples. ) Une fonction f, definie sur un intervalle I, est dérivable en un point x 0 de I si et seulement si la fonction x0 definie sur I {x 0 } par x0 (x) = f(x) f(x 0) x x 0 est prolongeable par continuité à I. De plus, on a f (x 0 ) = x0 (x 0 ). ) On définit la fonction f sur R + par f(x) = x ln x. On sait que lim x 0 f(x) = 0 et donc on peut prolonger f par continuité en 0 par la fonction f en posant f(0) = 0... Opérations algébriques.. Opérations algébriques et composition Lemme 4.. Soit f; D f R et x 0 D f. () Si f est continue en x 0 alors f est bornée dans un voisinage de x 0. () Si f est continue en x 0 et si f(x 0 ) 0 alors f est non nul et majorée par f(x 0 ) dans un voisinage de x 0. Preuve. Pour la preuve de. reprendre celle du résultat analogue concernant les limites.. Il existe η > 0 tel que x x 0 < η et x D f impliquent f(x) f(x 0 ) < f(x 0). Comme l on a f(x 0 ) f(x) f(x) f(x 0 ), x x 0 < η et x D f impliquent f(x 0) < f(x) d où le résultat. Proposition 4.3. Soit f et g deux fonctions continues en un point x 0 R. () Pour tout (λ, µ) R, la fonction λf + µg est continue en x 0. () La fonction f.g est continue en x 0. (3) Si f(x 0 ) 0 alors la fonction f est continue en x 0.

4 6 4. CONTINUITÉ EN UN POINT Preuve. a) Il suffit d utiliser l inégalité triangulaire. b) On peut écrire g(x)f(x) g(x 0 )f(x 0 ) f(x 0 ) g(x) g(x 0 ) + g(x) f(x) f(x 0 ) ( ) Le lemme 4. entraine qu il existe η > 0 et M R + tels que x x 0 < η et x D g impliquent g(x) < M. Posons M = max(m, f(x 0 ) ) et remarquons que M > 0. Soit ε > 0. La continuité de f en x 0 entraine qu il existe η > 0 tel que si x D f et x x 0 < η alors f(x) f(x 0 ) < ε M. Maintenant la continuité de g entraine qu il existe η 3 > 0 tel que si x D g et x x 0 < η 3 alors g(x) g(x 0 ) < ε M. En utilisant ( ), on voit que x D f D g et x x 0 < min(η, η, η 3 ) impliquent ε. g(x)f(x) g(x 0 )f(x 0 ) < f(x 0 ) M + M. ε M ε/ + ε/ = ε et f.g est continue en x 0. c) Le lemme 4. entraine qu il existe η > 0 tel que x x 0 < η et x D f impliquent f(x) < f(x 0 ). Pour tout x ]x 0 η, x 0 + η [ D f on peut écrire : f(x) f(x 0 ) = f(x) f(x 0) f(x) f(x 0 f(x 0 ) f(x 0) f(x) = f(x 0 ) f(x 0 ) f(x 0) f(x). La continuité de f en x 0 entraine l existence de η > 0 tel que x x 0 < η et x D f impliquent f(x) f(x 0 ) < ε. f(x 0). Soit η = min(η, η ). Si x D /f et x x 0 < η alors f(x) f(x 0 ) < ε d où la continuité de f en x 0. ( On notera dans cette preuve l utilisation implicite de la proposition 4. car en fait on a montré que c est la restriction de f à ]x 0 η, x 0 + η [ qui est continue en x 0.) Exemples ) Le quotient de deux fonctions f et g, continues en x 0, est continue en x 0 si g(x 0 ) 0. ) En partant de la continuité de l application identique en tout point de R on montre, en utilisant plusieurs fois la proposition précédente, qu il en est de même pour les fonctions polynômes. Les fonctions fractions rationnelles sont continues en tout point où le dénominateur n est pas nul, c est-à-dire en tout point de leur ensemble de définition... Composition. Proposition 4.4. Soit f une fonction de R dans R continue en x 0 et g une fonction de R dans R continue en f(x 0 ). La fonction g f est continue en x 0. Preuve. Soit ε > 0. Il existe η > 0 tel que x f(x 0 ) < η et x D g impliquent g(x) g(f(x 0 )) < ε. Par continuité de f, il existe η > 0 tel que x x 0 < η et x D f entrainent f(x) f(x 0 ) < η Donc pour tout x D g f D f, si x x 0 < η alors f(x) f(x 0 ) < η d où g(f(x)) g(f(x 0 )) < ε ce qui montre la continuité de g f en x 0.

5 3. IMAGE D UNE SUITE CONVERGENTE PAR UNE FONCTION CONTINUE 63 Exemple. L inégalité x x 0 x x 0 entraine la continuité de la fonction valeur absolue en tout point de R. Si une fonction f à valeurs réelles est continue en x 0 alors il en est de même pour la fonction x f(x). Remarque. Pour établir la continuité de f en x 0 lorsque la fonction f est continue en x 0 et f(x 0 ) 0 on peut d abord montrer la continuité en tout point de R de l application x x et utiliser la proposition 4.4. Pour montrer la continuité de x x, soit ε > 0 et a 0. On a, pour x 0, x a = x a x a. Montrons que si x a < a / alors x a <. On a a x x a a / a d où a / x, ( a )/ a x et a x. Soit η = min( a /, ε a ). Si x a] < η a alors : x a = x a < x a a.ε a = ε et l application x x est continue au point a. 3. Image d une suite convergente par une fonction continue Proposition 4.5. Soit (x n ) une suite réelle convergente, de limite l. Pour toute fonction f de R dans R continue en l et telle que {x n n N} D f, la suite (f(x n )) converge vers f(l). Réciproquement, si pour toute suite réelle (x n ) convergente vers l D f et telle que {x n n N} D f, la suite (f(x n )) converge alors f est continue au point l. Preuve. Supposons f continue au point l et soit (x n ) une suite convergente de limite l, vérifiant {x n n N} D f. Soit ε > 0. Il existe η > 0 tel que x x 0 < η et x D f impliquent f(x) f(l) < ε. La convergence de (x n ) entraine l existence d un entier naturel N tel que si n N alors x n l < η. On a donc, pour n N, f(x n ) f(l) < ε ce qui montre que la suite (f(x n )) converge vers f(l). Supposons maintenant que f ne soit pas continue au point l D f. Il existe ε > 0 tel que pour tout η > 0, il existe x D f tel que f(x) f(l) ε. Soit y n D f, n N, tel que y n l < /n et f(y n ) f(l) > ε. Considérons la suite (x n )) de points de D f définie par x n = l et x n+ = y n. Comme la suite (y n ) converge vers l, il en est de même pour la suite (x n ). En revanche, la suite (f(x n )) est divergente car f(x n+ f(x n) = f(y n ) f(l) > ε. Donc si l image par f de toute suite qui converge vers l est une suite convergente alors f est continue au point l. Remarques ) On peut aussi énoncer la partie réciproque de la proposition précédente sous la forme : si pour toute suite réelle (x n ) convergente vers l D f et telle que {x n n N} D f, la suite (f(x n )) converge vers f(l) alors f est continue au point l. On démontre ce résultat en considérant la suite (y n ) qui intervient dans la preuve de la proposition. ) La proposition précédente est souvent utilisée pour montrer qu une fonction f n est pas continue en un point x 0. Pour cela il suffit de trouver une suite (x n ) de points de D f convergente vers x 0 et telle que la suite (f(x n )) soit divergente ou convergente mais avec une limite différente

6 64 4. CONTINUITÉ EN UN POINT de f(x 0 ). Par cette méthode, on peut montrer que la fonction f définie sur R par f(0) = 0 et f(x) = cos si x 0 n est pas continue en 0. x 3) Soit f : D f R tel que f(d f ) D f, et (x n ) une suite de points de D f définie par son premier terme x 0 D f et la relation de récurrence x n+ = f(x n ). Si (x n ) converge vers l et si f est continue au point l alors l = f(l). Lorsque de plus la fonction f est continue en tout point de D f, ce résultat montre que la limite éventuelle d une suite (x n ) de D f qui satisfait la relation de récurrence x n+ = f(x n ) est à rechercher parmi les solutions de l équation f(x) = x. On appelle valeur d adhérence d une suite (x n ) toute limite d une suite convergente extraite de (x n ). Si (x n ) converge vers l alors l est sa seule valeur d adhrence. Une suite bornée possède au moins une valeur d adhérence (thorème de Bolzano-Weierstrass) et une suite bornée ayant une seule valeur d adhérence l converge vers l. La proposition suivante est une généralisation d une partie de la proposition 4.5 Proposition 4.6. Soit f une application continue de [a, b] dans [a, b], (x n ) une suite définie par x 0 [a, b], x n+ = f(x n ) et A l ensemble des valeurs d adhérence de (x n ). On a f(a) = A. Preuve. Si α est une valeur d adhérence de (x n ) alors il existe ϕ : N N strictement croissante telle que α = lim x ϕ(n). La suite bornée (x ϕ(n) ) n>0 possède une valeur d adhérence n β : il existe ψ : N N strictement croissante telle que β = lim x ϕ(ψ(n)). La fonction f étant n continue, la suite (x ϕ(ψ(n)) ) converge vers f(β) et (x ϕ(ψ(n)) ) étant extraite de (x ϕ(n) ), on a f(β) = α. De plus, β est une valeur d adhérence de (x n ) car x ϕ(ψ(n)) est une suite extraite de (x n ). Considérons maintenant la suite de terme général x ϕ(n)+ = f(x ϕ(n) ). Par continuité de f, elle converge vers f(α) qui est une valeur d adhérence de (x n ) car n ϕ(n) + est strictement croissante. Finalement f(a) = A.

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Fibonacci et les paquerettes

Fibonacci et les paquerettes Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

1 Définition et premières propriétés des congruences

1 Définition et premières propriétés des congruences Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Cours d Analyse I et II

Cours d Analyse I et II ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail