Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on

Dimension: px
Commencer à balayer dès la page:

Download "Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on"

Transcription

1 Me#re le Big Data sur la carte : défis et avenues rela6fs à l exploita6on de la localisa6on Thierry Badard, PhD, ing. jr Centre de Recherche en Géoma6que Conférence ITIS - Big Data et Open Data au coeur de la ville intelligente 29 avril 2014

2 Plan de la présenta-on Déluge de données Qu est ce que le Big data Écosystème technologique Big data Use cases et défis rela-fs au Big data Et le géospa-al dans tout cela? Défis et enjeux

3

4 Variété de sources d informa-on Explosion de la téléphonie mobile Quan-té colossale de documents/informa-ons Sur le Net mais aussi dans vos propres systèmes d informa-on! Wiki, blogs, documents Word, PDF, s, logs/transac-ons, stats Apogée des réseaux sociaux Non seulement textuels, mais aussi image, vidéo, Avec documents, données hautement non structurées Développement de l open data Accessibilité de plus en plus grande à de la donnée $ Développement d API d accès Les capteurs sont partout et fournissent des quan-tés immenses : Imagerie, vidéo, nuages de points, mesures diverses, En con-nu dans le temps è Historique, accès à différents états

5 Variété de sources d informa-on

6 Variété de sources d informa-on

7 Variété de sources d informa-on

8 Variété de sources d informa-on Explosion de la téléphonie mobile Quan-té colossale de documents/informa-ons Sur le Net mais aussi dans vos propres systèmes d informa-on! Wiki, blogs, documents Word, PDF, s, logs/transac-ons, stats Apogée des réseaux sociaux Non seulement textuels, mais aussi image, vidéo, Avec documents, données hautement non structurées Développement de l open data Accessibilité de plus en plus grande à de la donnée $ Développement d API d accès Les capteurs sont partout et fournissent des quan-tés immenses : Imagerie, vidéo, nuages de points, mesures diverses, En con-nu dans le temps è Historique, accès à différents états Explosion à venir des objets connectés (Internet of Things), drones (diminu-on des coûts),

9 Informa-on overload Souce : IDC

10 Informa-on overload Souce : IDC

11 Qu est ce que le Big data? Dan Ariely

12 Qu est ce que le Big data? Selon un étude intéressante de Celent auprès de 33 ins-tu-ons financières (banques et assurances) : Les répondants devaient choisir 3 phrases parmi 4 pour définir le terme Big data : "data that is semi- structured or unstructured" (74%) "predic-ve analy-cs or modeling" (68%) "large volumes of data that can not be accommodated with tradi-onal rela-onal DBMS" (59%) social media data (27%)

13 Qu est ce que le Big data? Selon un étude intéressante de Celent auprès de 33 ins-tu-ons financières (banques et assurances) : Les répondants devaient choisir 3 phrases parmi 4 pour définir le terme Big data : "data that is semi- structured or unstructured" (74%) "predic-ve analy-cs or modeling" (68%) "large volumes of data that can not be accommodated with tradi6onal rela6onal DBMS" (59%) social media data (27%)

14 Les 3 V de Gartner Introduit en 2001 par Doug Laney de Gartner : Volume Variété Côté structuré/non structuré des données n est qu un aspect Vélocité Fait référence à la fréquence de changement des données Et donc à la durée pendant laquelle ces données restent per-nentes Nécessite donc des technologies qui peuvent agréger très rapidement ces données pour en permenre l analyse dans un délais court On peut ajouter : Valeur ou la Véracité Qualité de ces données : Garbage in / garbage out! Défis important du Big data! Mais aussi importance existence d un business case!

15 Écosystème technologies Big data Pas de solu-on unique / diversité des analyses Stockage et traitement distribué de l informa-on Cloud, cluster de nœuds, Pas seulement Hadoop! GoogleFS, BigTables, MapReduce, Lot de technologies Big data NoSQL MongoDB, Cassandra, Entrepôts de données MPP (Massively Parallel Processing) Ex. : IBM Netezza, GreenPlum, Ver-ca, Solu-ons dites de «In memory compu-ng» Ex. : SAP HANA, Aussi de plus en plus présent dans couche analy-que de l écosystème Hadoop

16

17 Écosystème Hadoop Écosystème riche à plusieurs couches : Du stockage, traitement/intégra-on à l interroga-on et l analyse Traitement batch vs. temps réel

18 Big data use cases Source : Gartner, 2013

19 Big data use cases Source : Gartner, 2013

20 Big data use cases Pourquoi u-liser des technos big data? Diminu-on des coûts : Hadoop as a staging area 1TB de données : Hadoop ($500 à $2,000) vs. high end EDW ($20,000 à $200,000) Ne remplace pas les solu-ons BI/analyse en place mais les complémentent! Maintenant moyen d entreposer l EDW dans Hadoop Structura-on plus «agile» è Tester plusieurs modèles? Permenent de répondre à des besoins d analyse dans des temps plus courts ou qui ne pouvaient être adressés par les technologies actuelles 2x moins de temps = 2 fois plus de nœuds! Mais nécessité de bien définir un business case réaliste! Sinon risque important d errance et d avoir du mal à jus-fier in fine un projet Big data

21 Défis Big data Si les aspects stockage, intégra-on et interroga-on peuvent toujours progresser, déjà des solu-ons intéressantes qui existent et peuvent être u-lisées D autant plus qu elles se couplent aux engins BI déjà en place! Néanmoins, ces technos ne sont pas la solu6on miracle à tous les maux! Les données non structurées pour être analysées doivent être structurées même si cela ne se fait un peu qu au dernier moment et de façon moins figée! Image, vidéo, textes bruts,... imposent que ces technos doivent disposer de capacités d intégra-on, d interroga-on et d analyse appropriées/spécifiques/spécialisées Elles sont pour l heure non adressées par ces technologies!

22 Retour sur l étude de Gartner Source : Gartner, 2013

23 Défis Big data Si les aspects stockage, intégra-on et interroga-on peuvent toujours progresser, déjà des solu-ons intéressantes qui existent et peuvent être u-lisées D autant plus qu elles se couplent aux engins BI déjà en place! Néanmoins, ces technos ne sont pas la solu6on miracle à tous les maux! Les données non structurées pour être analysées doivent être structurées même si cela ne se fait un peu qu au dernier moment et de façon moins figée! Image, vidéo, textes bruts,... imposent que ces technos doivent disposer de capacités d intégra-on, d interroga-on et d analyse appropriées/spécifiques/spécialisées Elles sont pour l heure non adressées par ces technologies! De plus, l analyse passant par la visualisa-on des informa-ons, comment visualiser/interagir avec ces grandes masses d informa-on?

24 Défis de visualisa-on du Big data Source : hnps://

25 Défis de visualisa-on du Big data Source : hnp://

26 Défis de visualisa-on du Big data Source : hnp:// data- visualiza-ons/

27 Défis de visualisa-on du Big data Source : hnp://

28 Défis de visualisa-on du Big data Source : hnp:// data- visualiza-ons/

29 Défis de visualisa-on du Big data Source : hnp:// and- technology/geography- beer /

30 Défis de visualisa-on du Big data Source : hnp://m.theatlan-cci-es.com/neighborhoods /2014/04/map- all- places- us- where- nobody- lives/ 8910/

31 Défis de visualisa-on du Big data Source : Spa-aly-cs

32 La carte Un médium de communica-on intui-f Tout le monde la comprend, se situe et en appréhende les rela-ons entre en-tés (proximité, densité, forme, intensité, ) Permet de croiser/superposer différentes informa-ons et de faire les liens entre les couches de données Naviga-on intui-ve au sein de l informa-on (cf. Google Maps/Earth) Un médium assez universel 80 % of all data stored in corporate databases has a spa-al component [Franklin 1992]

33 Prochaine étape : la donnée géo? Source : Gartner, 2013

34 Composante géospa-ale Composante riche : S exprime à l aide de primi-ves simples : Vecteur : points, lignes, polygones (et volumes en 3D) Raster : données d imagerie (pixel) mais aussi grid, point clouds Complexe et poten-ellement volumineuse Lignes ou polygones avec dizaines de milliers de points Dé-ent une séman-que implicite Forme, orienta-on, rela-ons spa-ales, Nécessite des fonc-ons/opérateurs spéciaux pour l analyser mais largement sous- es-mée vs. le temps Alors que fondamentale à la prise de décision pleinement éclairée! Encore plus riche si on croise temps et espace (suivi spa-o- temporel de phénomènes, mise en exergue de patrons qui se répètent dans le temps et l espace, )

35 Vers des solu-ons Geo Big Data Ins-ller/intégrer de façon cohérente la composante spa-ale et ses opérateurs d interroga-on/analyse dans le «mille- feuille Big data» Stockage Intégra-on Traitement Interroga-on Analyse Fouille/explora-on Rendre la composante spa-ale aussi simple à manipuler, traiter et interroger que n importe quel type abstrait de données usuel (nombre, date, )

36 Vers des solu-ons Geo Big Data Certaines solu-ons commencent à apparaître au niveau stockage et accès/interroga-on en mode batch Spa-al Hadoop HadoopGIS GIS Tools for Hadoop (ESRI) Spa-al Hive Hive SP Pigeon (basé sur Pig) GeoMesa (basé sur Accumulo) Un commencement seulement Très embryonnaire pour bon nombre, prototypes de R&D Bien loin encore de l analyse en temps quasi- réel

37 Vers des solu-ons Geo Big Data De nouvelles méthodes et techniques de visualisa-on cartographique restent à inventer Capables d afficher et de naviguer dans ces grands volumes de données, de façon fluide et en temps réel Pour ne pas entraver le processus de pensée d un analyste Capables de supporter la Vélocité qu impose le Big data rapidité des changements et impacts qu ils peuvent avoir sur les données (rela-ons) Avec comme support un simple navigateur web

38 Autres défis Géo & Big data Nouvelles méthodes d analyse de données Qualité des données Sécurité des données Aspect confiden-alité, respect de la vie privée et responsabilité vis- à- vis de la donnée Disposer d exper-se Forma-on de la relève

39 MERCI Pour me contacter : Tél. : Skype : tbadard Twi#er LinkedIn : h#p://ca.linkedin.com/in/thierrybadard

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

Tables Rondes Le «Big Data»

Tables Rondes Le «Big Data» Tables Rondes Le «Big Data» 2012-2013 1 Plan Introduc9on 1 - Présenta9on Ingensi 2 - Le Big Data c est quoi? 3 - L histoire 4 - Le monde du libre : Hadoop 5 - Le système HDFS 6 - Les algorithmes distribués

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

BIG DATA et DONNéES SEO

BIG DATA et DONNéES SEO BIG DATA et DONNéES SEO Vincent Heuschling vhe@affini-tech.com @vhe74 2012 Affini-Tech - Diffusion restreinte 1 Agenda Affini-Tech SEO? Application Généralisation 2013 Affini-Tech - Diffusion restreinte

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

À PROPOS DE TALEND...

À PROPOS DE TALEND... WHITE PAPER Table des matières Résultats de l enquête... 4 Stratégie d entreprise Big Data... 5 Intégration des Big Data... 8 Les défis liés à la mise en œuvre des Big Data... 10 Les technologies pour

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

Comment valoriser votre patrimoine de données?

Comment valoriser votre patrimoine de données? BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES

Plus en détail

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data?

Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Monétisation des données : comment identifier de nouvelles sources de revenus au sein des Big data? Dr Wolfgang Martin Analyste et adhérant du Boulder BI Brain Trust Les Big data Démystifier les Big data.

Plus en détail

La rencontre du Big Data et du Cloud

La rencontre du Big Data et du Cloud La rencontre du Big Data et du Cloud Libérez le potentiel de toutes vos données Visualisez et exploitez plus rapidement les données de tous types, quelle que soit leur taille et indépendamment de leur

Plus en détail

Le BigData, aussi par et pour les PMEs

Le BigData, aussi par et pour les PMEs Parole d expert Le BigData, aussi par et pour les PMEs Stéphane MOUTON, CETIC Département Software and Services Technologies Avec le soutien de : LIEGE CREATIVE Le Big Data, aussi par et pour les PMEs

Plus en détail

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis

FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis FORUM NTIC BIG DATA, OPEN DATA Big Data: les challenges, les défis Joseph Salmon Télécom ParisTech Jeudi 6 Février Joseph Salmon (Télécom ParisTech) Big Data Jeudi 6 Février 1 / 18 Agenda Contexte et opportunités

Plus en détail

Les défis statistiques du Big Data

Les défis statistiques du Big Data Les défis statistiques du Big Data Anne-Sophie Charest Professeure adjointe au département de mathématiques et statistique, Université Laval 29 avril 2014 Colloque ITIS - Big Data et Open Data au cœur

Plus en détail

TRAVAUX DE RECHERCHE DANS LE

TRAVAUX DE RECHERCHE DANS LE TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT

Plus en détail

Speed up your business

Speed up your business Speed up your business 1 Sommaire 1. Un concept innovant de communica3on cross media 2. Les Ou3ls UpMyCom a. Plateforme de Blog b. Plateforme de Quiz - Communica3on externe - Communica3on interne c. Jeux

Plus en détail

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont

Plus en détail

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation.

Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation. Les infrastructure du Big Data Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent

Plus en détail

Ne cherchez plus, soyez informés! Robert van Kommer

Ne cherchez plus, soyez informés! Robert van Kommer Ne cherchez plus, soyez informés! Robert van Kommer Le sommaire La présentation du contexte applicatif Le mariage: Big Data et apprentissage automatique Dialogues - interactions - apprentissages 2 Le contexte

Plus en détail

Systèmes Répartis. Pr. Slimane Bah, ing. PhD. Ecole Mohammadia d Ingénieurs. G. Informatique. Semaine 24.2. Slimane.bah@emi.ac.ma

Systèmes Répartis. Pr. Slimane Bah, ing. PhD. Ecole Mohammadia d Ingénieurs. G. Informatique. Semaine 24.2. Slimane.bah@emi.ac.ma Ecole Mohammadia d Ingénieurs Systèmes Répartis Pr. Slimane Bah, ing. PhD G. Informatique Semaine 24.2 1 Semestre 4 : Fev. 2015 Grid : exemple SETI@home 2 Semestre 4 : Fev. 2015 Grid : exemple SETI@home

Plus en détail

Le nouveau visage de la Dataviz dans MicroStrategy 10

Le nouveau visage de la Dataviz dans MicroStrategy 10 Le nouveau visage de la Dataviz dans MicroStrategy 10 Pour la première fois, MicroStrategy 10 offre une plateforme analytique qui combine une expérience utilisateur facile et agréable, et des capacités

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

Anticiper et prédire les sinistres avec une approche Big Data

Anticiper et prédire les sinistres avec une approche Big Data Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO jcabot@octo.com @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

Big Data On Line Analytics

Big Data On Line Analytics Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics

Plus en détail

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES 1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU CONNAISSEZ-VOUS PAGESJAUNES? CONNAISSEZ-VOUS PAGESJAUNES? LES MEGADONNEES RÉPONDENT

Plus en détail

Poli%que ins%tu%onnelle: le numérique au service de la forma%on à l Université Laval CFQCU Paris, 26 mai 2015

Poli%que ins%tu%onnelle: le numérique au service de la forma%on à l Université Laval CFQCU Paris, 26 mai 2015 Poli%que ins%tu%onnelle: le numérique au service de la forma%on à l Université Laval CFQCU Paris, 26 mai 2015 Nicole.Lacasse@vre.ulaval.ca Vice- rectrice associée aux études et aux ac%vités interna%onales

Plus en détail

Big Data. Concept et perspectives : la réalité derrière le "buzz"

Big Data. Concept et perspectives : la réalité derrière le buzz Big Data Concept et perspectives : la réalité derrière le "buzz" 2012 Agenda Concept & Perspectives Technologies & Acteurs 2 Pierre Audoin Consultants (PAC) Pierre Audoin Consultants (PAC) est une société

Plus en détail

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014

accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 accompagner la transformation digitale grâce au Big & Fast Data Orange Business Services Confidentiel 02/10/2014 Big Data au-delà du "buzz-word", un vecteur d'efficacité et de différenciation business

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Le cycle de vie d'un projet en intelligence d'affaires

Le cycle de vie d'un projet en intelligence d'affaires MTI820 Entrepôts de données et intelligence d affaires Le cycle de vie d'un projet en intelligence d'affaires Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 1 QuesKons

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

FORMATION GOOGLE ANALYTICS

FORMATION GOOGLE ANALYTICS FORMATION GOOGLE ANALYTICS L OBJECTIF DE LA FORMATION : Paramétrer par rapport à ses objec0fs, lire les performances de son site, gérer et op0miser ses sources de trafic Comprendre les fondamentaux de

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Emergence du Big Data Exemple : Linked Open Data

Emergence du Big Data Exemple : Linked Open Data 1 CNRS - Misionpour l'interdisciplinarité Mokrane Bouzeghoub 1 Une approche interdisciplinaire des grandes masses de données (Défi Mastodons) Mokrane Bouzeghoub DAS INS2I / MI Ecole de L Innova.on Thérapeu.

Plus en détail

Tout ce que vous avez toujours voulu savoir sur SAP HANA. Sans avoir jamais osé le demander

Tout ce que vous avez toujours voulu savoir sur SAP HANA. Sans avoir jamais osé le demander Tout ce que vous avez toujours voulu savoir sur SAP HANA Sans avoir jamais osé le demander Agenda Pourquoi SAP HANA? Qu est-ce que SAP HANA? SAP HANA pour l intelligence d affaires SAP HANA pour l analyse

Plus en détail

Les bases de données relationnelles

Les bases de données relationnelles Bases de données NO SQL et SIG : d un existant restreint à un avenir prometteur CHRISTIAN CAROLIN, AXES CONSEIL CAROLIN@AXES.FR - HTTP://WWW.AXES.FR Les bases de données relationnelles constituent désormais

Plus en détail

Catalogue de FORMATIONS 2015

Catalogue de FORMATIONS 2015 Catalogue de FORMATIONS 2015 Qui sommes nous? î SmartView est un cabinet de conseil et de forma1on, basé à Montpellier et Paris, qui accompagne ses clients professionnels, grands comptes ou PME innovantes,

Plus en détail

SÉRIE NOUVELLES ARCHITECTURES

SÉRIE NOUVELLES ARCHITECTURES SÉRIE NOUVELLES ARCHITECTURES Alerte au tsunami des données : les entreprises doivent prendre la vague maintenant! Quels sont les faits qui sous-tendent cette réalité? Quelles entreprises sont aujourd

Plus en détail

Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase

Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase Big Data : utilisation d un cluster cluster Cécile Cavet cecile.cavet at apc.univ-paris7.fr Centre François Arago (FACe), Laboratoire APC, Université Paris Diderot LabEx UnivEarthS 14 Janvier 2014 C. Cavet

Plus en détail

Technologies du Web. Ludovic DENOYER - ludovic.denoyer@lip6.fr. Février 2014 UPMC

Technologies du Web. Ludovic DENOYER - ludovic.denoyer@lip6.fr. Février 2014 UPMC Technologies du Web Ludovic DENOYER - ludovic.denoyer@lip6.fr UPMC Février 2014 Ludovic DENOYER - ludovic.denoyer@lip6.fr Technologies du Web Plan Retour sur les BDs Le service Search Un peu plus sur les

Plus en détail

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data Qui sommes-nous? Société de stratégie et de consulting IT spécialisée en ebusiness, Cloud Computing, Business

Plus en détail

Quels choix de base de données pour vos projets Big Data?

Quels choix de base de données pour vos projets Big Data? Quels choix de base de données pour vos projets Big Data? Big Data? Le terme "big data" est très à la mode et naturellement un terme si générique est galvaudé. Beaucoup de promesses sont faites, et l'enthousiasme

Plus en détail

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting

NewPoint IT Consulting BIG DATA WHITE PAPER. NewPoint Information Technology Consulting NewPoint IT Consulting BIG DATA WHITE PAPER NewPoint Information Technology Consulting Contenu 1 Big Data: Défi et opportunité pour l'entreprise... 3 2 Les drivers techniques et d'entreprise de BIG DATA...

Plus en détail

Perspectives en matière de portails géographiques et de 3D

Perspectives en matière de portails géographiques et de 3D Perspectives en matière de portails géographiques et de 3D version du Géoportail de l IGN Aurélien Barbier-Accary (Atos Worldline) et Frédéric Rouas (Diginext) Un groupement d expertises Depuis 2006 et

Plus en détail

T o u s d r o i t s r é s e r v é s 2 0 1 4-2 0 1 5 O S I s o f t, L L C. SÉMINAIRES RÉGIONAUX

T o u s d r o i t s r é s e r v é s 2 0 1 4-2 0 1 5 O S I s o f t, L L C. SÉMINAIRES RÉGIONAUX Le parcours vers l intelligence opérationnelle Présenté par Martin Jetté, directeur, Marketing et opérations Amérique du Nord mjette@osisoft.com Horaire de la présentation Le parcours vers l intelligence

Plus en détail

Les bases du SEO (référencement naturel)

Les bases du SEO (référencement naturel) Les bases du SEO (référencement naturel) CCI Limoges Juin 2015 45 minutes LES BASES DU SEO 1 INTRODUCTION 2 MOTS CLES 3 OPTIMISATION IN SITE 4 NETLINKING LES BASES DU SEO 1 INTRODUCTION 1. INTRODUCTION

Plus en détail

BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS

BI dans les nuages. Olivier Bendavid, UM2 Prof. A. April, ÉTS BI dans les nuages Olivier Bendavid, UM2 Prof. A. April, ÉTS Table des matières Introduction Description du problème Les solutions Le projet Conclusions Questions? Introduction Quelles sont les défis actuels

Plus en détail

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group 1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et

Plus en détail

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara

BIG DATA. Veille technologique. Malek Hamouda Nina Lachia Léo Valette. Commanditaire : Thomas Milon. Encadré: Philippe Vismara BIG DATA Veille technologique Malek Hamouda Nina Lachia Léo Valette Commanditaire : Thomas Milon Encadré: Philippe Vismara 1 2 Introduction Historique des bases de données : méthodes de stockage et d analyse

Plus en détail

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM Étude de cas technique QlikView : Big Data Juin 2012 qlikview.com Introduction La présente étude de cas technique QlikView se consacre au

Plus en détail

BIG Data et R: opportunités et perspectives

BIG Data et R: opportunités et perspectives BIG Data et R: opportunités et perspectives Guati Rizlane 1 & Hicham Hajji 2 1 Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, rguati@gmail.com 2 Ecole des Sciences Géomatiques, IAV Rabat,

Plus en détail

Introduction au Massive Data

Introduction au Massive Data Introduction au Massive Data Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

Mégadonnées (Big data) et Complexité Session introductive

Mégadonnées (Big data) et Complexité Session introductive Mégadonnées (Big data) et Complexité Session introductive Emergence Club amical dédié aux Systèmes complexes Forum 80 membres / 140 séances de travail Panorama : I. Big data et Systèmes complexes II. Big

Plus en détail

Présentation Level5. Editeur de Logiciels. «If it s not monitored, it s not in production» Theo Schlossnagle #velocityconf

Présentation Level5. Editeur de Logiciels. «If it s not monitored, it s not in production» Theo Schlossnagle #velocityconf Editeur de Logiciels Présentation Level5 «If it s not monitored, it s not in production» Theo Schlossnagle #velocityconf «If you can not measure it, you can not improve it» Lord Kelvin vous accompagne

Plus en détail

Big Data et l avenir du décisionnel

Big Data et l avenir du décisionnel Big Data et l avenir du décisionnel Arjan Heijmenberg, Jaspersoft 1 Le nouveau monde des TI L entreprise en réseau de McKinsey McKinsey sur le Web 2.0 McKinsey Global Institute, décembre 2010 Emergence

Plus en détail

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les

Plus en détail

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués

Plus en détail

Optimisation de la supervision by Somone. - Présentation Générale -!

Optimisation de la supervision by Somone. - Présentation Générale -! Optimisation de la supervision by Somone - Présentation Générale -! Somone et le Service 27% 18% 18% 37% Consultants Juniors (0-2 ans) Confirmés (2-5 ans) Séniors (5-8 ans) Référents (>8 ans) 30% 10% 12%

Plus en détail

Emergence du Big Data Exemple : Linked Open Data

Emergence du Big Data Exemple : Linked Open Data 16/05/2014 Une approche interdisciplinaire des grandes masses de données (Défi Mastodons) Mokrane Bouzeghoub DAS INS2I / MI 1 Emergence du Big Data Exemple : Linked Open Data Accès à plusieurs BD scientifiques

Plus en détail

Sites Internet : les. tendances. Jeudi 30 janvier 2014 Bordeaux L AGENCE CONNECTÉE À L ENTREPRISE

Sites Internet : les. tendances. Jeudi 30 janvier 2014 Bordeaux L AGENCE CONNECTÉE À L ENTREPRISE Sites Internet : les tendances pour 2014 Jeudi 30 janvier 2014 Bordeaux L AGENCE CONNECTÉE À L ENTREPRISE Inaa$v, une agence de communica$on avec des spécificités CONSEiL EN COMMUNICATION FoRmatiOns WEBMARKETING

Plus en détail

L Infonuagique, c est quoi? «Cloud Compu2ng» Survol à TRÈS haut niveau

L Infonuagique, c est quoi? «Cloud Compu2ng» Survol à TRÈS haut niveau L Infonuagique, c est quoi? «Cloud Compu2ng» Survol à TRÈS haut niveau Par Roberto Garbugli Pour CIMBCC Atelier des Curieux en Informa

Plus en détail

Réunion de rentrée Licence PER Programma3on en environnement répar3. Année universitaire 2014-2015

Réunion de rentrée Licence PER Programma3on en environnement répar3. Année universitaire 2014-2015 Réunion de rentrée Licence PER Programma3on en environnement répar3 Année universitaire 2014-2015 Intervenants de la présenta3on Responsables de la forma/on Bogdan Cau/s, bogdan.cau/s@u- psud.fr Jean-

Plus en détail

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES

Plus en détail

Séminaire Partenaires Esri France 6 et 7 juin 2012 Paris. ArcGIS et le Cloud. Gaëtan LAVENU

Séminaire Partenaires Esri France 6 et 7 juin 2012 Paris. ArcGIS et le Cloud. Gaëtan LAVENU Séminaire Partenaires Esri France 6 et 7 juin 2012 Paris ArcGIS et le Cloud Gaëtan LAVENU Agenda Qu'attendent nos clients du Cloud Computing? Les solutions de Cloud ArcGIS dans le Cloud Quelles attendent

Plus en détail

Entreprise et Big Data

Entreprise et Big Data Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

R+Hadoop = Rhadoop* Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata!

R+Hadoop = Rhadoop* Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata! R+Hadoop = Rhadoop* * Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata! 27 Janvier 2014 / Université Paul Sabatier / DTSI / David Tsang-Hin-Sun Big

Plus en détail

Hadoop, les clés du succès

Hadoop, les clés du succès Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique Vos experts Big Data contact@hurence.com Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

IBM Software Big Data. Plateforme IBM Big Data

IBM Software Big Data. Plateforme IBM Big Data IBM Software Big Data 2 Points clés Aide les utilisateurs à explorer de grands volumes de données complexes Permet de rationaliser le processus de développement d'applications impliquant de grands volumes

Plus en détail

Big Data et Statistique Publique

Big Data et Statistique Publique Big Data et Statistique Publique Miracle ou mirage? Matthieu Cornec Mission Innovation Sommaire 1. Constat : Explosion des données 1. Constat 2. Exemples 2. Big Data : nouvelle révolution économique? 1.

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Cloud et scalabilité Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Pourquoi intégrer le Big Data à son organisa3on?

Pourquoi intégrer le Big Data à son organisa3on? Pourquoi intégrer le Big Data à son organisa3on? Yvan Robert, VP Affaires Stratégiques Emmanuel Faug, Resp. pra>que BI Colloque 2014 Big Data Agenda Qui sommes nous? L importance de l information Méthodes

Plus en détail

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France

Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France 2013 SAP AG. All rights reserved. Customer 1 Rôles et Attentes Instantanéité BIG DATA Users IT Real Time SAP HANA

Plus en détail

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant

Plus en détail

Document réalisé par Khadidjatou BAMBA

Document réalisé par Khadidjatou BAMBA Comprendre le BIG DATA Document réalisé par Khadidjatou BAMBA 1 Sommaire Avant propos. 3 Historique du Big Data.4 Introduction.....5 Chapitre I : Présentation du Big Data... 6 I. Généralités sur le Big

Plus en détail

Introduction à MapReduce/Hadoop et Spark

Introduction à MapReduce/Hadoop et Spark 1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -

Plus en détail

Système d Information Géographique (SIG) : quels apports dans les métiers de l assurance?

Système d Information Géographique (SIG) : quels apports dans les métiers de l assurance? Système d Information Géographique (SIG) : quels apports dans les métiers de l assurance? 20 mars 2012 Agenda Présentation Esri A quels enjeux du secteur Assurance un SIG peut-il répondre? Qu est-ce qu

Plus en détail

Big Data Concepts et mise en oeuvre de Hadoop

Big Data Concepts et mise en oeuvre de Hadoop Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12

Plus en détail

Cassandra et Spark pour gérer la musique On-line

Cassandra et Spark pour gérer la musique On-line Cassandra et Spark pour gérer la musique On-line 16 Juin 2015 @ Paris Hammed RAMDANI Architecte SI 3.0 et BigData mramdani@palo-it.com +33 6 80 22 20 70 Appelez-moi Hammed ;-) (Sidi Mo)Hammed Ramdani @smramdani

Plus en détail

L offre Stockage et serveurs System x / BladeCenter F.Libier, Business Partner Technical Manager

L offre Stockage et serveurs System x / BladeCenter F.Libier, Business Partner Technical Manager L offre Stockage et serveurs System x / BladeCenter F.Libier, Business Partner Technical Manager 2009 IBM Corporation Une offre IBM optimisée pour les infrastructures dynamiques Réduire les coûts Améliorer

Plus en détail

Présenta6on Isatech. ERP, Décisionnel, Architecture Systèmes & Réseaux. Isatech Tous droits réservés Page 1

Présenta6on Isatech. ERP, Décisionnel, Architecture Systèmes & Réseaux. Isatech Tous droits réservés Page 1 Présenta6on Isatech ERP, Décisionnel, Architecture Systèmes & Réseaux Isatech Tous droits réservés Page 1 L offre globale Couvrir l intégralité de la chaîne du SI Isatech Tous droits réservés Page 2 Isatech

Plus en détail

L Internet des objets

L Internet des objets L Internet des objets Une technologie déjà présente dans notre quotidien et «silencieuse» HISTORIQUE De nombreux termes pour une même technologie L Internet des objets La communication machine-to-machine

Plus en détail

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France

L Art d être Numérique. Thierry Pierre Directeur Business Development SAP France L Art d être Numérique Thierry Pierre Directeur Business Development SAP France La Transformation Numérique «Plus largement, l impact potentiel des technologies numériques disruptives (cloud, impression

Plus en détail

Location Analytics. Astrid GLADYS Thierry BABELAERE Pierre TEYSSENDIER. SIG 2013 Conférence Francophone 2 & 3 Octobre Versailles Atelier Technique

Location Analytics. Astrid GLADYS Thierry BABELAERE Pierre TEYSSENDIER. SIG 2013 Conférence Francophone 2 & 3 Octobre Versailles Atelier Technique SIG 2013 Conférence Francophone 2 & 3 Octobre Versailles Atelier Technique Astrid GLADYS Thierry BABELAERE Pierre TEYSSENDIER Plan de session La solution Focus Esri Maps for Cognos Focus Esri Maps for

Plus en détail

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012 Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des

Plus en détail

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment?

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Jean-Marc Spaggiari Cloudera jms@cloudera.com @jmspaggi Mai 2014 1 2 Avant qu on commence Agenda -Qu est-ce que Hadoop et pourquoi

Plus en détail

Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics

Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics Big Data? Big responsabilités! Paul-Olivier Gibert Digital Ethics Big data le Buzz Le Big Data? Tout le monde en parle sans trop savoir ce qu il signifie. Les médias high-tech en font la nouvelle panacée,

Plus en détail

Hervé Couturier EVP, SAP Technology Development

Hervé Couturier EVP, SAP Technology Development Hervé Couturier EVP, SAP Technology Development Hervé Biausser Directeur de l Ecole Centrale Paris Bernard Liautaud Fondateur de Business Objects Questions à: Hervé Couturier Hervé Biausser Bernard Liautaud

Plus en détail

Comprendre le Big data grâce à la visualisation

Comprendre le Big data grâce à la visualisation IBM Software Business Analytics Visualisation avancée Comprendre le Big data grâce à la visualisation Par T. Alan Keahey, Ph.D., IBM Visualization Science and Systems Expert 2 Comprendre le Big data grâce

Plus en détail

Big Data -Comment exploiter les données et les transformer en prise de décisions?

Big Data -Comment exploiter les données et les transformer en prise de décisions? IBM Global Industry Solution Center Nice-Paris Big Data -Comment exploiter les données et les transformer en prise de décisions? Apollonie Sbragia Architecte Senior & Responsable Centre D Excellence Assurance

Plus en détail

Nom du client. Date. Client Logo or project name

Nom du client. Date. Client Logo or project name Nom du client Date Client Logo or project name Presenta7on 7tle client name Date Linalis speaker Speaker 7tle Le Groupe Linalis Historique Crée en 2002 Présent en Suisse, France, au Royaume Uni et en Espagne

Plus en détail

Les 10 étapes clés pour trouver des clients par internet

Les 10 étapes clés pour trouver des clients par internet Les 10 étapes clés pour trouver des clients par internet Guide pour les entreprises de Home Staging 1 L auteur : Adrian Measures Adrian Measures est responsable du marke@ng sur internet et fondateur de

Plus en détail

Préface Dunod Toute reproduction non autorisée est un délit. Les raisons de l émergence du Big Data sont bien connues. Elles sont d abord économiques et technologiques. La chute exponentielle des coûts

Plus en détail