PGCD. Définition : On dit que est un diviseur de si le reste de la division euclidienne de par est égale à 0. On dit aussi que est un multiple de.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "PGCD. Définition : On dit que est un diviseur de si le reste de la division euclidienne de par est égale à 0. On dit aussi que est un multiple de."

Transcription

1 PGCD 1 Notions de diviseurs et multiples Définition : On dit que est un diviseur de si le reste de la division euclidienne de par est égale à 0. On dit aussi que est un multiple de. Exemple : 6 7=42 6 et 7 sont des diviseurs de 42 et 42 est un multiple de 6 et de 7 Exercices d application Exercice 1 : Déterminer dans chacune des opérations suivantes, quel est le multiple et quel est le diviseur. ) 25 2=50 ) 4 16=64 ) 48 8=6 ) =4 ) 7 11=77 Exercice 2 : Vrai ou Faux. Justifier vos réponses ) 8 est un diviseur de 192 ) 65 est un multiple de 9 ) 4 est divisible par 8 ) 18 est divisible par 6 ) 3 est un multiple de 18 ) 9 est divisible par 27 ) 42 est un multiple de 6 h) 5 est un diviseur de 25 ) 52 est divisible par 13 ) 64 est un diviseur de 8 Exercice 3 : Déterminer si les nombres suivants sont divisibles par 2, 3, 4, 5, 6, 9 et 10. Méthode : Un nombre est divisible par 2 s il est pair (= s il se termine par 0, 2, 4, 6 ou 8) Un nombre est divisible par 3 si la somme de ces chiffres est divisible par 3 Un nombre est divisible par 4 si le nombre formé par ces deux derniers chiffres est divisible par 4 Un nombre est divisible par 5 s il se termine par 0 ou 5 Un nombre est divisible par 6 s il est divisible à la fois par 2 et par 3 Un nombre est divisible par 9 si la somme de ces chiffres est divisible par 9 Un nombre est divisible par 10 s il se termine par 0

2 Nombres premiers Définition 1 : On dit qu un nombre est premier s il n est divisible que par 1 et lui-même. Exemple :7 est un nombre premier car 7 est uniquement divisible par 1 et par 7 Définition 2 : On dit que deux nombres premiers entre eux lorsque leur plus grand diviseur commun est égal à 1. Exemple : Les nombres 18 et 11 sont premiers enbtre eux. En effet : - les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18 - les diviseurs de 11 sont : 1, 11 Le plus grand diviseur qu ils aient en commun est 1. Contre-exemple : Les nombres 18 et 12 ne sont pas premiers entre eux. Pourquoi? - les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18 - les diviseurs de 12 sont : 1, 2, 3, 4, 6 et 12 Le plus grand diviseur qu ils aient en commun est 6 ( 1). Exercices d application Exercice 4 : Déterminer tous les diviseurs des nombres suivants et déduisez-en s ils sont premiers ou non. a) 35 b) 41 c) 292 d) 139 e) 16 f) 39 g) 461

3 Exercice 5 : Les nombres suivants sont-ils premiers entre eux? Justifier. a) 15 et 33 b) 67 et 13 c) 40 et 28 d) 147 et 12 3 Fractions irréductibles Définition On dit que la fraction eux. est irréductible lorsque et sont premiers entre Exemple : 13 est une fraction irréductible. 17 Méthode : On obtient une fraction irréductible lorsque l on divise le numérateur et le dénominateur par leur plus grand diviseur commun. Exercices d application Exercice 6 : Déterminer la fraction irréductible des fractions suivantes. ) ) )

4 CORRECTION 4 Exercice 1 : ) 25 2=50 25 et 2 sont les diviseurs de est le multiple de 25 et 2 ) 48 8=6 L opération peut s écrire : 8 6=48 8 et 6 sont les diviseurs de est le multiple de 8 et 6 ) 7 11=77 7 et 11 sont les diviseurs de est le multiple de 7 et 11 ) 4 16=64 4 et 16 sont les diviseurs de est le multiple de 4 et 16 ) =4 L opération peut s écrire : 14 4=56 14 et 4 sont les diviseurs de est le multiple de 14 et 4 Exercice 2 : ) 8 est un diviseur de 192 Vrai car 8 24=192 ) 4 est divisible par 8 Faux car 8 est divisible par 4 Ici 4 est un diviseur de 8 ) 3 est un multiple de 18 Faux car 3 est un diviseur de 18 ) 42 est un multiple de 6 Vrai car 6 7=42 ) 52 est divisible par 13 Vrai car 52 13=4 ) 65 est un multiple de 9 Faux car 65 9=7,22 ) 18 est divisible par 6 Vrai car 18 6=3 ) 9 est divisible par 27 Faux car 9 est un diviseur de 27 h) 5 est un diviseur de 25 Vrai car 5 5=25 ) 64 est un diviseur de 8 Faux car 8 est un diviseur de 64

5 Exercice 3 : Exercice 4 : a) 35 est divisible par : 1, 5, 7, n est pas un nombre premier b) 41 est divisible par : 1, est un nombre premier c) 292 est divisible par : 1, 2, 4, 73, 146, n est pas un nombre premier d) 139 est divisible par : 1, est un nombre premier e) 16 est divisible par : 1, 2, 4, n est pas un nombre premier f) 39 est divisible par : 1, 3, 13, n est pas un nombre premier g) 461 est divisible par : 1, est un nombre premier Exercice 5 : a) 15 et est divisible par 1, 3, 5, est divisible par 1, 3, 11, 33 Leur plus grand diviseur commun est 3 donc 15 et 33 ne sont pas premiers entre eux. b) 67 et est divisible par 1, est divisible par 1, 13 Leur plus grand diviseur commun est 1 donc 67 et 13 sont premiers entre eux. c) 40 et est divisible par 1, 2, 4, 10, est divisible par 1, 2, 4, 7, 14, 28 Leur plus grand diviseur commun est 4 donc 40 et 28 ne sont pas premiers entre eux. d) 147 et est divisible par 1, 3, 49, est divisible par 1, 2, 3, 4, 6, 12 Leur plus grand diviseur commun est 3 donc 147 et 12 ne sont pas premiers entre eux.

6 Exercice 6 : ) est divisible par 1, 2, 3, 6, 8, 16, 24, est divisible par 1, 2, 3, 6, 9, 18 Leur plus grand diviseur commun est =48 18 = ) est divisible par 1, 3, 9, 27, 81, =5 est divisible par 1, 3, 5, 15 Leur plus grand diviseur commun est = = 6 ) est divisible par 1, 2, 5, 10, 13, est divisible par 1, 2, 3, 26, 39, 78 Leur plus grand diviseur commun est = =

b) 67 = et 2 < 13 : dans la division euclidienne de 67 par 13, le quotient est 5 et le reste est 2.

b) 67 = et 2 < 13 : dans la division euclidienne de 67 par 13, le quotient est 5 et le reste est 2. Exercice p 58, n 1 : Déterminer le quotient entier et le reste de chaque division euclidienne : a) 15 par 7 ; b) 67 par 13 ; c) 124 par 61 ; d) 275 par 25 ; e) 88 par 17 ; f) 146 par 15. a) 15 = 7 2 +

Plus en détail

C3T3 PGCD - Puissances

C3T3 PGCD - Puissances Objectif 3-1 Division euclidienne C3T3 PGCD - Puissances Définition a r b q La division euclidienne de l'entier a par l'entier b est l'opération qui permet de trouver deux entiers naturels q et r tels

Plus en détail

PLUS GRAND COMMUN DIVISEUR P.G.C.D.

PLUS GRAND COMMUN DIVISEUR P.G.C.D. PLUS GRAND COMMUN DIVISEUR P.G.C.D. Prérequis : Nombres entiers; Multiple; Division Euclidienne I - DIVISEURS II- CALCUL DU PGCD III PROPRIETES I. Divisibilité 1) Diviseurs Soient a et b deux entiers non

Plus en détail

Ecritures fractionnaires :

Ecritures fractionnaires : Ecritures fractionnaires : I) Ecritures fractionnaires d un quotient (Révision de 6e) 1) Définitions: La notation a b (b 0) est une écriture fractionnaire. Le nombre a est le numérateur. Le nombre b est

Plus en détail

CHAPITRE 5 : Arithmétique. Module 1 : Division euclidienne

CHAPITRE 5 : Arithmétique. Module 1 : Division euclidienne Module 1 : Division euclidienne 1 ) Rappels de vocabulaire On pose l opération : 51 6 Voici le vocabulaire à maîtriser : 2 ) La division euclidienne Définition : Soient a et b deux nombres entiers positifs

Plus en détail

1 Arithmétique 1. RAPPELS

1 Arithmétique 1. RAPPELS 1 Arithmétique 1. RAPPELS 1.1. Vocabulaire Soient a, b et c des nombres entiers. S'il existe un nombre c tel que a b = c alors on dit que c est un multiple de a. Si a est un nombre entier non nul, on a

Plus en détail

les racines carrées :

les racines carrées : les racines carrées : 1) Introduction : il existe un et un seul nombre positif dont le carré est 4 c est 2. il existe un et un seul nombre positif dont le carré est 9, c est 3. Existe il un nombre positif

Plus en détail

CH I Diviseurs d un entier. PGCD. Algorithme d Euclide.

CH I Diviseurs d un entier. PGCD. Algorithme d Euclide. CH I Diviseurs d un entier. PGCD. Algorithme d Euclide. A) Diviseurs d un entier naturel Les diviseurs de 35 sont 1 ; 5 35 ; 7 1. Diviseurs d un nombre entier non nul Les diviseurs de 72 sont : 1 ; 2 ;

Plus en détail

ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS

ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS I. Multiples et diviseurs 1. Multiples d un nombre entier naturel Définition Un nombre entier naturel a est multiple d un nombre entier naturel

Plus en détail

NOMBRES ENTIERS ET RATIONNELS. N Les entiers relatifs, -3; -2; -1; 0; 1; 2,

NOMBRES ENTIERS ET RATIONNELS. N Les entiers relatifs, -3; -2; -1; 0; 1; 2, NOMBRES ENTIERS ET RATIONNELS I Les ensembles de nombres Désignation Exemples Notation Les entiers naturels 0; 1; 2... N Les entiers relatifs, -3; -2; -1; 0; 1; 2, Z Les nombres décimaux : Un nombre décimal

Plus en détail

DIVISEURS D UN NOMBRE ENTIER

DIVISEURS D UN NOMBRE ENTIER DIVISEURS D UN NOMBRE ENTIER - Décompose les nombres suivants en produits de facteurs aussi petits que possible : Exemple : 2= 2 2 8 =... 0 =... 90 =... 20 =... - Les diviseurs de 2 et de 8 : Avec 2 personnes,

Plus en détail

1) Calcule le PGCD de 1078 et 322 en utilisant l algorithme d Euclide. 2) a) Calcule le PGCD de 273 et 163 par la méthode de ton choix.

1) Calcule le PGCD de 1078 et 322 en utilisant l algorithme d Euclide. 2) a) Calcule le PGCD de 273 et 163 par la méthode de ton choix. 3 ème D DS1 nombres entiers et rationnels 2012-2013 sujet 1 Exercice 1. (5 points) 1) Calcule le PGCD de 1078 et 322 en utilisant l algorithme d Euclide. 2) a) Calcule le PGCD de 273 et 163 par la méthode

Plus en détail

Chapitre 11 : Nombres entiers et rationnels. PGCD

Chapitre 11 : Nombres entiers et rationnels. PGCD Chapitre 11 : Nombres entiers et rationnels. PGCD I. Ensembles de nombres 1/ Les nombres entiers Les nombres entiers naturels sont les nombres positifs qui peuvent s'écrire sans virgule. 12 4 ; 3,1 102

Plus en détail

Ch1 : Arithmétique. Tous les nombres utilisés dans cette leçon sont des nombres entiers positifs. Sur la calculatrice, 5 est un diviseur d'un

Ch1 : Arithmétique. Tous les nombres utilisés dans cette leçon sont des nombres entiers positifs. Sur la calculatrice, 5 est un diviseur d'un Ch1 : Arithmétique Tous les nombres utilisés dans cette leçon sont des nombres entiers positifs. I- Multiples et diviseurs Multiples : Les multiples d'un nombre sont les résultats de la table de multiplication

Plus en détail

Opérations sur les nombres rationnels en écriture fractionnaire

Opérations sur les nombres rationnels en écriture fractionnaire Opérations sur les nombres rationnels en écriture fractionnaire A la fin du chapitre tu dois être capble de : 3 N 1: Maîtriser les règles opératoires sur les relatifs en écriture fractionnaire. 3 N 2 :

Plus en détail

Exercice n 1 : Mettre seulement une croix dans les cases du tableau où la réponse est OUI.

Exercice n 1 : Mettre seulement une croix dans les cases du tableau où la réponse est OUI. Arithmétique 3 e Exercice n 1 : Mettre seulement une croix dans les cases du tableau où la réponse est OUI. Divisible par 2 Divisible par 3 Divisible par 4 Divisible par 5 Divisible par 9 Divisible par

Plus en détail

Progression calcul CM

Progression calcul CM Progression calcul CM2 2014-2015 Séquences Ca1 Additionner des entiers Effectuer un calcul posé : addition de Évaluer l ordre de. Ca2 Soustraire des entiers Effectuer un calcul posé : soustraction de Évaluer

Plus en détail

Chapitre 1 : Plus Grand Commun Diviseur ou P G C D

Chapitre 1 : Plus Grand Commun Diviseur ou P G C D Chapitre 1 : Plus Grand Commun Diviseur ou P G C D Le PGCD est utilisé pour simplifier des fractions et pour résoudre des problèmes de partage de deux quantités à la fois. Exemple : Pour partager bonbons

Plus en détail

( x) ( x) ( x) 2. ( x) ( ) Exercice p 241, n 49 :

( x) ( x) ( x) 2. ( x) ( ) Exercice p 241, n 49 : Exercice p 241, n 49 : x désigne la mesure en degré d un angle aigu. On donne cos x = 0, 6. 1) Sans déterminer la valeur de x, calculer sin x. 2) En déduire la valeur de tan x. 2 2 ( x) ( x) 2 ( x) 2 cos

Plus en détail

On dit que 14 est un diviseur de 378 ou aussi que 378 est divisible par 14

On dit que 14 est un diviseur de 378 ou aussi que 378 est divisible par 14 PLUS GRAND COMMUN DIVISEUR (P.G.C.D.) DE DEUX NOMBRES I - Diviseurs d'un entier ; Le reste de la division euclidienne de 378 par 14 est 0 On dit que 14 est un diviseur de 378 ou aussi que 378 est divisible

Plus en détail

! 1. Diviseurs d un nombre entier non nul

! 1. Diviseurs d un nombre entier non nul CH I Diviseurs d un entier. PGCD. Algorithme d Euclide. 1. Diviseurs d un nombre entier non nul A) Diviseurs d un nombre entier Les diviseurs de 35 sont 1 ; 5 35 ; 7 Les diviseurs de 72 sont : 1 ; 2 ;

Plus en détail

Ensembles de nombres :

Ensembles de nombres : Méthode 1 Simplifier une fraction. Pour simplifier une fraction : trouver un diviseur commun au numérateur et au dénominateur en utilisant sa mémoire des tables de multiplication ou les critères de divisibilité

Plus en détail

Chapitre : ARITHMETIQUE

Chapitre : ARITHMETIQUE Exercice 1 1) Déterminer si le nombre 11 309 est premier. Justifier la réponse. 2) Décomposer en produits de facteurs premiers 715 et donner le nombre de ses diviseurs. 3) Déterminer le PGCD de 103 950

Plus en détail

3 ème Chapitre A 2 NOMBRES RATIONNELS, IRRATIONNELS PGCD DE DEUX NOMBRES ENTIERS. 1) Schéma représentant les différents ensembles de nombres.

3 ème Chapitre A 2 NOMBRES RATIONNELS, IRRATIONNELS PGCD DE DEUX NOMBRES ENTIERS. 1) Schéma représentant les différents ensembles de nombres. 1 I) Le point sur les nombres. 1) Schéma représentant les différents ensembles de nombres. entiers naturels IN entiers relatifs Z décimaux D rationnels IQ réels IR irrationnels 2 2) Définitions des différents

Plus en détail

Division euclidienne, division décimale

Division euclidienne, division décimale Division euclidienne, division décimale I. La division euclidienne Définition 1: Effectuer la division euclidienne d un nombre entier (le dividende) par un nombre entier (le diviseur) différent de 0, c

Plus en détail

Application à un calcul sur les. Nombres premiers entre

Application à un calcul sur les. Nombres premiers entre Académies et années Simplification de fractions Application à un calcul sur les Nombres premiers entre Application à un problème concret fractions eu «Lots» «Découpages» Bordeau 00 Nancy 00 Orléans 00

Plus en détail

Cours de Troisième / Arithmétique. E. Dostal

Cours de Troisième / Arithmétique. E. Dostal Cours de Troisième / Arithmétique E. Dostal juillet 2014 Table des matières 1 Arithmétique 2 1.1 Ensembles de Nombres...................................... 2 1.2 Nombres Entiers Naturels....................................

Plus en détail

1 Priorités sur les opérations

1 Priorités sur les opérations OBJECTIFS du chapitre Numéro Arithmétique Pour toi N1 Mener des calculs avec des expressions numériques N2 Mener des calculs avec des fractions N3 Utiliser les puissances de 10 et déterminer l écriture

Plus en détail

éléments de correction - Arithmétique

éléments de correction - Arithmétique éléments de correction - Arithmétique Exercice n o 1 1. a) 5 6+2 = 32 est la division euclidienne de 32 par 5 ou 6 (car 2 < 5 et 2 < 6), b) 3 7+4 = 25 est la division euclidienne de 25 par 7 (car 4 < 7),

Plus en détail

Arithmétique : Nombres Premiers Division Euclidienne

Arithmétique : Nombres Premiers Division Euclidienne Arithmétique : Nombres Premiers Division Euclidienne «JE ME SOUVIENS» : A FAIRE Que signifie ARITHMETIQUE? C est la science qui a pour objet l'étude de la formation des nombres, de leurs propriétés et

Plus en détail

CALCUL DE PGCD ET DE PPCM DE DEUX NOMBRES ENTIERS

CALCUL DE PGCD ET DE PPCM DE DEUX NOMBRES ENTIERS CALCUL DE PGCD ET DE PPCM DE DEUX NOMBRES ENTIERS I. PLUS GRAND COMMUN DIVISEUR DE DEUX NOMBRES. a et k étant deux entiers naturels tels que k 0. Lorsque a k est un entier naturel, on dit que k est un

Plus en détail

1) Calculer le PGCD de 2040 et 1848 en utilisant l algorithme d Euclide. 2) a) Calcule le PGCD de 715 et 189 par la méthode de ton choix.

1) Calculer le PGCD de 2040 et 1848 en utilisant l algorithme d Euclide. 2) a) Calcule le PGCD de 715 et 189 par la méthode de ton choix. Exercice 1. (5 points) 1) Calculer le PGCD de 2040 et 1848 en utilisant l algorithme d Euclide. 2) a) Calcule le PGCD de 715 et 189 par la méthode de ton choix. b) Que peut-on en déduire pour ces deux

Plus en détail

v3 - PGCD 17/09/ :56:0006/04/ :22:00 Hervé Lestienne Page 1 sur 11

v3 - PGCD 17/09/ :56:0006/04/ :22:00 Hervé Lestienne Page 1 sur 11 Le Plus Grand Commun Diviseur Rappels Critères de divisibilité Un nombre entier est divisible par 2 s'il est pair (il se termine par 0, 2, 4, 6 ou 8). Un nombre entier est divisible par 3 si la somme de

Plus en détail

7. Sans déterminer les diviseurs de chacun des nombres, prouver que les nombres et n ont pas de diviseur commun autre que 1.

7. Sans déterminer les diviseurs de chacun des nombres, prouver que les nombres et n ont pas de diviseur commun autre que 1. EXERCICES : CH 4 : ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES NATURELS 1. Ecrire chaque fraction sous la forme de fraction irréductible. a 310 16 96 b 35 75 c 105. Déterminer le PGCD (18 ; 30) Déterminer

Plus en détail

Chapitre 1 ARITHMÉTIQUE

Chapitre 1 ARITHMÉTIQUE Chapitre 1 ARITHMÉTIQUE CRITÈRES DE DIVISIBILITÉ LES PLUS USUELS Divisibilité par 2 le chiffre des unités est : 0, 2, 4, 6 ou 8. 3 la somme des chiffres est divisible par 3. 4 le nombre formé par les deux

Plus en détail

3 e - programme 2012 mathématiques ch.n1 cahier élève Page 1 sur 12 Ch.N1 : Nombres entiers et rationnels

3 e - programme 2012 mathématiques ch.n1 cahier élève Page 1 sur 12 Ch.N1 : Nombres entiers et rationnels 3 e - programme 2012 mathématiques ch.n1 cahier élève Page 1 sur 12 Ch.N1 : Nombres entiers et rationnels Activité 2 page 16 Division euclidienne 1) On veut partager équitablement un lot de 357 CD entre

Plus en détail

est l ensemble des entiers naturels..., 100,..., 50,..., 2, 1,0,1,2,3,...,50,...,100,... est l ensemble des entiers relatifs.

est l ensemble des entiers naturels..., 100,..., 50,..., 2, 1,0,1,2,3,...,50,...,100,... est l ensemble des entiers relatifs. Série d'exercices *** 1 ère Année Lycée Secondaire Ali Zouaoui ACTIVITE NUMERIQUE I " Hajeb Laayoun " 0,1,,3,...,50,...,100,... est l ensemble des entiers naturels..., 100,..., 50,...,, 1,0,1,,3,...,50,...,100,...

Plus en détail

Chapitre 1 : Nombres entiers, rationnels et PGCD.

Chapitre 1 : Nombres entiers, rationnels et PGCD. Chapitre 1 : Nombres entiers, rationnels et PGCD I Les diviseurs Rappel : critères de divisibilités : Un nombre est divisible par 2 s il Un nombre est divisible par s il Un nombre est divisible par 10

Plus en détail

Diviseurs PGCD. EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires

Diviseurs PGCD. EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires Diviseurs PGCD EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires 2. s et calculs 2.1 s entiers et rationnels Diviseurs communs à deux entiers, PGCD. Fractions irréductibles.

Plus en détail

B = 0, ( 10 7) 2 B = 0, ( 10 5) 2

B = 0, ( 10 7) 2 B = 0, ( 10 5) 2 Page 1/ 2 Fiche de révisions Troisième Exercice 1 20 ; 192 ; 103 ; 62 ; 525 ; 2. En déduire le PGCD et le PPCM des nombres 192 et 20. 3. Quel est le plus petit nombre par lequel il faut multiplier 525

Plus en détail

De l exponentiation aux chaînes d opérations

De l exponentiation aux chaînes d opérations d opérations NOTATION EXPONENTIELLE En plus des quatre opérations de base, il en existe une autre l C est l opération. Ex. : 3 3 3 3 3 = 3 5 produit de cinq. 3 5 = 243 Algébriquement : Si a, n et b sont

Plus en détail

Chapitre 0 : Mise au point sur les nombres

Chapitre 0 : Mise au point sur les nombres Classe de seconde Chapitre 0 : Mise au point sur les nombres Année scolaire 2012/20 Introduction historique : Dans l'histoire, des pratiques différentes ont conduit à l'utilisation d'ensembles de nombres

Plus en détail

ARITHMETIQUE. I. Divisibilité. 1) Rappels

ARITHMETIQUE. I. Divisibilité. 1) Rappels ARITHMETIQUE 1 Le mot vient du grec «arithmos» = nombre. En effet, l arithmétique est la science des nombres. Citons la célèbre conjecture de Goldbach énoncée en 1742 et à ce jour jamais démontrée : «Tout

Plus en détail

Nombres entiers rationnels - PGCD - Exercices

Nombres entiers rationnels - PGCD - Exercices Nombres entiers rationnels - PGCD - Exercices Exercice 1 a. Ecrire la liste par ordre croissant : Des diviseurs de 36 Des diviseurs de 6 b. Quels sont les diviseurs communs à 36 et 6? c. Quel est le PGCD

Plus en détail

Séquence 1 : Arithmétique (Nombres et calculs)

Séquence 1 : Arithmétique (Nombres et calculs) Séquence 1 : Arithmétique (Nombres et calculs) Plan de la séquence : I- Rappels de 4ème: 1) Calculs 2) Fractions 3) Nombres relatifs 4) Puissances a) Définition b) Propriétés c) Calculs d expressions d)

Plus en détail

Corrigé de la Feuille d exercices FE-3-001

Corrigé de la Feuille d exercices FE-3-001 Chapitres de 3 e sur le PGCD de deux nombres entiers Exercice 1.01 : a) Oui, 4 est un diviseur de 28 b) Non, 32 n est pas un multiple de 6 c) Non, 4 ne divise pas 18 d) Oui, 35 est divisible par 5 Corrigé

Plus en détail

Exercices de 3 ème Chapitre 1 Nombres entiers et rationnels Énoncés

Exercices de 3 ème Chapitre 1 Nombres entiers et rationnels Énoncés Énoncés Exercice 1 Cocher la ou les catégories auxquelles appartiennent chacun des nombres donnés. -5 1 2/3-3/10 Entier naturel Entier relatif Nbre décimal Nbre rationnel Exercice 2 a] Déterminer tous

Plus en détail

CLASSE DE SECONDE ACTIVITES NUMERIQUES.

CLASSE DE SECONDE ACTIVITES NUMERIQUES. LES NOMBRES 1. Les entiers naturels. 1.1 Nature. Un entier naturel dénombre une collection d objets. Ainsi : 0 signifie aucun objet ; signifie objets 0 ; 1 ; ; constituent l ensemble des entiers naturels.

Plus en détail

Chapitre 1 Nature des nombres Divisibilité

Chapitre 1 Nature des nombres Divisibilité ème Chapitre Nature des nombres Divisibilité I_ Nature des nombres A. Nombres entiers Définition Les nombres entiers naturels sont les nombres entiers positifs. Les nombres entiers relatifs sont les nombres

Plus en détail

MULTIPLICATION - DIVISION. COURS 18 : Vocabulaire de la multiplication

MULTIPLICATION - DIVISION. COURS 18 : Vocabulaire de la multiplication CHAPITRE 4 MULTIPLICATION - DIVISION COURS 18 : Vocabulaire de la multiplication Définition Une multiplication est une opération qui permet de calculer un produit. Le produit de a par b se note a b, a

Plus en détail

Remédiation PGCD et PPCM

Remédiation PGCD et PPCM Remédiation PGCD PPCM Plus grand commun diviseur (PGCD) Utilité du PGCD de deux nombres Le PGCD de deux nombres perm de rendre irréductible une fraction. Ex : Pour rendre irréductible la fraction, on divise

Plus en détail

Thème N 1 : NOMBRES ENTIERS ET NOMBRE DECIMAUX (1) Division euclidienne - Multiples et diviseurs Ecriture des nombres décimaux Repérage (1)

Thème N 1 : NOMBRES ENTIERS ET NOMBRE DECIMAUX (1) Division euclidienne - Multiples et diviseurs Ecriture des nombres décimaux Repérage (1) Thème N 1 : NOMBRES ENTIERS ET NOMBRE DECIMAUX (1) Division euclidienne - Multiples et diviseurs Ecriture des nombres décimaux Repérage (1) A la fin du thème, tu dois savoir : Effectuer une division euclidienne

Plus en détail

Nombres entiers et rationnels

Nombres entiers et rationnels Nombres entiers et rationnels I) diviseur d un entier naturel 1) Définition : Pour deux nombres entiers naturels a et d non nuls : d est un diviseur de a si il existe un entier k tel que a = d k k étant

Plus en détail

L3 : Algorithme d Euclide et problèmes relevant de la divisibilité

L3 : Algorithme d Euclide et problèmes relevant de la divisibilité L3 : Algorithme d Euclide et problèmes relevant de la divisibilité de deux nombres. PGCD. I Rappel : Définition de la divisibilité d un nombre par un autre : Un nombre entier est divisible par un autre

Plus en détail

EXERCICES D ARITHMÉTIQUE

EXERCICES D ARITHMÉTIQUE 1. On note D(a) l'ensemble des diviseurs positifs de l'entier a. a) Déterminer l'ensemble des diviseurs positifs de 60, puis l'ensemble des diviseurs positifs de 11. Déterminer ensuite l'intersection de

Plus en détail

I. Nature des nombres

I. Nature des nombres Seconde Lycée Desfontaines Melle Cours 01 - Les nombres I. Nature des nombres Définitions : L ensemble des entiers naturels est l ensemble des entiers positifs. Il se note IN. On écrit alors IN={0;1;2;

Plus en détail

Aide Fractions 7P. L écriture fractionnaire représentant la division de deux nombres entiers est appelée une fraction.

Aide Fractions 7P. L écriture fractionnaire représentant la division de deux nombres entiers est appelée une fraction. Aide Fractions 7P L écriture fractionnaire représentant la division de deux nombres entiers est appelée une fraction. Dans une fraction : - le dividende (le nombre du haut) s appelle le numérateur - et

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Ensemble de nombres Plan du cours 1. Divisibilité dans Z 2. Congruence 3. Plus grand commun diviseur 1. Divisibilité dans Z Dans tout ce qui suit, on se place dans l ensemble

Plus en détail

1 PGCD de deux entiers

1 PGCD de deux entiers PGCD de deux entiers NOMBRES ENTIERS On appelle nombres entiers naturels les nombres : 0,, 2, 3, 8, 05, On appelle nombres entiers relatifs les nombres entiers naturels et leurs opposés : 8, 2,, 0,, 2,

Plus en détail

SÉRIE , PGCD NOMBRES ENTIERS ET RATIONNELS : CHAPITRE N1. 6 Trouve les diviseurs communs à 45 et 49.

SÉRIE , PGCD NOMBRES ENTIERS ET RATIONNELS : CHAPITRE N1. 6 Trouve les diviseurs communs à 45 et 49. ÉRIE 1 : DIVISEURSD, PGCD IVISEURS COMMUNS, PGCD 1 Complète chaque phrase avec un des mots suivants : diviseur, multiple, divisible. a. 12 est un... de 6. b. 3 est un... de 18. c. 230 est... par 10. 2

Plus en détail

Thème 9: Division de polynômes et fractions rationnelles

Thème 9: Division de polynômes et fractions rationnelles DIVISION DE POLYNÔMES ET FRACTIONS RATIONNELLES 15 Thème 9: Division de polynômes et fractions rationnelles 9.1 Valeur numérique d un polynôme Définition : On appelle valeur numérique d un polynôme p(x)

Plus en détail

Divisions euclidiennes et décimales

Divisions euclidiennes et décimales Divisions euclidiennes et décimales I) Division euclidienne : a) Introduction à la division : On dispose de 12 bonbons pour 4 enfants et on souhaiterait les partager équitablement. Les trois opérations

Plus en détail

Chapitre n 5 : comparaison et addition des écritures fractionnaires (1 ère partie)

Chapitre n 5 : comparaison et addition des écritures fractionnaires (1 ère partie) Chapitre n 5 : comparaison et addition des écritures fractionnaires (1 ère partie) I. Sens de l'écriture fractionnaire 1/ Rappels Définition a et b représentent deux nombres non nuls (différents de 0 ).

Plus en détail

Ex 1 : Calcule en ligne CM2

Ex 1 : Calcule en ligne CM2 Ex 1 : Calcule en ligne Pour calculer la somme de plusieurs nombres, on effectue une addition. Pour simplifier le calcul, on peut changer l ordre des nombres sans que cela modifie le résultat. 15 250 +

Plus en détail

DIVISIONS. p63 n 3 et 4 p63 n 3 et 3 MYRIADE 6 e BORDAS Edition 2009 MYRIADE 6 e BORDAS Edition 2014

DIVISIONS. p63 n 3 et 4 p63 n 3 et 3 MYRIADE 6 e BORDAS Edition 2009 MYRIADE 6 e BORDAS Edition 2014 1 DIVISIONS Symbole «:» Introduit en 1698 par l allemand Gottfried Willhelm Leibniz, un des plus grands génies qui aient existé. A la fois philosophe, théologien, mathématicien, physicien, historien, Leibniz

Plus en détail

Chapitre 6 : Multiplications et divisions

Chapitre 6 : Multiplications et divisions Chapitre 6 : Multiplications et divisions 1) La multiplication : Exemple : 3 x 2 = l6 Le résultat d'une multiplication s'appelle le produit. Ici c est 6. Les nombres qu on multiplie s appellent les facteurs.

Plus en détail

C. Éléments de mathématiques 15. Exercices pratiques

C. Éléments de mathématiques 15. Exercices pratiques C. Éléments de mathématiques 15 Exercices pratiques 1. Quelle est la différence entre le plus petit nombre à trois chiffres multiple de 13 et le plus petit nombre premier à trois chiffres? A 1 B C 4 D

Plus en détail

Ex 1 : Montrer que pour tout entier naturel n, 9 divise 10 n 1. En déduire que pour tout entier naturel n, 9 ne divise pas 10 n + 1.

Ex 1 : Montrer que pour tout entier naturel n, 9 divise 10 n 1. En déduire que pour tout entier naturel n, 9 ne divise pas 10 n + 1. Fiches méthodes arithmétique Comment traiter un problème de divisibilité? Méthode : Pour les problèmes de divisibilité dans N ou dans Z, on se ramène à la définition de la divisibilité : b divise a signifie

Plus en détail

ECRITURES FRACTIONNAIRES. On a divisé le numérateur et le dénominateur par 2. On a divisé le numérateur et le dénominateur par 5

ECRITURES FRACTIONNAIRES. On a divisé le numérateur et le dénominateur par 2. On a divisé le numérateur et le dénominateur par 5 ECRITURES FRACTIONNAIRES I- Fractions égales à une fraction donnée: Rappel des cours de sixième et de cinquième: On obtient une fraction égale à une fraction donnée en multipliant ou en divisant son numérateur

Plus en détail

Opérations sur les nombres entiers. Définitions Le résultat d une addition est une somme. Les nombres que l on additionne sont les termes de la somme.

Opérations sur les nombres entiers. Définitions Le résultat d une addition est une somme. Les nombres que l on additionne sont les termes de la somme. Chapitre 1 Opérations sur les nombres entiers I. Définitions et propriétés 1. Addition Définitions Le résultat d une addition est une somme. Les nombres que l on additionne sont les termes de la somme.

Plus en détail

Quotients - Fractions

Quotients - Fractions Quotients - Fractions I) Définitions : 1) Quotient Avec des nombres : on sait que 5 x 6,8 = 34 donc 5 est un diviseur de 34 ou 34 est divisible par 5 (revoir vocabulaire chapitre précédent), on dit que

Plus en détail

Répartition annuelle

Répartition annuelle Année scolaire 2016-2017 Classe : EB5 Matière : Mathématiques Répartition annuelle Semaine Chapitre Titre Objectifs/Compétences 1/2 1 1 er trimestre Les entiers les multiples (révision) - Lire, écrire

Plus en détail

S7C. Autour des MULTIPLES ET DIVISEURS Corrigé

S7C. Autour des MULTIPLES ET DIVISEURS Corrigé CRPE S7C. Autour des MULTIPLES ET DIVISEURS Corrigé Mise en route A. Vrai ou faux? Faux : Il suffit d un contre-exemple pour le montrer Le nombre 3 lui-même est multiple de 3, mais n'est pas multiple de

Plus en détail

CH I) Les nombres. 3 ; 5 ; 9 ; 217 sont des entiers naturels, ils sont écrits à partir des 10 chiffres {0 ;1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 }.

CH I) Les nombres. 3 ; 5 ; 9 ; 217 sont des entiers naturels, ils sont écrits à partir des 10 chiffres {0 ;1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 }. CH I) Les nombres I) Les ensembles de nombres 1) Les entiers naturels N : ; 5 ; 9 ; 17 sont des entiers naturels, ils sont écrits à partir des 10 chiffres {0 ;1 ; ; ; ; 5 ; 6 ; 7 ; 8 ; 9 }. ) Les entiers

Plus en détail

PGCD ET PPCM. Par convention, dans ce paragraphe, lorsque l on parlera de diviseurs d un entier naturel, il s agira toujours des diviseurs positifs.

PGCD ET PPCM. Par convention, dans ce paragraphe, lorsque l on parlera de diviseurs d un entier naturel, il s agira toujours des diviseurs positifs. PGCD ET PPCM I. Plus grand commun diviseur Par convention, dans ce paragraphe, lorsque l on parlera de diviseurs d un entier naturel, il s agira toujours des diviseurs positifs. 1. Diviseurs communs à

Plus en détail

MATHEMATIQUES. TRAVAUX NUMÉRIQUES 1ère partie. Nombres entiers. Nombres décimaux. Fractions. Opérations de Base

MATHEMATIQUES. TRAVAUX NUMÉRIQUES 1ère partie. Nombres entiers. Nombres décimaux. Fractions. Opérations de Base EXAMEN PROFESSIONNEL Adjoint technique territorial de ère classe MATHEMATIQUES TRAVAUX NUMÉRIQUES ère partie Nombres entiers Nombres décimaux Fractions Opérations de Base TRAVAUX NUMERIQUES - Nombres Entiers

Plus en détail

Polynômes et fractions rationnelles

Polynômes et fractions rationnelles Polynômes et fractions rationnelles Exercice 1. Factoriser dans [ ] et dans [ ] le polynôme Allez à : Correction exercice 1 Exercice 2. Soit Factoriser dans [ ], puis dans [ ] et enfin dans [ ] Allez à

Plus en détail

Guesmi.B. Propriété: On se donne a et b deux nombres entiers naturels avec b non nul. Il existe deux nombres entiers q et r tels que: et tel que:.

Guesmi.B. Propriété: On se donne a et b deux nombres entiers naturels avec b non nul. Il existe deux nombres entiers q et r tels que: et tel que:. Division Euclidienne Guesmi.B 1. Division euclidienne. 1.1. Vocabulaire. Propriété: On se donne a et b deux nombres entiers naturels avec b non nul. Il existe deux nombres entiers q et r tels que: et tel

Plus en détail

Divisions euclidienne. Zéro dans les divisions

Divisions euclidienne. Zéro dans les divisions Table des matières 1La division euclidienne :...2 2La notion de multiple...2 3Divisibilité...2 4Critères de divisibilité...3 1Divisible par 2...3 2Divisible par 5...3 3Divisible par 10...3 4Divisible par

Plus en détail

Ex 1 : Calcule en ligne CM2

Ex 1 : Calcule en ligne CM2 ADDITIONNER DES NOMBRES ENTIERS Opé 1 Pour calculer la somme de plusieurs nombres, on effectue une addition. Pour simplifier le calcul, on peut changer l ordre des nombres sans que cela modifie le résultat.

Plus en détail

Ex 1 : Calcule en ligne CM2

Ex 1 : Calcule en ligne CM2 ADDITIONNER DES NOMBRES ENTIERS Opé 1 Pour calculer la somme de plusieurs nombres, on effectue une addition. Pour simplifier le calcul, on peut changer l ordre des nombres sans que cela modifie le résultat.

Plus en détail

Les différents ensembles de nombres Corrigés des exercices et synthèse de cours

Les différents ensembles de nombres Corrigés des exercices et synthèse de cours Préparation accélérée CRPE Mathématiques Exercice 1 1. Les différents ensembles de nombres Corrigés des exercices et synthèse de cours 1 1 9 ; ;,14 ; 5 5 15 ; 0 sont des nombres rationnels décimaux. Un

Plus en détail

EXERCICES D ARITHMÉTIQUE

EXERCICES D ARITHMÉTIQUE 101. 1. n désigne un entier naturel. a. Vérifier que, pour n = 15, le reste de la division euclidienne de (n + 2) 3 par n 2 est égal à 12n + 8. b. Déterminer tous les entiers n pour lesquels cette propriété

Plus en détail

Nombres entiers et rationnels cours 3e

Nombres entiers et rationnels cours 3e Nomres entiers et rationnels cours 3e F.Gaudon 2 septemre 2004 Tale des matières 1 Diviseurs de nomres entiers 2 2 Application à la simplification de fractions 3 3 Recherche pratique du PGCD de deux nomres

Plus en détail

ARITHMETIQUE P.G.C.D. Dans ce chapitre, les nombres considérés seront des entiers naturels ( donc positifs )

ARITHMETIQUE P.G.C.D. Dans ce chapitre, les nombres considérés seront des entiers naturels ( donc positifs ) THEME : ARITHMETIQUE P.G.C.D. EUCLIDE Dans ce chapitre, les nombres considérés seront des entiers naturels ( donc positifs ) DIVISION EUCLIDIENNE Faire une division, c est calculer un quotient. Par exemple,

Plus en détail

PROPRIÉTÉ Dans une expression sans parenthèses. les multiplications et les divisions doivent être effectuées avant les additions et les soustractions.

PROPRIÉTÉ Dans une expression sans parenthèses. les multiplications et les divisions doivent être effectuées avant les additions et les soustractions. 1 Expressions sans parenthèses OBJECTIF 1 PROPRIÉTÉ Dans une expression sans parenthèses, les multiplications et les divisions doivent être effectuées avant les additions et les soustractions. s Calcul

Plus en détail

Chapitre 3 - Écritures fractionnaires

Chapitre 3 - Écritures fractionnaires Chapitre 3 - Écritures fractionnaires I. Rappels 1. Égalité de quotients. Propriété : Le quotient de deux nombres reste inchangé si on multiplie (ou si on divise) ces deux nombres par un même nombre non

Plus en détail

Egalité de fractions : simplifier avec les critères de divisibilité comparer produits en croix

Egalité de fractions : simplifier avec les critères de divisibilité comparer produits en croix Livret n : Nombres en écriture fractionnaire Nom : Prénom : Egalité de fractions : simplifier avec les critères de divisibilité comparer produits en croix D A C E Additionner soustraire D A C E Vocabulaire

Plus en détail

Arithmétique (2) Multiples ; diviseurs ; PGCD ; PPCM. 1 ère L Option. 5 ) Liste de tous les diviseurs d un entier naturel

Arithmétique (2) Multiples ; diviseurs ; PGCD ; PPCM. 1 ère L Option. 5 ) Liste de tous les diviseurs d un entier naturel 1 ère L Option I. Multiples et diviseurs 1 ) Définition Arithmétique (2) Multiples ; diviseurs ; PGCD ; PPCM 5 ) Liste de tous les diviseurs d un entier naturel Question : Trouver tous les diviseurs d'un

Plus en détail

1 Divisibilité dans Z

1 Divisibilité dans Z 1 Divisibilité dans Z Soient a et b deux entiers avec b 0. On dit que b divise a, ou que b est un diviseur de a, s il existe un entier q tel que a = b q. Si b divise a, on écrit b a; dans le cas contraire,

Plus en détail

S15C. Autour des NOMBRES REELS Corrigé. 1 est fausse car. 0,50 est fausse car 0,

S15C. Autour des NOMBRES REELS Corrigé. 1 est fausse car. 0,50 est fausse car 0, CRPE S5C. Autour des NOMBRES REELS Corrigé Mise en route Seule l égalité L égalité 0, est vraie. 5 om A. 7 7 est fausse car et 0,50 est fausse car 0,05. 5 6 0 0 Les autres résultats sont toutes des valeurs

Plus en détail

CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES. a.) Entiers naturels

CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES. a.) Entiers naturels CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES a.) Entiers naturels Les entiers naturels sont les entiers positifs et 0. Par exemple, 0, 1, 2 et 5676 sont des entiers naturels. Par contre 45 n'en est pas un.

Plus en détail

CHAPITRE 1 : DIVISIBILITÉ et NOMBRES ENTIERS RELATIFS

CHAPITRE 1 : DIVISIBILITÉ et NOMBRES ENTIERS RELATIFS 1. La relation de divisibilité. Soient a e b deux entiers naturels. Si la division est exacte alors : o a est un MULTIPLE de b o b est un DIVISEUR de a Multiples d un nombre Les multiples d un nombre entier

Plus en détail

3 ème E DS1 PGCD -notion de fonction Sujet 1

3 ème E DS1 PGCD -notion de fonction Sujet 1 3 ème E DS1 PGCD -notion de fonction 2013-2014 Sujet 1 Exercice 1 (5 points) Pour le 1 er mai, Julie dispose de 182 brins de muguet et de 78 roses. Elle veut faire le plus grand nombre de bouquets identiques

Plus en détail

Fractions irréductibles

Fractions irréductibles Fractions irréductibles Objectifs : Reconnaître les multiples et diviseurs d un nombre. Décomposer un nombre en produit de facteurs premiers. Reconnaître une fraction irréductible. Réduire une fraction

Plus en détail

( En seconde ) Dernière mise à jour : Samedi 16 Août Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année )

( En seconde ) Dernière mise à jour : Samedi 16 Août Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année ) Généralités sur les nombres ( En seconde ) Dernière mise à jour : Samedi 16 Août 2008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2008-2009) -1- J aimais et j aime encore les mathématiques

Plus en détail

Voici l ensemble des nombres tels qu ils se présentent à la sortie du collège :

Voici l ensemble des nombres tels qu ils se présentent à la sortie du collège : I- LES NOMBRES L humanité a mis des millénaires pour construire les nb : 30000 av JC : entailles numériques sur des os ; 8000 av JC : apparition des calculs au moyen orient ; 600 av JC : découverte des

Plus en détail

Dividende Diviseur. est une écriture fractionnaire du quotient de 2,5 par 10, donc

Dividende Diviseur. est une écriture fractionnaire du quotient de 2,5 par 10, donc I Ecriture frctionnire 1 Définition et b sont deux nombres, et b 0 Dividende Diviseur Le quotient de pr b se note b, ou b ( écriture frctionnire) 10 numérteur Exemple b dénominteur est une écriture frctionnire

Plus en détail

Révisions sur les fractions : Propriété fondamentale.

Révisions sur les fractions : Propriété fondamentale. Révisions sur les fractions : Propriété fondamentale. Propriété 1 : Soit une fraction. On a le droit de multiplier ou de diviser son numérateur son dénominateur par un même nombre non nul : cela ne change

Plus en détail