P : Dénombrements / Probabilités en univers fini

Dimension: px
Commencer à balayer dès la page:

Download "P : Dénombrements / Probabilités en univers fini"

Transcription

1 P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates : a) Aucue coditio? b) Il y a deux Rois parmi les ciq cartes tirées? c) Il y a au mois u pique parmi les cartes tirées? d) Il y a u As et deux carreaux parmi les cartes tirées? e) Il y a pas de cartes e-dessous du 9 parmi les cartes tirées? f) Les ciq cartes tirées formet deux paires (mais pas de brela)? g) Les ciq cartes tirées sot de la même couleur? h) Les ciq cartes tirées formet ue quite flush (ciq cartes qui se suivet das la même couleur)? P.2 Tirages avec remise! Ue ure cotiet ciq boules blaches et huit boules oires. O tire successivemet et avec remise quatre boules das l ure. Quel est le ombre de tirages vérifiat chacue des coditios suivates : a) Au mois ue boule blache a été tirée? b) Ue boule oire au plus a été tirée? c) Trois boules oires et ue boule blache ot été tirées das cet ordre? d) Deux boules oires et deux boules blaches ot été tirées? P.3 Combie de partitios? Soit E u esemble fii de cardial égal à ( IN * ). A, B costitué de parties de E vérifiat B A E? a) Combie y-a-t-il de couples ( ) b) Combie y-a-t-il de couples ( A, B ) costitué de parties de E vérifiat : A B =? c) Combie y-a-t-il de couples ( A, B ) costitué de parties de E vérifiat : A B = E? d) Combie y-a-t-il de partitios de E e trois parties o vides ( A,B,C )? e) Combie y-a-t-il de partitios de E e quatre parties o vides ( A,B,C,D )? P.4 Combie de partitios? Soit E u esemble à élémets ( IN * ). a) Quel est le ombre de partitios de E e 1 parties o vides? b) Quel est le ombre de partitios de E e 2 parties o vides? P.5 Combie de couples ( a, A ) tels que a A E? a) Soit E u esemble fii de cardial. Combie y'a-t-il de couples ( a,a) E P ( E) tels que : a A? b) E meat le calcul d'abord par a, puis d'abord par A e déduire que : k( k ) c) Retrouver cette formule, e partat de la formule du biôme! P.6 Combie de triplets ( ω,x,y ) tels que ω X Y E? 1 =.2. k = 0 Soit E u esemble fii de cardial. ω,x,y E P E P E tels que : ω X et X Y? Combie y'a-t-il de triplets ( ) ( ) ( )

2 P.7 Combie de triplets ( a,b, A ) tels que A E et ( ) a, b A 2? a) Soit E u esemble fii de cardial. a,b,a E E P E tels que : a A et b A? Combie y'a-t-il de triplets ( ) ( ) b) E meat ce calcul par deux méthodes différetes, e déduire que : ( k ) c) Retrouver cette formule, e partat de la formule du biôme! 2 2 k = ( 1).2. k = 0 P.8 Ça coupe qu'ue fois! Das u esemble E de cardial, est doé u sous-esemble A de cardial p ( avec ici 2 p < ). Soit alors F le sous-esemble de P ( E) costitué des parties X de E telles que X A soit u sigleto. a) Quel est le cardial de F? b) Que vaut cette somme : Card( X) X F? ( o doera u 1 er résultat e Σ, puis si possible u 2 d sas Σ ) P.9 Calculs de sommes! Das u esemble E de cardial, est doé u sous-esemble A de cardial p ( avec ici 2 p < ). Soit alors G le sous-esemble de P ( E) costitué des parties X de E telles que A X. a) Quel est le cardial de G? b) Que vaut cette somme : Card( X) X G? ( o doera u 1 er résultat e Σ, puis si possible u 2 d sas Σ ) P.10 Calculs de sommes! Das u esemble E de cardial, est doé u sous-esemble A de cardial p ( avec ici 2 p < ). a) Que vaut cette somme : S = Card( A X)? X E? b) Que vaut cette somme : T = Card( A X) X E P.11 Calculs de sommes! Soit E u esemble fii de cardial, et soit ω u élémet doé et fixé de E. Exprimer les sommes suivates, et calculer leurs valeurs : a) Card( A { ω} ) b) 1 ( A { ω} ) c) A E P.12 No surjectives! A E Card A E Combie existe-t-il d'applicatios o surjectives de { 1, 2,, } das { 1, 2,, } P.13 Surjectives! Soit u etier aturel supérieur ou égal à 4. 1, 2,, a) Combie y a-t-il d'applicatio surjectives de { } das { 1, 2 }? b) Combie y a-t-il d'applicatio surjectives de { 1, 2,, } das { } P.14 Surjectives! Soit u etier aturel o ul. 1, 2,3? a) Combie y a-t-il d'applicatio surjectives de { 1, 2,, + 1} das { 1, 2,, } b) Combie y a-t-il d'applicatio surjectives de { 1, 2,, + 2} das { 1, 2,, }??? ( A) ( A { }) Card Card ω

3 P.15 Équatios à solutios etières État doé u etier aturel, détermier le ombre de solutios das 2 IN de l'équatio : x + 2y =. P.16 Partitio stable! Soit E u esemble fii, et soit ( A,B ) ue partitio de E. a) Combie y'a-t-il d'applicatios de E das lui-même laissat stable A, aisi que B? b) Combie y'a-t-il de bijectios de E das lui-même laissat stable A, aisi que B? P.17 À la catie! Ue catie scolaire foctioe sous forme de self. Les élèves peuvet choisir etre quatre etrées, trois plats et ciq desserts différets. a) Normalemet, u élève choisit ue etrée, u plat et u dessert. Sous ces coditios, combie de meus différets peut-o costituer? b) U élève au régime e mage pas de dessert mais a le droit, pour compeser, de predre deux etrées. Combie de possibilités a-t-il pour costituer so meu? c) Deux élèves qui aimet gouter à tout décidet de s orgaiser aisi : ils choisisset des etrées, plats et desserts différets et se les partaget esuite. Combie ot-ils de meus possibles? P.18 Aagrammes! Combie peut-o faire d'aagrammes avec le oms suivat : a) M'ssieur BOUCARDEY? b) M'ssieur LASSALLE? c) Mam'zelle KERCKHOVE? d) M'ssieur VANNEUVILLE? e) M'ssieur DEREBREU? f) M'ssieur VANDERBAUWEDE? P.19 Combie d'applicatios croissates? Soiet et p deux etiers aturels strictemet positifs. a) Quel est le ombre d'applicatios strictemet croissates de l'esemble Ep = { 1,,p } das l'esemble F, p = { 2, 3,, + p }? E das E = { 1,, }, b) Motrer qu'il existe autat d'applicatios croissates de p qu'il y a d'applicatios strictemet croissates de E p das F,p. c) Combie existe-t-il de solutios das p IN à l'iéquatio : x1 + x2 + + xp? ( o pourra cosidérer les etiers x i comme des "sauts" etre deux valeurs cosécutives d'ue applicatio croissate à fabriquer ) d) E déduire le ombre de solutios das p IN à l'équatio : x1 + x2 + + xp =. P.20 Quel est l'âge du capitaie? Le capitaie des pompiers de New-York réside à l agle de la 7ème rue et de la 33 ème aveue. La casere se trouve à l agle de la 15ème rue et de la 40ème aveue. Il s y red tous les jours à pied et sas perdre de temps (i.e. das le ses des uméros croissats aussi bie pour les rues que pour les aveues). Et jamais deux fois par le même chemi Sachat qu il a commecé à travailler le jour de ses 18 as, et qu'il a déjà fait exactemet ue fois chaque chemi, quel est l âge maximum du capitaie? Le même exo traduit e mois rigolo : O part du poit A de coordoées (0,0) pour rejoidre le poit B de coordoées ( p,q) ( avec ici p et q etiers aturels doés ) e se déplaçat à chaque étape d ue uité vers la droite ou vers le haut. Combie y a-t-il de chemis possibles? A B

4 Calcul de probabilités P.21 T'as pas vraimet d'bol O pred au hasard, e même temps, trois ampoules das u lot de 15, dot 5 sot défectueuses. Calculer la probabilité des évéemets : a) A : " au mois ue ampoule est défectueuse " b) B : " les 3 ampoules sot défectueuses " c) C : " exactemet ue ampoule est défectueuse " P.22 À trois sur ue cible! Trois persoes jouet esemble au ball-trap. La probabilité que l'ue d'etre elles atteige la cible est de 50%, la secode de 30% et la troisième de 90%. Elles tiret esemble sur ue même cible Quelle est la probabilité qu'elle soit touchée? P.23 Ordre croissat Ue ure cotiet 10 boules umérotées de 1 à 10. O tire trois fois de suite ue boule avec remise. a) Quelle est la probabilité d'obteir trois ombres das u ordre strictemet croissat? b) Quelle est la probabilité d'obteir trois ombres das u ordre croissat au ses large? P.24 Deux aiversaires le même jour! Das ue classe de vigt-deux élèves, quelle est la probabilité que deux persoes soiet ées le même jour ( mais pas forcemet la même aée )? Et pour ue classe de quarate-huit élèves? P.25 Probabilité pour ue ijectio! Soiet et p deux etiers aturels o uls. 1, 2,, O choisit ue applicatio de { } das { 1, 2,, p} Quelle est la probabilité pour qu'elle soit ijective? au hasard, parmi toutes celles possibles. P.26 Probabilité pour que deux esembles se coupet! a) Das u esemble fii E de cardial, o choisit au hasard u couple de deux sous-esembles A et B. Quelle est la probabilité p pour qu'ils se coupet ( c'est-à-dire qu'ils soiet d'itersectio o vide )? Quelle est la limite de p lorsque. b) Même questio, e remplaçat le mot "couple" par le mot "paire"! Si q est cette probabilité, comparer p et q. P.27 De toutes les couleurs! Ue ure cotiet 15 boules : ue oire, 5 blaches, et 9 rouges. a) O tire simultaémet et au hasard trois boules de cette ure. Calculer la probabilité des évéemets suivats : i) A : "le tirage est tricolore" ii) B : "parmi les boules tirées figuret exactemet ue oire et au mois ue rouge" iii) C : "les trois boules tirées sot de la même couleur" b) O suppose que le tirage s'effectue successivemet avec remis. Détermier les probabilités es évéemets A, B, et C ci-dessus. P.28 Le coffre aux bijoux! U coffre cotiet 6 diamats, 8 émeraudes, et 10 rubis. O tire quatre pierres précieuses au hasard das le coffre. Calculer les probabilités suivates : a) Les quatre pierres sot du même type. b) O tire deux diamats et deux rubis. c) O tire autat de diamats que de rubis.

5 P.29 Avec u dé truqué c'est mieux! O dispose d'u dé que l'o jette deux fois de suite. a) E supposat le dé o pipé, quelle est la probabilité d'obteir ue paire? b) O suppose maiteat le dé pipé. Motrer que la probabilité d'obteir ue paire est supérieure ou égale à la précédete ( o pourra utiliser l'iégalité de Cauchy-Schwartz das l'espace euclidie 6 IR ) P.30 Bzzz. Aïe! Ue guêpe etre par iadvertace das u appartemet composé de deux pièces A et B. Elle est das la pièce A à l'istat t = 0, et se comporte aisi : si elle est e A à l istat, elle y reste à l istat +1 avec probabilité si elle est e B, elle y reste ue fois sur deux, passe e B ue fois sur quatre, et sio elle sort de l appartemet! 1, et sio passe e B! 3 si elle est à l'extérieur de l'appartemet, elle y reste. O ote A l'évéemet : «La guêpe est e A à l istat». De même, pour B et E Les probabilités respectives de ces évéemets sot otées a, b, et e. a) Exprimer les réels a + 1, b + 1 et e + 1 e foctio des réels a, b, et e. b) E observat les valeurs propres d'ue certaie matrice carrée de taille 3, justifier que la suite a est combiaiso liéaire d'ue suite costate et d'ue suite géométrique de raiso et qu'il e est de même pour chacue des deux autres suites! c) E déduire le calcul de a, b, et e e foctio de! P.31 À trois sur ue cible! Trois persoes jouet esemble au ball-trap. La probabilité que l'ue d'etre elles atteige la cible est de 50%, la secode de 30% et la troisième de 90%. Elles tiret esemble sur ue même cible Quelle est la probabilité qu'elle soit touchée? P.32 Vas-y la puce! Ue puce se trouve au poit d'abscisse k ( k etier ) sur u segmet gradué de 0 à N ( doc 0 k N ). 1 À chaque istat, elle fait u bod de + 1 avec la probabilité p ( avec p ), et u bod de 1 2 avec la probabilité de q = 1 p. Autremet dit, si x est l'abscisse de la puce à l'istat, x + 1 avec la probabilité p o a : x + 1 =. x 1 avec la probabilité q = 1 p Le processus pred fi lorsque la puce atteit l'ue des extrémités ( c'est-à-dire lorsque x = 0 ou x = N ). O cherche à détermier la probabilité que le processus soit sas fi! a) O ote u k la probabilité pour que la particule partat de l'abscisse k, le processus s'arrête e 0. i) Que valet u 0? u N? ii) Motrer que si 0 < k < N, uk = puk quk 1 iii) E déduire l'expressio exacte de u k. b) O ote v k la probabilité pour que la particule partat de l'abscisse k, le processus s'arrête e N. Repredre les questios précédetes avec v k au lieu de u k ( attetio, ce 'est peut-être plus la même formule de récurrece ) c) Calculer uk + vk. Qu'e déduisez-vous? 5 6,

6 P.33 Face jamais suivi de pile! Probabilités totales / Probabilités composées O effectue lacers idépedats d'ue pièce pour laquelle la probabilité d'obteir "PILE" est p ] 0, 1[ a) Quelle est la probabilité d'obteir au mois ue fois "PILE"? b) Quelle est la probabilité qu'au cours de ces lacers, "FACE" e soit jamais suivi de "PILE"? P.34 Deux ures O dispose de deux ures U 1 et U 2. L ure U 1 cotiet deux boules blaches et trois boules oires. L ure U 2 cotiet quatre boules blaches et trois boules oires. O effectue des tirages successifs das les coditios suivates : o choisit ue ure au hasard et o tire ue boule das l ure choisie. O ote sa couleur et o la remet das l ure d où elle proviet. Si la boule tirée était blache, le tirage suivat se fait das l ure U 1. Sio le tirage suivat se fait das l ure U 2. Pour IN *, o ote B l'évéemet «la boule du ième tirage est blache», et p sa probabilité. a) Calculer p 1. b) Détermier deux costates α et β telles que : 1, p + 1 = α p + β. c) Coclure e précisat pour tout 1 la valeur de p.. P.35 Réservez votre place! Ue compagie aériee étudie l évolutio des réservatios sur l u de ses vols. Elle costate que l état d ue place doée évolue aisi : Elle est libre au jour 0 ( jour d ouverture des réservatios ), puis : Si elle est libre au jour, il y a 40% de chaces que quelqu u la réserve le ledemai. Par cotre, si elle est réservée au jour, il y a 90% de chaces qu'elle le soit ecore le ledemai! O ote r la probabilité que la place soit réservée au jour. Exprimer r + 1 e foctio de r, et e déduire r e foctio de, puis efi sa limite lorsque. P.36 C'est fii au ozième pile ou ozième face! O lace ue pièce de moaie équilibrée, e e s'arrêtat que lorsque "PILE" est apparu oze fois, ou que "FACE" est apparue oze fois! À ce momet là, la "partie" est fiie a) Soit u etier compris etre 0 et 30 Quelle est la probabilité pour que la partie se soit déroulée e exactemet lacers dot oze piles? 20 p b) E déduire la formule suivate : p ( ). 1 1 = p = 10 P.37 Fumer tue! U fumeur, ayat lu des statistiques effrayates sur les risques de cacer, problèmes cardiovasculaires liés au tabac, décide d arrêter de fumer! Toujours d après ces statistiques, o estime que si cette persoe a pas fumé u jour J, alors la probabilité pour qu elle e fume pas le jour suivat J + 1 est de 30%, mais que si elle a fumé u jour J, alors la probabilité pour qu elle e fume pas le jour suivat est de 90%. a) Quelle est la probabilité p + 1 pour qu elle fume au jour J + 1 si p est celle qu'il ait fumé le jour J? b) Quelle est la limite de p? Combie de chaces pour qu'il fiisse d'arrêter de fumer u jour?

7 Probabilités coditioelles / Formule de Bayes P.38 Fois deux ou fois trois Ue ure cotiet 12 boules umérotées de 1 à 12. O e tire ue au hasard et o cosidère les évéemets : A = "tirage d'u ombre pair" et B = "tirage d'u multiple de 3" a) Les évéemets A et B sot-ils idépedats? b) Repredre la questio avec ue ure coteat 13 boules umérotées de 1 à 13. P.39 Qualité e sortie d'usie! Ue usie fabrique des pièces, avec ue proportio de 5% de pièces défectueuses. Le cotrôle des fabricatios est tel que : Si la pièce est boe, elle est acceptée avec la probabilité de 96% Si la pièce est mauvaise, elle est refusée avec la probabilité 98%. O choisit ue pièce au hasard et o la cotrôle. Quelle est la probabilité a) qu'il y ait ue erreur de cotrôle? b) qu'ue pièce acceptée soit mauvaise? P.40 Ça chage au deuxième tirage! Ue ure cotiet b boules blaches et boules oires. O tire ue boule de cette ure. Si elle est blache, o la remet das l'ure. Si elle est oire, o la remplace par k boules blaches prises das ue deuxième ure. Quelle est la probabilité de l'évéemet : E = "la deuxième boule tirée est blache"? P.41 Bous Malus Ue compagie d'assuraces repartit ses cliets e trois catégories : R 1, R 2 et R 3, à savoir das l'ordre : les bos risques, les risques moyes, et les mauvais risques. Les effectifs de ces trois classes représetet 20% de la populatio totale pour la classe R 1, 50% pour la classe R 2 et 30% pour la classe R 3. Les statistiques idiquet que les probabilités d'avoir u accidet au cours de l'aée pour ue persoe de l'ue de ces trois classes sot respectivemet de 5%, 15%, et 30% a) Quelle est la probabilité qu'ue persoe choisie au hasard das la populatio ait u accidet das l'aée? b) Si Mr Roger 'a pas eu d'accidet das l'aée, quelle est la probabilité qu'il soit u bo risque? P.42 Trois pièces truquées! O dispose de trois pièces truquées : la première doe "PILE" ue fois sur 10, la secode 4 fois sur 10 et la troisième 6 fois sur 10. O choisit ue pièce et o la lace 3 fois. O obtiet 2 fois "PILE" et 1 fois "FACE". Quelle est la probabilité d'avoir choisi la première pièce? P.43 Pièce truquée ou pas? O choisit au hasard ue pièce de moaie parmi trois pièces de moaie idiscerables a priori! L'ue est parfaitemet équilibrée, mais chacue des deux autres est truquées, chacue doat pile deux fois plus souvet que face. O lace la pièce choisie, et o ote le résultat. a) Quelle est la probabilité d'obteir face? b) Sachat qu'o a obteue face, quelle est la probabilité pour que la pièce choisie soit o truquée? P.44 Trois dès, deux sot pipés c'est le 6 qui sort! O choisit au hasard u dé parmi trois dès, a priori idiscerables mais u seul des trois est équilibré, car u autre doe toujours le chiffre 6, et le troisième doe le chiffre 6 ue fois sur 2 ( et doe les autres chiffres avec la même probabilité ). O lace le dé choisi Et c'est le 6 qui sort! Quelle est la probabilité qu'il soit issu du dé équilibré?

8 P.45 Dédépipéhédédépapipé! Das u lot de dix dés à six faces, deux sot truqués de la faço suivate : La face 6 est tirée la moitié du temps, et les autres faces apparaisset avec la même probabilité. O choisit u dé au hasard, et o le lace. a) Quelle est la probabilité d obteir u 6? b) O obtiet u 6. Quelle est la probabilité que le dé soit truqué? c) O obtiet u 2. Quelle est la probabilité que le dé e soit pas truqué? d) Soit IN *. O choisit u dé au hasard, et o lace ce dé fois et o obtiet fois le chiffre 6. Quelle est la probabilité p que ce dé soit pipé? e) Détermier lim p. Iterprétez ce résultat! P.46 Ue ure, et des jetos! O dispose d'ue ure vide, et de jetos, umérotés de 1 à. O tire u jeto au hasard. Si k est le uméro du jeto, alors o place das l'ure k boules blaches et k boules oires. O tire alors successivemet et avec remise deux boules de cette ure. a) Quelle est la probabilité de tirer deux boules blaches? b) Sachat que l'o a tiré deux boules blaches, quelle est la probabilité d'avoir tiré le jeto uméroté? c) Mêmes questios, e supposat que l'o tire simultaémet ( doc sas remises ) ces deux boules! d) Préciser les limites de ces probabilités lorsque. P.47 Les colombes, et les faucos! Ue guerre sévit depuis des aées etre deux pays voisis. Les habitats du pays A sot à 60% favorables à la paix et à 16% favorables à la guerre ( le reste état sas opiio). Par cotre das le pays B, 68% des habitats sot pour la guerre et 12% sot pour la paix. O recotre u idividu sas savoir quel pays il habite ( ue chace sur deux pour chaque ). a) Calculer la probabilité qu il soit sas opiio. b) Il est favorable à la guerre, quelle est la probabilité qu il habite le pays A? c) Même questio s il est favorable à la paix. P.48 U test de dépistage! Ue maladie touche u idividu sur 100. O dispose d u test de dépistage. Ce tes est positif pour 95% des persoes malades et pour 0.1% des idividus sais. a) U idividu ( au hasard ) est testé c'est positif! Quelle est la probabilité qu il soit effectivemet malade? b) Repredre le même exercice e supposat maiteat que la maladie e touche qu ue persoe sur 1 000, et que le test sera positif pour 0.5% des idividus sais. Que peser du résultat obteu? Variables aléatoires P.49 Avec trois dés O lace u dé trois fois de suite. Soit X le ombre de valeurs distictes obteues lors du tirage. Quelle est la loi de X? P.50 Avec u dé truqué O dispose d'u dé truqué, la probabilité d'obteir la face umérotée k état proportioelle à k. Soit X la variable aléatoire doat le chiffre ( de 1 à 6 ) obteu au lacer de ce dé a) Détermier la loi de X, calculer so espérace. 1 b) Soit Y =. Détermier la loi de Y, calculer so espérace. X P.51 T'as evie de jouer à ça? O joue au jeu suivat : o parie sur u ombre compris etre 1 et 6, puis o lace trois dés, et o gage 3 si le ombre sort trois fois, 2 s il sort deux fois, 1 s il sort ue fois. O perd 1 s il e sort pas. Détermier la loi, l espérace et la variace de la variable X représetat le gai du joueur.

9 P.52 Moitié / moitié! Ue ure cotiet 2 boules, autat de blaches que de oires. O pioche au hasard et simultaémet boules. O appelle X la variable aléatoire qui associe à chaque tirage le ombre de boules blaches obteues. a) Détermier la loi de probabilité de X. b) Détermier l'espérace et la variace de X. P.53 Vaches laitières Des vaches laitières sot atteites par ue certaie maladie avec la probabilité de p = 15%. Pour dépister cette maladie das ue étable de vaches, o fait procéder à ue aalyse de lait. Deux méthodes sot possibles : Première méthode : O fait ue aalyse sur u échatillo de lait de chaque vache. Deuxième méthode : O exécute d'abord ue aalyse sur u échatillo de lait proveat du mélage des vaches. Si le résultat est positif, o exécute ue ouvelle aalyse, cette fois pour chaque vache. O voudrait coaitre la méthode la plus écoomique ( i.e. celle qui écessite e moyee le mois d'aalyse ). Pour cela, o ote X la variable aléatoire du ombre d'aalyses réalisées das la deuxième étape. O pose aussi : Y 1 a) Détermier la loi de = X. b) Étudier la foctio x ax + l x Y et motrer que so espérace vaut : 1+ 1 ( ) 0.85 pour a = l ( 0.85). E déduire la liste des etiers tels que f () > 0. ( E Y 1 ) c) Motrer que : ( f () > 0 ) ( ) <. Coclure ( e foctio de ) pour la "meilleure" méthode! P.54 Ça marche u QCM? Le cadidat Dédé DUGLAND se présete à u cocours de recrutemet pour ue école d'igéieurs! C'est u QCM de 20 questios, où pour chaque questio, sot proposées 4 réposes, ue seule état exacte. O e doit proposer qu'ue répose à chaque questio. Pour attribuer sa ote, l examiateur fait le compte des réposes exactes doées par le cadidat. Dédé répod au hasard à chaque questio a) Quelle est la probabilité pour que Dédé ait au mois 10 boe répose? b) Quelle est l'espérace de ce cadidat fumiste? P.55 Six boules ( m'étaiet comptées ) Das ue ure se trouvet six boules. Trois sot umérotées 1, deux sot umérotées 2, et la derière est umérotée 3. O effectue des tirages successifs sas remise de toutes les boules de l ure. Pour chacue des variables aléatoires suivates, détermier la loi, l espérace, et la variace : a) X est le ombre de boules umérotées 1 présetes das l ure à l issue du troisième tirage. b) Y est le ombre de tirages écessaires avat de e plus avoir de boules umérotées 1 das l ure. c) Z est le rag du tirage de la boule umérotée 3. d) T est la somme des uméros tirés lors des trois premiers tirages. e) U est le ombre de tirages écessaires avat que la somme des uméros obteus atteige (ou dépasse) 5. P.56 Le plus grad des quatre! O lace simultaémet quatre dés à 6 faces et o ote X le plus grad chiffre obteu. P X k, Détermier la loi de X (o pourra commecer par calculer les probabilités ( ) aisi que so espérace et sa variace a) Détermier la loi de X ( o pourra commecer par calculer les probabilités P( X k) b) Calculer l'espérace et la variace de X. ).

10 P.57 Protocoles de dépistage! Soiet deux etiers et N, N état u multiple de, doc : N =.m. O désire aalyser le sag d ue populatio de N idividus pour détecter la présece d u virus qui affecte les idividus de la populatio avec ue probabilité p. O a pour cela deux possibilités : soit o aalyse le sag de chaque persoe, soit o regroupe les ges e groupes de persoes, dot o aalyse le sag e groupe. Si le test du groupe est positif, o aalyse idividuellemet chaque idividu du groupe. a) O ote X le ombre de groupes positifs. Doer la loi de X. b) O ote Y le ombre total d aalyses effectuées avec la secode méthode. Calculer e foctio de N,, et p l espérace de Y. c) Comparez les deux méthodes das le cas où N = 1000, = 10, et p = 1%. P.58 Vas-y la puce! Ue piste rectilige est divisée e cases umérotées ( 0,1,2,k,, ) de gauche à droite. Ue puce se déplace vers la droite de ue ou deux cases au hasard à chaque saut. Au départ, elle est sur la case 0. Soit X le uméro de la case occupée par la puce après sauts, et Y le ombre de fois où la puce a sauté d ue case au cours des premiers sauts. a) Doer la loi, l espérace, et la variace de Y. b) E déduire celles de X. P.59 Rag d'apparitio! Soit IN *. Ue ure cotiet boules blaches umérotées de 1 à et deux boules oires umérotées 1 et 2. O effectue le tirage ue à ue, sas remise, de toutes les boules de l ure. O ote X la variable aléatoire égale au rag d apparitio de la première boule blache. O ote Y la variable aléatoire égale au rag d apparitio de la première boule umérotée 1. a) Détermier la loi de X. b) Détermier la loi de Y. Que vaut so espérace? P.60 Des boules, et 3 compartimets O dispose de boules umérotées de 1 à et d ue boîte formée de trois compartimets idetiques égalemet umérotés de 1 à 3. O lace simultaémet les boules. Elles vieet se rager aléatoiremet das les 3 compartimets. Chaque compartimet peut évetuellemet coteir les boules. O ote X la variable aléatoire qui à chaque expériece aléatoire fait correspodre le ombre de compartimets restés vides. a) Préciser les valeurs prises par X. b) Détermier la probabilité pour qu'o ait X = 2. Doer complètemet la loi de X. c) Calculer l'espérace de X. Quelle est sa limite lorsque? Iterpréter ce résultat! P.61 Ça red co! Regarder à la télévisio u épisode des ages de la téléréalité, grille chaque euroe de votre cerveau avec ue probabilité de 1 pour Au bout de combie d'épisodes u euroe a-t-il grillé avec ue probabilité de 90 %? P.62 L'espérace du cardial Soit E u esemble de cardial. Soit X la variable aléatoire qui à toute partie A E associe so cardial. Calculer l'espérace et l'écart-type de X. P.63 Le sige du produit! Soiet X 1, X 2,, X des variables aléatoires mutuellemet idépedates, e preat que deux valeurs ( 1 et -1 ), toutes de même loi : P( Xk = 1 ) = p et P( Xk = 1 ) = 1 p. a) Calculer l'espérace de X k. b) Soit Y = X 1.X 2..X. Calculer l'espérace de Y. E déduire π = P( Y = 1). c) Étudier la limite de π lorsque.

11 P.64 Mêmes espéraces! Soiet deux variables aléatoires réelles X et Y sur u même espace probabilisé Ω fii. k k k IN, E X = E Y. O suppose que : ( ) ( ) Prouver qu'alors X et Y suivet la même loi! ( o pourra poser : X( ) Y( ) { z,z,,z } P.65 Ue ouvelle expressio de l'espérace! a) Soit X ue variable aléatoire réelle preat ses valeurs das l'esemble { 1,, } Justifier que : E( X) = P( X k). k = 1 Ω Ω = ) b) Soiet X et Y deux variables aléatoires idépedates à valeurs das { 1,, }, et de lois uiformes. Soiet U = mi( X,Y), V = Max ( X,Y), et W X Y =. Détermier l'espérace de U, de V, de W. Lois usuelles P.66 Vers Sature O lace des fusées vers Sature. À chaque lacer, la probabilité de réussite est de 70%. a) O effectue dix lacers successifs, quelle est la probabilité d obteir k lacers réussis? b) Quel est le ombre moye de lacers réussis? c) Combie faudrait-il de lacers pour avoir 98% de chaces qu au mois u lacer ait réussi? P.67 Quel avio? Deux avios A et B, le premier A est bimoteur ( 2 moteurs ), l'autre B est quadrimoteur ( 4 moteurs ). Les moteurs sot supposés idépedats les us des autres, et ils ot ue probabilité p de tomber e pae. Chaque avio peut arriver à destiatio si au mois la moitié de ses moteurs 'est pas tombé e pae. Quel avio choisissez-vous? ( o discutera e foctio de p ) P.68 Des rouges et des vertes! Das ue ure se trouvet 10 boules rouges et 5 vertes. a) O pioche avec remise six boules das l ure et o ote R le ombre de boules rouges obteues et V le ombre de vertes. Doer la loi, l espérace et la variace de R et de V (pas de calcul!). b) Même questio lorsque les tirages sot effectués sas remise (là il va falloir du calcul!) P.69 Réservatios o hoorées U avio peut accueillir 20 persoes. Des statistiques motret que 25% des cliets ayat réservé e vieet pas. Soit X la variable aléatoire : "ombre de cliets qui vieet après réservatio parmi 20". a) Quelle est la loi de X? ( o e doera que la forme géérale ) b) Quelle est so espérace, so écart-type? c) Quelle est la probabilité pour que X soit égal à 15? P.70 Das le mille Je dispose de 20 fléchettes. A chaque lacer, j'ai ue probabilité 0,1 de tirer das le mille. O suppose les lacers idépedats. O ote X la variable aléatoire égale au ombre de fléchettes que j'ai mises das le mille. a) Doer la loi de X. b) Calculer la probabilité de je mette au plus 1 fléchette das le mille. c) Calculer l'espérace de X. P.71 Ue espérace Soit ue variable aléatoire réelle X suivat ue loi biomiale : X ~B (,p). 1 Si Y = 1+ X, que vaut l'espérace de Y?

12 P.72 E urget ou pas Ue etreprise pharmaceutique décide de faire des écoomies sur les tarifs d'affrachissemets des courriers publicitaires à evoyer aux cliets. Pour cela, elle décide d'affrachir, au hasard, ue proportio de 3 lettres sur 5 au tarif urget, les autres au tarif ormal. a) Quatre lettres sot evoyées das u cabiet médical de quatre médecis! Quelle est la probabilité des évéemets suivats : i) A : " Au mois l'u d'etre eux reçoit ue lettre au tarif urget" ii) B : " Exactemet 2 médecis sur les quatre reçoivet ue lettre au tarif urget" b) Soit X la variable aléatoire : "ombre de lettres affrachies au tarif urget parmi 10 lettres". Quelle est la loi de probabilité de X, quelle est so espérace, quelle est sa variace? P.73 Hips U cocierge retre d'ue soirée. Il dispose de clefs dot ue seule ouvre la porte de so domicile, mais il e sait plus laquelle. a) Il essaie les clefs les ues après les autres e élimiat après chaque essai la clef qui 'a pas coveu. Trouver le ombre moye d'essais écessaires pour trouver la boe clef. b) E réalité, la soirée était bie arrosée, et après chaque essai, le cocierge remet la clef essayée das le trousseau. Trouver le ombre moye d'essais écessaires pour trouver la boe clef. P.74 Prêt à 60 %! L oral d u cocours comporte au total 100 sujets. Les cadidats tiret au sort trois sujets et choisisset alors le sujet traité parmi ces trois sujets. U cadidat se présete e ayat révisé 60 sujets sur les 100. a) Quelle est la probabilité pour que le cadidat ait révisé : i) les trois sujets tirés, ii) exactemet deux sujets sur les trois sujets tirés, iii) aucu des trois sujets tirés. b) Défiir ue variable aléatoire associée à ce problème et doer sa loi de probabilité, so espérace. P.75 Service après vete! Le service après-vete ( SAV ) d'u hypermarché dispose de techicies iterveat sur appel de la clietèle. Les itervetios ot parfois lieu avec du retard. O admet que les appels se fot idépedammet les us des autres, et que pour chaque appel, la probabilité d'u retard est de 25%. a) U cliet appelle le SAV à huit reprises. Soit X le ombre de fois où ce cliet a dû subir u retard! i) Détermier la loi, l'espérace et la variace de X. ii) Calculer la probabilité de l'évéemet "le cliet a subi au mois u retard". iii) Calculer la probabilité de l'évéemet "le cliet a subi mois de quatre retards". iv) Avec quelle probabilité le cliet a-t-il subi mois de quatre retards sachat qu'il e a subi au mois u. b) O cosidère u groupe de huit cliets différets. Deux d'etre eux sot mécotets suite à des retards. O cotacte au hasard quatre persoes parmi ces huit. Soit Y la variable aléatoire égale au ombre de cliets mécotets parmi les quatre cotactés. i) Quelle loi de probabilité Y suit-elle? ii) Quelle est l'espérace de Y? P.76 O vous rappelle! Ue secrétaire effectue appels téléphoiques vers correspodats disticts. O admet que les appels costituet expérieces idépedates et que pour chaque appel, la probabilité d obteir le correspodat demadé est p ( avec bie sûr 0 < p < 1 ). Soit X la variable aléatoire représetat le ombre de correspodats obteus. a) Doer la loi de X. Calculer l'espérace de X, et so écart-type. b) La secrétaire rappelle ue secode fois, das les mêmes coditios, chacu des X correspodats qu elle a pas pu joidre au cours de la première série d appels. O ote Y la variable représetat le ombre de persoes joites au cours de la secode série d appels. O ote Z = X + Y le ombre de correspodats obteus. i 0,1, P Y k X i k 0,1,. i) Soit { }. Détermier ( = = ) pour { } ii) Prouver que la variable aléatoire Z X Y = + suit ue loi biomiale dot o détermiera le paramètre. iii) Détermier l espérace et la variace de Z.

13 P.77 Avec ou Sas remises Ue ure cotiet deux boules blaches et huit boules oires. a) U joueur tire successivemet, avec remise, ciq boules das cette ure. Pour chaque boule blache tirée, il gage 2 poits et pour chaque boule oire tirée, il perd 3 poits. O ote X la variable aléatoire représetat le ombre de boules blaches tirées. O ote Y le ombre de poits obteus par le joueur sur ue partie. i) Détermier la loi de X, so espérace, et sa variace. ii) Détermier la loi de X, so espérace, et sa variace. b) Das cette questio, o suppose que les ciq tirages successifs se fot sas remise. i) Détermier la loi de X ii) Détermier la loi de Y. P.78 Faut etreteir! U idustriel doit vérifier l état de marche de ses machies et e remplacer certaies le cas échéat. D après des statistiques précédetes, il évalue à 30% la probabilité pour ue machie de tomber e pae e 5 as ; parmi ces derières, la probabilité de deveir hors d usage suite à ue pae plus grave est évaluée à 75% ; cette probabilité est de 40% pour ue machie ayat jamais eu de pae. a) Quelle est la probabilité pour ue machie doée de plus de ciq as d être hors d usage? b) Quelle est la probabilité pour ue machie hors d usage de avoir jamais eu de pae auparavat? c) Soit X la variable aléatoire égale au ombre de machies qui tombet e pae au bout de 5 as, parmi 10 machies choisies au hasard». Quelle est la loi de probabilité de X ( o doera le type de loi et les formules de calcul ), so espérace, sa variace et so écart-type? P X = 5. d) Calculer ( ) P.79 O additioe les poits! Ue ure cotiet jetos ( 2 ) umérotés de 1 à. O prélève ue poigée aléatoire de jetos. O ote N et S les variables aléatoires égales respectivemet au ombre de jetos prélevés, et à la somme des poits des jetos de la poigée. Si la poigée est vide, o aura : N = S = 0. a) O suppose das cette questio que toutes les poigées sot équiprobables! i) Détermier la loi de N, et so espérace. ii) Pour k { 1,, }, soit X k la variable qui vaut 1 si la poigée cotiet le jeto k, et 0 sio. Quelle est la loi de X k? iii) Justifier la relatio : S = k = 1 kx k. E déduire l'espérace de S. iv) Motrer que les variables X k sot mutuellemet idépedates. E déduire l'espérace de S. b) O suppose das cette questio que N suit la loi uiforme sur { 1,, }, c'est-à-dire que les tailles des poigées prélevées sot équiprobables. O garde les otatios de la questio a) précédete. i) Quelle est l'espérace de N? ii) Calculer pour tout p { 0,1,, } la probabilité coditioelle P( X = 1 N = p ). E déduire la loi de X k. iii) Les variables aléatoires X k sot-elles mutuellemet idépedates? c) O suppose maiteat que = 3. Détermier la loi de S das le 1 er cas, aisi que das le 2 d cas. k

14 P.80 Ça berouille! a) Soiet Y 1, Y 2,, Y des variables aléatoires mutuellemet idépedates, de même loi, et admettat u momet d'ordre deux. O pose : S = Y1 + Y2 + + Y. Prouver que : a IR * + ( 1 ) S, ( ) Var(Y 1) 2 a P E Y a b) O effectue des tirages successifs, avec remise, d ue boule das ue ure coteat 2 boules rouges et 3 boules oires. Á partir de quel ombre de tirages peut-o garatir à plus de 95% que la proportio de boules rouges obteues restera comprise etre 35% et 45%? P.81 Plus de 7 fois sur 10! O lace cet fois ue pièce de moaie équilibrée. a) Majorez, à l'aide de l'iégalité de Bieaymé-Tchebychev, la probabilité d'avoir plus de 70 fois "FACE" ou mois de 30 fois "FACE" à l'issue de ces tirages. b) Calculez explicitemet cette probabilité. Commetez. Couples de Variables aléatoires P.82 Lois margiales, mois coditioelles O cosidère deux variables aléatoires X et Y à valeurs das { 1, 2,3 } pour X, et das { 1,2,3,4 } pour Y. O ote i, j p la probabilité pour que ( X,Y) ( i, j) a) Vérifier la loi de ( X,Y ). ( ) =, et o a alors : ( i, j ) p = b) Détermier les lois margiales de X et de Y. Ces variables sot-elles idépedates? c) Calculer l'espérace et la variace de X, aisi que de Y. d) Former la table de la loi coditioelle de la variable "Y sachat X = i", et celle de "X sachat Y = j". e) O pose : Z = Y 1. Soit U = XZ. Détermier la loi de U. V = mi X,Z. Détermier la loi de V. f) Soit ( ) g) Former la table de la loi cojoite de U et de V. P.83 Des boules das des boites, avec p boules das la boite uméro p O a boites umérotées de 1 à. La boite k cotiet k boules umérotées de 1 à k. O choisit au hasard ue boite, puis ue boule das la boite. Soit X le uméro de la boite, et Y le uméro de la boule. X,Y. a) Détermier la loi du couple ( ) b) Détermier la loi de Y et so espérace. c) Les variables aléatoires X et Y sot-elles idépedates? P X = Y. d) Calculer ( ) P.84 Ure à 4 boules Ue ure cotiet 4 boules umérotées de 1 à 4. O y prélève deux boules sas remise. O défiit les variables aléatoires réelles X et Y égales respectivemet au plus petit et au plus grad des deux uméros obteus. X,Y a) Détermier la loi du couple ( ) b) E déduire les lois margiales de X et de Y. Calculer E( X ), E( Y ), σ ( X) et ( Y) c) Les variables aléatoires réelles X et Y sot-elles idépedates? d) O pose Z Y X E Z. Détermier esuite la loi de Z. =. Calculer ( ) σ.

15 P.85 Le plus grad uméro, et le plus petit! Ue ure cotiet N boules umérotées de 1 à N. a) O prélève successivemet et avec remise boules de cette ure. Soiet X et Y les variables aléatoires égales au plus petit et au plus grad uméro obteus. p 1,, N P X p. E déduire la loi de X. i) Pour { }, calculer ( ) ii) Pour q { 1,,N }, calculer P( Y q). E déduire la loi de Y. iii) Pour ( p,q) { 1,, N } 2, calculer P( [ X > p] [ Y q] ). E déduire la loi du couple ( ) b) Mêmes questios lorsque les prélèvemets ot lieu simultaémet, et doc sas remise! P.86 Somme & Différece sur ue loi de Beroulli! Soiet X et Y deux variables aléatoires idépedates, de même loi de Beroulli. Soit alors : U = X + Y et V = X Y. U,V. a) Détermier la loi du couple ( ) b) Les variables aléatoires U et V sot-elles idépedates? P.87 La loi du Max O cosidère deux variables aléatoires réelles X et Y telles que X( ) Y( ) { 1,2, } Ω = Ω =. O suppose que la probabilité pour qu'o ait X = i et Y = j est proportioelle à ij. a) Détermier cette probabilité, puis la loi de Y b) Les variables aléatoires X et Y sot-elles idépedates? P X = Y. c) Calculer ( ) d) Soit U Max( X,Y) =. Calculer la loi de U. X,Y. P.88 Pas deux fois la même! Ue ure cotiet + 1 boules umérotées de 0 à. O y tire successivemet et avec remise u certai ombre de boules. La variable aléatoire X k est défiie de la faço suivate : X1 = 1 et esuite Xi = 1 si le uméro obteu au tirage i 'avait jamais été obteu avat, et Xi = 0 sio! a) Détermier la loi de X 2. b) Motrer que i c) Motrer que si i j X suit ue loi de Beroulli de paramètre ( ) i p 1 d) E déduire la loi du produit XiX j. <, alors o a : P( X 1 et X 1 ) i =. + 1 ( 1) i 1 j i i = j = = ( + 1) j 1 e) Les variables aléatoires X i et X j sot-elles idépedates? f) O ote Z p la variable aléatoire égale au ombre de uméros disticts obteus lors des p premiers tirages. i) Exprimer p Z e foctio des variables défiies précédemmet. ii) E déduire so espérace et la limite de celle-ci lorsque p.

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1 UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. remy.garadel@utbm.fr ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

Compte Sélect Banque Manuvie Guide du débutant

Compte Sélect Banque Manuvie Guide du débutant GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

RECHERCHE DE CLIENTS simplifiée

RECHERCHE DE CLIENTS simplifiée RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées

Plus en détail

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2. Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015 Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

Les algorithmes de tri

Les algorithmes de tri CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....

Plus en détail

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

One Office Voice Pack Vos appels fixes et mobiles en un seul pack

One Office Voice Pack Vos appels fixes et mobiles en un seul pack Uique! Exteded Fleet Appels illimités vers les uméros Mobistar et les liges fixes! Oe Office Voice Pack Vos appels fixes et mobiles e u seul pack Commuiquez et travaillez e toute liberté Mobistar offre

Plus en détail

Sommaire Chapitre 1 - L interface de Windows 7 9

Sommaire Chapitre 1 - L interface de Windows 7 9 Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18

Plus en détail

Chaînes de Markov. Arthur Charpentier

Chaînes de Markov. Arthur Charpentier Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.

Plus en détail

La fibre optique arrive chez vous Devenez acteur de la révolution numérique

La fibre optique arrive chez vous Devenez acteur de la révolution numérique 2 e éditio Edité par l Autorité de régulatio des commuicatios électroiques et des postes RÉPUBLIQUE FRANÇAISE DÉCEMBRE 2010 La fibre optique arrive chez vous Deveez acteur de la révolutio umérique Petit

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

MESURE DE L'INFORMATION

MESURE DE L'INFORMATION MESURE DE L'INFORMATION Marc URO TABLE DES MATIÈRES INTRODUCTION... 3 INCERTITUDE D'UN ÉVÉNEMENT (OU SELF-INFORMATION)... 7 INFORMATION MUTUELLE DE DEUX ÉVÉNEMENTS... 9 ENTROPIE D'UNE VARIABLE ALÉATOIRE

Plus en détail

Le chef d entreprise développe les services funéraires de l entreprise, en

Le chef d entreprise développe les services funéraires de l entreprise, en Le chef d etreprise développe les services fuéraires de l etreprise, e assurat lui-même tout ou partie des activités de vete et e ecadrat directemet le persoel techique et commercial et d exploitatio.

Plus en détail

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble. II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café

Plus en détail

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier

Plus en détail

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012 Mobile Busiess Commuiquez efficacemet avec vos relatios commerciales 9040412 09/2012 U choix capital pour mes affaires Pour gérer efficacemet ses affaires, il y a pas de secret : il faut savoir predre

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014 Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Les nouveaux relevés de compte

Les nouveaux relevés de compte Ifo CR Les ouveaux relevés de compte Les relevés de compte actuels du Crédit Agricole de Champage-Bourgoge sot issus de la migratio iformatique sur le GIE AMT e 2001 : petit format (mais A4 pour les Professioels),

Plus en détail

Principes et Méthodes Statistiques

Principes et Méthodes Statistiques Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............

Plus en détail

Des résultats d irrationalité pour deux fonctions particulières

Des résultats d irrationalité pour deux fonctions particulières Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: richardchoulet@waadoo.fr Received

Plus en détail

Statistique Numérique et Analyse des Données

Statistique Numérique et Analyse des Données Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques

Plus en détail

Renseignements et monitoring. Renseignements commerciaux et de solvabilité sur les entreprises et les particuliers.

Renseignements et monitoring. Renseignements commerciaux et de solvabilité sur les entreprises et les particuliers. Reseigemets et moitorig. Reseigemets commerciaux et de solvabilité sur les etreprises et les particuliers. ENSEMBLE CONTRE LES PERTES. Reseigemets Creditreform. Pour plus de trasparece. Etreteir des rapports

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB

MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB MUTUELLE D&O MUTUELLE D&O Copilote de votre saté AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyace CRC CRIS CRPB-AFB DOMISSIMO-Assuraces DOMISSIMO-Services FONGECFA-Trasport IPRIAC MUTUELLE D&O OREPA-Prévoyace

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

Gérer les applications

Gérer les applications Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces

Plus en détail

Comment les Canadiens classent-ils leur système de soins de santé?

Comment les Canadiens classent-ils leur système de soins de santé? Novembre Les sois de saté au Caada, c est capital bulleti o 4 Commet les Caadies classet-ils leur système de sois de saté? Résultats du sodage iteratioal du Fods du Commowealth sur les politiques de saté

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Stage «Nouveaux programmes de Termiale S» - Ho Chi Mih-Ville Novembre 202 Échatilloage et estimatio Partie C - Frédéric Barôme page Échatilloage et estimatio Partie C : Capacités et exercices-types. Rappelos

Plus en détail

Neolane Leads. Neolane v6.0

Neolane Leads. Neolane v6.0 Neolae Leads Neolae v6.0 Ce documet, aisi que le logiciel qu'il décrit, est fouri das le cadre d'u accord de licece et e peut être utilisé ou copié que das les coditios prévues par cet accord. Cette publicatio

Plus en détail

La maladie rénale chronique

La maladie rénale chronique La maladie réale chroique Qu est-ce que cela veut dire pour moi? Natioal Kidey Disease Educatio Program La maladie réale chroique: l essetiel Vous avez été iformé(e) que vous êtes atteit(e) de la maladie

Plus en détail

n tr tr tr tr tr tr tr tr tr tr n tr tr tr Nom:... Prénom :...

n tr tr tr tr tr tr tr tr tr tr n tr tr tr Nom:... Prénom :... Nom:... Préom :... Chaque répose peut valoir : c) 2 poits si le choix est totalemet exact + poit si le choix est partiellemet exact + 0 poit si le choix est erroé + -i poit si le choix est u coeses Ue

Plus en détail

Création et développement d une fonction audit interne*

Création et développement d une fonction audit interne* Créatio et développemet d ue foctio audit itere* Ue démarche e 10 étapes [ Sommaire] Dix étapes pour réussir... 7 Étapes 1 à 4 Défiitio du cadre d itervetio... 9 1 Idetifier les attetes des parties preates...

Plus en détail

Télé OPTIK. Plus spectaculaire que jamais.

Télé OPTIK. Plus spectaculaire que jamais. Télé OPTIK Plus spectaculaire que jamais. Vivez toute la puissace de la télévisio sur IP grâce au réseau OPTIK 1 de TELUS et découvrez-e l extraordiaire potetiel. Télé OPTIK MC vous doe la parfaite maîtrise

Plus en détail

Une action! Un message!

Une action! Un message! Ue actio! U message! Cotact Master est u service exclusif de relaces automatiques de vos actes vers vos cliets, par SMS, messages vocaux, e-mails, courrier... Il se décleche lorsque vous réalisez ue actio

Plus en détail

Initiation à l analyse factorielle des correspondances

Initiation à l analyse factorielle des correspondances Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique

Plus en détail

Processus géométrique généralisé et applications en fiabilité

Processus géométrique généralisé et applications en fiabilité Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail