Précision d un résultat et calculs d incertitudes

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Précision d un résultat et calculs d incertitudes"

Transcription

1 Précision d un résultat et calculs d incertitudes PSI* Lycée Chaptal

2

3 3 Table des matières Table des matières 1. Présentation d un résultat numérique Notations a) Notation scientifique b) Notation ingénieur Chiffres significatifs a) Nombre de chiffres significatif d un résultat numérique b) Précision d un résultat numérique Chiffres significatifs et opérations Présentation d un résultat expérimental Résultat d une mesure Chiffres significatifs du résultat d une mesure Incertitudes des mesures Erreur systématique et erreur aléatoire Calculs classiques d incertitude a) Méthode b) Incertitude liée à un appareil de mesure c) Critiques d) Intérêts des calculs d incertitudes classiques e) Exemple de calcul : célérité d une onde ultrasonore Analyse statistique d une série de mesures Mesures indépendantes Loi gaussienne Exploitation statistique d une série de mesures a) Estimations de la valeur exacte et de l écart-type b) Intervalle de confiance (méthode de Student) Intérêt de choisir la moyenne comme estimateur de la grandeur mesurée Exemple

4 1. Présentation d un résultat numérique 1. Présentation d un résultat numérique Notations a) Notation scientifique La notation (ou écriture) scientifique est une représentation d un nombre réel sous la forme d un produit de deux facteurs. Le premier facteur est un nombre décimal dont la valeur absolue de la partie entière est un chiffre comprise entre 1 et 9. Le second facteur est une puissance entière de 10. Exemple : T = 298 K s écrit en notation scientifique T = 2, K. b) Notation ingénieur La notation ingénieur consiste à exprimer un nombre réel sous la forme x 10 n, où x est un nombre compris entre 1 et 999 et n est un entier multiple de 3. Exemple : U = 0, 045 V s écrit en notation ingénieur U = V = 45 mv. 1.2 Chiffres significatifs a) Nombre de chiffres significatif d un résultat numérique Dans un résultat numérique, tous les chiffres autre que zéro sont significatifs. Les zéros sont significatifs lorsqu ils se trouvent entre d autres chiffres ou à leur droite ; ils ne le sont pas lorsqu ils se trouvent à leur gauche. Exemples : 3, 2 contient 2 chiffres significatifs ; 3, 20 contient 3 chiffres significatifs ; 0, 32 contient 2 chiffres significatifs ; 3200 contient 4 chiffres significatifs. Signalons qu un nombre entier naturel est considéré comme possédant un nombre illimité de chiffres significatifs ; il en est de même de son inverse. b) Précision d un résultat numérique La précision d un résultat numérique augmente avec le nombre de chiffres significatifs exprimé. Le dernier chiffre est alors incertain. Exemples : L = 12, 597 km = 12, m (5 chiffres significatifs) signifie que 12596, 5 m < L < 12597, 5 m ; L = 12, 60 km = 12, m (4 chiffres significatifs) signifie que m < L < m ; L = 12, 6 km = 12, m (3 chiffres significatifs) signifie que m < L < m.

5 5 2. Présentation d un résultat expérimental 1.3 Chiffres significatifs et opérations Il faut toujours arrondir le résultat final fourni par la calculatrice afin de l exprimer avec une précision égale à celle de la donnée utilisée la moins précise. Par exemple, le résultat de la multiplication 36, 54 58, 4 = 2133, 936 doit être arrondi à 2, , car la données la moins précise (58, 4) contient 3 chiffres significatifs. De même, après une addition ou une soustraction, le résultat ne doit pas avoir plus de décimales que le nombre qui en comporte le moins : 220, , , 51 = 1175, 804 doit être arrondi à 1175, Présentation d un résultat expérimental 2.1 Résultat d une mesure Considérons une grandeur physique A dont la valeur exacte est notée a e. Une mesure n étant jamais parfaite, la valeur a e n est pas accessible par l expérience, il s agit d une valeur inconnue pour l expérimentateur. Une mesure est en effet toujours entachée d erreurs dont les causes sont multiples : matériel employé, qualification de l expérimentateur effectuant la mesure, méthode utilisée, influence de l environnement de la grandeur mesurée... Pour chaque mesure d une grandeur physique A, il faut idéalement présenter le résultat de la mesure sous la forme d un intervalle : où A = â ± a â est l estimateur de la valeur exacte a e ; ε a = â a e représente alors l erreur commise sur la mesure de A ; a est l incertitude sur la mesure de A telle que la probabilité p pour que l intervalle numérique [â A ; â+ A] contienne la valeur exacte a e soit assez élevée (par exemple p = 95%). Exemple : U = 2, 48±0, 02 V signifie que la valeur exacte de la tension U a une probabilité élevée d appartenir à l intervalle [2, 46 V ; 2, 50 V]. 2.2 Chiffres significatifs du résultat d une mesure On expliquera dans les prochains chapitres la manière d évaluer l incertitude d une mesure. Mais retenons d ores et déjà les règles d écriture du résultat d une mesure, règles qui découlent des conséquences des arrondis de â et a sur les variations tolérables de l intervalle de mesure.

6 3. Incertitudes des mesures 6 On exprimera l incertitude a avec au plus 2 chiffres significatifs. On conservera pour l estimateur â les chiffres significatifs qui interviennent dans a. Exemple : le résultat U = 2, 5785 ± 0, 0127 V devra être mis sous la forme finale U = 2, 578 ± 0, 013 V. En l absence de calcul d incertitude, le résultat d une mesure sera écrit avec au plus 3 chiffres significatifs. En effet, avec le matériel utilisé au lycée, la précision est en général de l ordre de 1%, ce qui conduit à écrire les résultats des mesures avec 2 ou 3 chiffres significatifs. 3. Incertitudes des mesures 3.1 Erreur systématique et erreur aléatoire Une erreur systématique affecte le résultat constamment et toujours dans le même sens, elle contribue à toujours surévaluer, ou toujours sous-évaluer, la valeur mesurée. Exemples de causes d erreurs systématiques Mauvais étalonnage d un appareil. Mauvais réglage du zéro d un appareil (balance par exemple). Vieillissement des composants. Le protocole expérimental peut introduire une erreur systématique. Par exemple, si l on desire mesurer à la fois la tension aux bornes d un dipôle et le courant qui le traverse, on peut réaliser deux montages possibles : Montage longue dérivation : V Montage courte dérivation : V A dipôle A dipôle E E

7 7 3. Incertitudes des mesures Ces deux montages introduisent des erreurs systématiques. Dans le montage longue dérivation, le voltmètre mesure la somme des différences de potentiel du dipôle et de l ampèremètre. Dans le montage courte dérivation, l ampèremètre mesure la somme des courants traversant le dipôle et le voltmètre. Notons que pour des multimètres numériques, le montage courte-dérivation est à privilégier car le courant traversant un voltmètre numérique est très faible (résistance interne de l ordre de 10 MΩ) alors que la chute de tension due à un ampèremètre numérique n est pas négligeable. Une erreur est aléatoire lorsque, d une mesure à l autre, la valeur obtenue peut être surévaluée ou sous-évaluée par rapport à la valeur exacte de la grandeur. Exemples de causes d erreurs aléatoires Un exemple d erreur aléatoire est la mesure du temps avec un chronomètre. L erreur vient du temps de réaction de l expérimentateur au démarrage et à l arrêt du chronomètre. Comme ce temps de réaction n est pas toujours le même, la valeur mesurée peut être surévaluée ou sous-évaluée. Parasites du circuit d alimentation en électronique. Fluctuations des paramètres physiques de l environnement (température, pression, humidité de l aire...). Remarque : une erreur donnée peut, suivant les conditions, apparaître comme systématique ou aléatoire. Considérons par exemple le cas de l erreur de parallaxe 1 : si l opérateur se place toujours sous le même angle par rapport à la perpendiculaire à la graduation d un appareil de mesure, il introduira une erreur systématique dans ses lectures. Par contre, s il se place de manière aléatoire par rapport à la perpendiculaire à la graduation, l erreur de parallaxe sera aléatoire. 3.2 Calculs classiques d incertitude a) Méthode Soit une grandeur A = f(x, y, z) où x, y et z représentent les mesures primaires. L incertitude sur la grandeur A peut être exprimée en donnant : soit l incertitude absolue A ; soit l incertitude relative A/A. Expression de la différentielle de f : df = f f f dx + dy + x y z dz. On note x, y et z, les incertitudes absolues sur les mesures primaires. La quantité 1 l erreur de parallaxe est l angle entre la direction du regard d un observateur et la perpendiculaire à la graduation d un appareil de mesure, amenant à une erreur de lecture de la mesure effectuée.

8 A = f x x + f y y + f z z donne une estimation de l incertitude de mesure sur la grandeur A. Règles de calcul classiques : A = x + y + z = A = x + y + z ; A = x m y n = A A = m x x + n y y. b) Incertitude liée à un appareil de mesure 3. Incertitudes des mesures 8 Afin d évaluer l incertitude liée à un appareil de mesure, on peut utiliser les indications du constructeurs (notice). Cette procédure demeure valable si l appareil est régulièrement ré-étalonné. Pour un appareil à aiguille, il est préférable de l utiliser, si possible, pas trop loin de la pleine échelle afin d obtenir une incertitude relative faible. Un appareil à aiguille de classe p signifie qu il introduit une incertitude relative de p % sur une mesure égale au calibre. Exemple : un appareil de classe 2 comportant 150 divisions introduira une incertitude absolue de soit 3 divisions et ceci quelle que soit l amplitude de 100 la déviation. Pour les appareils numériques, l incertitude absolue comprend souvent un pourcentage de la valeur mesurée plus un terme constant. Par exemple, la notice d un voltmètre donne comme information sur l incertitude : 0, 5% +1 digit (c est-à-dire 1 unité sur le dernier chiffre). Mesurons une même tension U en utilisant deux calibres différents. Affichage du voltmètre sur le calibre 200 mv : 150,0. L incertitude de mesure vaut alors : U = 0, 5 150, 0 + 0, 1 soit U = 0, 85 mv ; 100 Affichage du voltmètre sur le calibre 20 V : 00,15. L incertitude de mesure vaut alors : U = 0, , , 01 = 1, V soit U = 10, 75 mv ; On pourra retenir qu il faut utiliser le plus petit calibre possible (ici 200 mv) pour bénéficier du maximum de précision lors de la mesure. c) Critiques Cette étude ne prend pas en compte toutes les causes d erreur. Par exemple, lors de l étude de la résonance d un circuit RLC, il faut apprécier la fréquence pour laquelle le courant passe par un maximum. Cette imprécision est, en général, très supérieure à celle déduite de l indication d un fréquencemètre. Les incertitudes sur les mesures primaires sont souvent estimées de manière empirique, à moins de disposer de la notice des appareils de mesure.

9 9 3. Incertitudes des mesures Le niveau de confiance qu on peut accorder aux diverses incertitudes n est pas précisé. On suppose qu il est proche de 100%. Pour garder un tel niveau de confiance, le calcul considère que toutes les erreurs vont dans le mauvais sens (d où les valeurs absolues dans les calculs) et cela conduit à des incertitudes assez grandes. d) Intérêts des calculs d incertitudes classiques Les calculs d incertitudes classiques ont tout de même des qualités. Ils permettent de voir les grandeurs sur lesquelles devra porter l amélioration de la précision. Exemple : la loi pour la chute libre g = 2h/t 2 montre qu une erreur sur la mesure du temps t aura plus de répercussion qu une erreur sur la hauteur h. Ils fournissent un ordre de grandeur correct. En particulier, s il s agit de mesurer une même grandeur par plusieurs méthodes, il est utile de pouvoir dire quelle est la plus précise. Au final, il est nécessaire d adapter le nombre de chiffres significatifs d une mesure à son incertitude (cf. chapitre 2). e) Exemple de calcul : célérité d une onde ultrasonore La mesure de la longueur d onde λ d une onde ultrasonore fournit le résultat : λ = 8, 630 ± 0, 018 mm. D où l incertitude relative sur λ : λ λ = 0, 018 8, 630 = 2, La notice de l émetteur de l onde ultrasonore fournit comme valeur de la fréquence f 0 = 40, 0 khz, par conséquent Hz < f 0 < Hz. L incertitude relative sur la fréquence a donc pour valeur : f 0 f 0 = 50 40, = 1, Valeur de la célérité de l onde : c = λf 0 = 345, 24 m s 1. En différentiant de façon logarithmique la relation c = λf 0, on obtient l incertitude relative puis absolue sur c : c c = λ λ + f 0 f 0 = 3, soit c = 1, 1 m s 1. D où la valeur expérimentale de la mesure de la célérité : c = 345, 2 ± 1, 1 m s 1.

10 4. Analyse statistique d une série de mesures Analyse statistique d une série de mesures L analyse statistique représente une autre alternative pour les calculs d incertitudes. Cette démarche s applique aux erreurs aléatoires. 4.1 Mesures indépendantes Des mesures sont considérées comme indépendantes si elles sont effectuées par des manipulateurs différents sur des appareillages différents (mais du même type) en suivant le même protocole. Exemple : mesure d une grandeur physique d un même objet par différents groupes de TP équipés du même type de matériel. Dans le cas contraire (manipulateurs utilisant successivement le même matériel ou manipulateur unique utilisant successivement plusieurs appareils), les mesures sont dites corrélées. 4.2 Loi gaussienne Supposons que nous disposions d un grand nombre n de mesures indépendantes x i d une même grandeur X. On note x, la moyenne arithmétique de ces mesures : n i=1 x = x i. n En l absence d erreur systématique, on estime que la moyenne x des mesures tend vers la valeur exacte x e lorsque n tend vers l infini : lim x = x e. n On note P (x) la distribution de probabilité associée à la variable aléatoire x : la quantité P (x)dx représente alors la probabilité de trouver la valeur de la mesure dans l intervalle [x; x + dx]. Dans un grand nombre de situations, la probabilité de trouver une valeur x en mesurant la grandeur X, obéit à une loi de Gauss : P (x) = 1 [ σ 2π exp (x x ] e) 2 (expression non exigible) 2σ 2 où la quantité σ est appelé écart-type quadratique moyen ; la constante 1/σ 2π permet de normaliser la loi de probabilité : P (x)dx = 1. Cette loi est très répandue car il suffit que les causes des erreurs aléatoires soient multiples et d importance comparable pour qu elle soit vérifiée.

11 11 4. Analyse statistique d une série de mesures La valeur exacte de X représente la moyenne de cette distribution de probabilité : x e = x = xp (x)dx. L écart-type quadratique moyen vérifie la relation σ = (x x e ) 2 = (x x e ) 2 P (x)dx. La probabilité qu une mesure x i tombe dans l intervalle [x e 2σ, x e + 2σ] est xe+2σ x e 2σ P (x)dx = 0, 954. Le tableau suivant donne la probabilité qu une mesure x i tombe dans un intervalle centré sur la valeur exacte x e : Intervalle de confiance Probabilité [x e σ, x e + σ] 68% [x e 1, 96σ, x e + 1, 96σ] 95% [x e 2σ, x e + 2σ] 95, 4% [x e 2, 58σ, x e + 2, 58σ] 99% [x e 3σ, x e + 3σ] 99, 7% P(x) σ 2 x e 2σ 3σ x

12 4. Analyse statistique d une série de mesures Exploitation statistique d une série de mesures Comme expérimentalement, on n a souvent qu un petit nombre n de mesures indépendantes (n variant de 5 à 20 par exemple), on n a accès ni à x e, ni à σ mais seulement à une estimation de ces grandeurs. a) Estimations de la valeur exacte et de l écart-type Les mathématiques permettent de montrer que le meilleur estimateur x de la valeur exacte x e (valeur moyenne de la distribution P (x)) est la moyenne arithmétique des n mesures indépendantes, de qualité comparable (donc après avoir écarté les mesures manifestement aberrantes, signes d un incident de manipulation) : x = x = n i=1 x i n. On admettra également que le meilleur estimateur de σ est donné par l écart-type expérimental de la série de mesure : σ n 1 = n i=1 (x i x) 2 n 1. Propriété : lim σ n 1 = σ. n Remarque : repérer σ n 1 dans la liste des fonctions pré-programmées de vos calculatrices 1. b) Intervalle de confiance (méthode de Student) Dans l hypothèse où toute erreur systématique a été écartée et où les mesures individuelles x i sont réparties selon une loi gaussienne, il est possible d approcher la valeur exacte x e de la grandeur X avec une certaine probabilité. Soit t n,p un coefficient, appelé coefficient de Student, dépendant du nombre n de mesures et du degré de probabilité souhaité (p %). La valeur exacte x e a alors une probabilité de p % de se trouver dans l intervalle défini ci-dessous, appelé intervalle de confiance : [ ] σ n 1 σ x t n,p n 1 ; x + t n,p. n n Par conséquent : X = ˆx ± x avec x = x = n i=1 x i n et x = t n,p σ n 1 n. 1 la notation de cette fonction peut changer d une calculatrice à l autre, σ n 1 est parfois noté S n ou S x

13 13 4. Analyse statistique d une série de mesures Le coefficient t n,p est tabulé en fonction du nombre de mesures n pour différents niveaux de confiance p. Par exemple, pour p = 95% et p = 99%, on a n t n,95% 4, 30 3, 18 2, 78 2, 57 2, 45 2,37 2,31 2,26 2,23 2,20 t n,99% 9, 93 5, 84 4, 60 4, 03 3, 71 3,50 3,36 3,25 3,17 3,11 n t n,95% 2,18 2,16 2,14 2,13 2,12 2,11 2,10 2,09 2,09 2,08 t n,99% 3, 05 3, 01 2,98 2,95 2,92 2,90 2,88 2,86 2,85 2,83 Limites des coefficients de Student pour les niveaux de confiance p = 95% et p = 99% : lim t n,95% = 1, 96 et lim t n,99% = 2, 58. n + n + Commentaires Pour un même nombre n de mesures indépendantes, le coefficient de Student t n,p augmente avec le niveau de confiance p souhaité. Pour un même niveau de confiance p donné, t n,p décroît lorsque n augmente. Mais les variations de t n,p avec n sont assez faibles. Par exemple, pour n 10, on a : 1, 96 t n,95% 2, 26 et 2, 58 t n,99% 3, 25. Le coefficient de Student t n,p variant assez faiblement avec n, la largeur de l intervalle de confiance, liée à la précision de la mesure, x = t n,p σ n 1 n dépend donc essentiellement du facteur n qui divise σ n Intérêt de choisir la moyenne comme estimateur de la grandeur mesurée Cas d une mesure unique. Nous avons établis que la probabilité pour qu une mesure unique x i appartienne à l intervalle [x e 1, 96σ, x e + 1, 96σ] est de 95%. Cas d une série de mesure. Pour n 20, la valeur exacte x e a une probabilité de 95% d appartenir à l intervalle [ ] σ n 1 σ x t n,95 n 1 ; x + t n,95 avec t n,95% 2. n n σ n 1 étant un bon estimateur de σ, le fait de choisir la moyenne arithmétique x comme estimateur de la grandeur mesurée permet donc de diminuer l incertitude sur la mesure d un facteur n par rapport à une mesure unique.

14 4. Analyse statistique d une série de mesures 14 Dans le cas où les coefficients de Student ne sont pas fournis, on pourra écrire le résultat d une série de mesures sous la forme (valable pour n 10) : X = ˆx ± x avec x = x = n i=1 x i n et x 2 σ n 1 n pour p 95%. 4.5 Exemple Série de mesures (n = 6) de l intensité du champ de pesanteur g (m s 2 ) : Valeur moyenne de g : g = 9, m s 2. Méthode de Student : 9, 68 ; 9, 85 ; 9, 85 ; 9, 77 ; 9, 87 ; 9, 79. σ n 1 = 7, ; t n,95% = 2, 57 pour n = 6 mesures. Incertitude sur la moyenne : g = 2, 57 Résultat de la série de mesures : Intervalle de confiance à 95% : 7, = 0, 075 m s 2. g = 9, 802 ± 0, 075 m s 2. [9, 802 0, 075 ; 9, , 075] = [9, 727 ; 9, 877]. - - FIN - -

MODULE 3. Performances-seuils. Les appareils de mesure. Appareils de mesure Choix et utilisation. L élève sera capable

MODULE 3. Performances-seuils. Les appareils de mesure. Appareils de mesure Choix et utilisation. L élève sera capable MODULE 3. Les appareils de mesure. Performances-seuils. L élève sera capable 1. de choisir un appareil de mesure ; 2. d utiliser correctement un appareil de mesure ; 3. de mesurer courant, tension et résistance.

Plus en détail

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure Introduction CORRECTION TP Multimètres - Mesures de résistances - La mesure d une résistance s effectue à l aide d un multimètre. Utilisé en mode ohmmètre, il permet une mesure directe de résistances hors

Plus en détail

Fiche technique expérimentale 3. Utilisation d un multimètre (I)

Fiche technique expérimentale 3. Utilisation d un multimètre (I) Fiche technique expérimentale 3 Utilisation d un multimètre (I) D.Malka MPSI 2014-2015 Lycée Saint-Exupéry Dans cette fiche, on ne s intéresse qu au mesure de tension et d intensité en régime continu mais,

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

OPERATIONS SUR LE SYSTEME BINAIRE

OPERATIONS SUR LE SYSTEME BINAIRE OPERATIONS SUR LE SYSTEME BINAIRE 1) Nombres signés Nous n avons, jusqu à présent tenu compte, que des nombre positifs. Pourtant, la plupart des dispositifs numériques traitent également les nombres négatifs,

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

Compter à Babylone. L écriture des nombres

Compter à Babylone. L écriture des nombres Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens

Plus en détail

MESURES ET INCERTITUDES

MESURES ET INCERTITUDES MESURES ET INCERTITUDES OBJECTIFS DE CE CHAPITRE : Savoir exprimer une mesure avec le bon nombre de chiffres significatifs. Savoir arrondir le résultat d un calcul avec le bon nombre de chiffres significatifs.

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF PHYSQ 126: Circuits RLC 1 CIRCUITS RLC À COURANT ALTERNATIF 1 Introduction. Le but de cette expérience est d introduire le concept de courant alternatif (en anglais, Alternating Current ou AC) et d étudier

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Mesure, précision, unités...

Mesure, précision, unités... 1. Introduction Mesure, précision, unités... La physique, science expérimentale, impose un recours à l'expérience pour élaborer, infirmer ou confirmer les théories. Mais cette démarche qui fait qu'une

Plus en détail

Suites numériques 2. n=0

Suites numériques 2. n=0 Suites numériques 1 Somme des termes d une suite Dans les applications, il est souvent nécessaire de calculer la somme de quelques premiers termes d une suite (ou même de tous les termes, mais on étudiera

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT OBJECTIFS Savoir utiliser le multimètre pour mesurer des grandeurs électriques Obtenir expérimentalement

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Chap1 : Intensité et tension.

Chap1 : Intensité et tension. Chap1 : Intensité et tension. Items Connaissances cquis ppareil de mesure de l intensité. Branchement de l appareil de mesure de l intensité. Symbole normalisé de l appareil de mesure de l intensité. Unité

Plus en détail

Chapitre 3 : Mesure et Incertitude.

Chapitre 3 : Mesure et Incertitude. Chapitre 3 : Mesure et ncertitude. Le scientifique qui étudie un phénomène naturel se doit de faire des mesures. Cependant, lors du traitement de ses résultats ce pose à lui la question de la précision

Plus en détail

Chap2 : Les lois des circuits.

Chap2 : Les lois des circuits. Chap2 : Les lois des circuits. Items Connaissances Acquis Loi d additivité de l intensité dans un circuit comportant une dérivation. Loi d unicité des tensions aux bornes de deux dipôles en dérivation.

Plus en détail

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de

Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de règles à appliquer dans un ordre déterminé à un nombre

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Leçon N 1 : Taux d évolution et indices

Leçon N 1 : Taux d évolution et indices Leçon N : Taux d évolution et indices En premier un peu de calcul : Si nous cherchons t [0 ;+ [ tel que x 2 = 0,25, nous trouvons une solution unique x = 0, 25 = 0,5. Nous allons utiliser cette année une

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

Les différents codes utilisés en électronique

Les différents codes utilisés en électronique Section : Technicien Supérieur Electronique Discipline : Génie Electronique Les différents codes utilisés en électronique Domaine d application : Traitement des signaux numériques Type de document : Cours

Plus en détail

Pourcentages et évolutions

Pourcentages et évolutions Pourcentages et évolutions Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Part en pourcentage 2 1.1 Ensemble de référence.......................................... 2 1.2 Addition et

Plus en détail

Fractions et décimaux

Fractions et décimaux Fractions et décimaux Scénario : le pliage des bandes de papier Cette fiche n est pas un programme pédagogique. Elle a pour but de faire apercevoir la portée de l approche «pliage de bandes» et les conséquences

Plus en détail

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le Chapitre I - arithmé La base décimale Quand on représente un nombre entier, positif, on utilise généralement la base 10. Cela signifie que, de la droite vers la gauche, chaque nombre indiqué compte 10

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Dérivation : Approximation affine et applications aux évolutions successives Contexte pédagogique Objectifs

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

MESURE DE LA PUISSANCE

MESURE DE LA PUISSANCE Chapitre 9 I- INTRODUCTION : MESURE DE L PUISSNCE La mesure de la puissance fait appel à un appareil de type électrodynamique, qui est le wattmètre. Sur le cadran d un wattmètre, on trouve : la classe

Plus en détail

CALIBRATION COMMENT ÇA FONCTIONNE MONITEURS DÉTECTEURS D ÉNERGIE DE PUISSANCE DÉTECTEURS HAUTE PUISSANCE SOLUTIONS DÉTECTEURS PHOTO DÉTECTEURS.

CALIBRATION COMMENT ÇA FONCTIONNE MONITEURS DÉTECTEURS D ÉNERGIE DE PUISSANCE DÉTECTEURS HAUTE PUISSANCE SOLUTIONS DÉTECTEURS PHOTO DÉTECTEURS. Chez Gentec-EO, depuis plus de 40 ans, nous comprenons que l essence même de notre métier est l exactitude. Il n existe pas de demi-mesure : nos appareils mesurent avec exactitude ou ils ne mesurent pas

Plus en détail

NOTICE DE LOGICIEL OHMNIBUS

NOTICE DE LOGICIEL OHMNIBUS NOTICE DE LOGICIEL OHMNIBUS DEPARTEMENT SCIENCES Mars 2005 OHMNIBUS I CHARGER L EXERCICE «DOC» A PARTIR DE LA FENETRE D ENTREE DANS LE LOGICIEL Exercice sélectionné par un click de souris et qui apparaît

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014 Travaux pratiques d électronique, première séance Circuits passifs S. Orsi, A. Miucci 22 septembre 2014 1 Révision 1. Explorez le protoboard avec le voltmètre. Faites un schéma des connexions. 2. Calibrez

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

SOURCE DE TENSION ET SOURCE DE COURANT

SOURCE DE TENSION ET SOURCE DE COURANT 59 E1 SOUCE DE TENSON ET SOUCE DE COUNT.- BUT DE L'EXPEENCE Les sources de tension et de courant sont des modèles que l'on ne rencontre pas dans la nature. Néanmoins, toute source d'énergie électrique

Plus en détail

APPAREILS DE MESURE. Grandeurs électriques

APPAREILS DE MESURE. Grandeurs électriques APPAREILS DE MESURE L objectif de cette manipulation est de prendre en main des appareils de mesure tels que des voltmètres ou oscilloscopes, mais aussi d évaluer leurs performances, leurs limites et surtout

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

DOCUMENT ANNEXE IV - L'USAGE D'UN MULTIMETRE. DEPARTEMENT SCIENCES Janvier 2005 A. Biolluz

DOCUMENT ANNEXE IV - L'USAGE D'UN MULTIMETRE. DEPARTEMENT SCIENCES Janvier 2005 A. Biolluz DOCUMENT ANNEXE IV - L'USAGE D'UN MULTIMETRE DEPARTEMENT SCIENCES Janvier 2005 A. Biolluz DOCUMENT ANNEXE IV - L'USAGE D'UN MULTIMÈTRE I. PRÉSENTATION C'est un appareil électrique qui permet de faire

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Construction d un site WEB

Construction d un site WEB Construction d un site WEB 1 Logique binaire 1: Les systèmes de numération Un ordinateur est un appareil électronique. Deux tensions sont majoritairement présentes dans ses circuits électroniques : 0V

Plus en détail

La puissance électrique

La puissance électrique Nom : Prénom : Classe : Date : Physique Chimie La puissance électrique Fiche élève 1/5 Objectifs : o Comparer le produit de la tension d utilisation U appliquée aux bornes d une lampe par l'intensité I

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

Analyse des données 1: erreurs expérimentales et courbe normale

Analyse des données 1: erreurs expérimentales et courbe normale Analyse des données 1: erreurs expérimentales et courbe normale 1 Incertitude vs. erreur Une mesure expérimentale comporte toujours deux parties: la valeur vraie de la grandeur mesurée et l'erreur sur

Plus en détail

Partiel - 12 mars 2014

Partiel - 12 mars 2014 Licence STS, semestre 4 013 14 Mathématiques pour l Informatique (Info 9) 1 mars 014 http://www.lri.fr/~paulin/mathinfo Partiel - 1 mars 014 L examen dure heures. L énoncé est composé de 5 pages. Toutes

Plus en détail

Titre : Etude des lois de l intensité électrique Niveau : 4ème

Titre : Etude des lois de l intensité électrique Niveau : 4ème Titre : Etude des lois de l intensité électrique Niveau : 4ème Type d activité TP «virtuel» à faire à la maison Connaissances : - L intensité du courant est la même en tout point d un circuit en série.

Plus en détail

LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE

LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE I. Incidences d'une mauvaise qualité dans le domaine industriel - Mise en vente de produits de mauvaise qualité. - Mécontentement des clients. - Perte de

Plus en détail

Les régimes périodiques (Chap 2)

Les régimes périodiques (Chap 2) Les régimes périodiques (Chap 2)! Révisé et compris! Chapitre à retravaillé! Chapitre incompris 1. Propriétés des grandeurs physiques : La période T, est le plus petit intervalle de temps, au bout duquel

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi :

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi : Numération Numération. 1 Les systèmes de numération 1.1 Le système décimal. 1.1.1 Les chiffres. Le système décimal est le système d écriture des nombres que nous utilisons habituellement dans la vie courante.

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Chapitre 6 : Estimation d erreurs numériques

Chapitre 6 : Estimation d erreurs numériques Chapitre 6 : Estimation d erreurs numériques Puisque les réels ne sont représentés en machine que sous la forme de flottants, ils ne sont connus que de manière approchée. De plus, la somme ou le produit

Plus en détail

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation 4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

L électricité : êtes-vous au courant? Guide d utilisation du multimètre DMR-1100. Société de formation à distance des commissions scolaires du Québec

L électricité : êtes-vous au courant? Guide d utilisation du multimètre DMR-1100. Société de formation à distance des commissions scolaires du Québec L électricité : êtes-vous au courant? Guide d utilisation du multimètre DMR-1100 SO f AD Société de formation à distance des commissions scolaires du Québec Ce guide a été produit par la Société de formation

Plus en détail

TD d exercices de calculs numériques.

TD d exercices de calculs numériques. TD d exercices de calculs numériques. Exercice 1. (Brevet 2008) On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3 b) Ajouter le carré du nombre choisi. c) Multiplier

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

UTILISATION D UN MULTIMETRE ANCIEN ANALOGIQUE TYPE MX430 GL pour BRICOVIDEO

UTILISATION D UN MULTIMETRE ANCIEN ANALOGIQUE TYPE MX430 GL pour BRICOVIDEO UTILISATION D UN MULTIMETRE ANCIEN ANALOGIQUE TYPE MX430 GL pour BRICOVIDEO Les cordons de mesure doivent être équipés de fiches double puits comme en photo ci-dessous, excepté le cordon jaune formellement

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com STATISTIQUES Emilien Suquet, suquet@automaths.com I Comment réagir face à un document statistique? Les deux graphiques ci-dessous représentent l évolution du taux de chômage en France sur les 1 mois de

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

CH IV) Courant alternatif Oscilloscope.

CH IV) Courant alternatif Oscilloscope. CH IV) Courant alternatif Oscilloscope. Il existe deux types de courant, le courant continu et le courant alternatif. I) Courant alternatif : Observons une coupe transversale d une «dynamo» de vélo. Galet

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

CH 06 UTILISATION DE L OSCILLOSCOPE

CH 06 UTILISATION DE L OSCILLOSCOPE CH 06 UTILISATION DE L OSCILLOSCOPE Pendant tout le TP vous utiliserez la Fiche méthode de l oscilloscope OX 71 Livre Bordas, Collection ESPACE, 2008, p 183 I- FONCTIONNEMENT Mettre l appareil sous tension.

Plus en détail

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2?

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2? T.P. 5 partie 1 Variable ordinale Calcul manuel de quantiles Utilisation des fonctions intégrées de la TI-84 Utilisation du programme D1 (Corrigé pour 30 cas) V. Prise en compte de 30 cas (pour éviter

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Arithmétique binaire. (Université Bordeaux 1) Architecture de l Ordinateur 2007-2008 1 / 10

Arithmétique binaire. (Université Bordeaux 1) Architecture de l Ordinateur 2007-2008 1 / 10 Entiers naturels Arithmétique binaire Représentation en base 10: 2034 = 2 10 3 + 0 10 2 + 3 10 1 + 4 10 0 Représentation en base 2: 11010 = 1 2 4 + 1 2 3 + 0 2 2 + 1 2 1 + 0 2 0 (Université Bordeaux 1)

Plus en détail

LE COURANT ELECTRIQUE CONTINU

LE COURANT ELECTRIQUE CONTINU LE COURT ELECTRQUE COTU 1- perçu historique de l'électricité Voir polycop 2- Le courant électrique l existe deux types de courant. EDF. faire tirages feuille exercice et T annexe Montrer effet induction

Plus en détail

Montages non linéaires à amplificateurs opérationnels

Montages non linéaires à amplificateurs opérationnels Montages non linéaires à amplificateurs opérationnels Partie théorique I. omparateur L utilisation la plus simple d un amplificateur opérationnel (AOP) en montage non-linéaire est le comparateur. Deux

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

IPT : Cours 2. La représentation informatique des nombres

IPT : Cours 2. La représentation informatique des nombres IPT : Cours 2 La représentation informatique des nombres (3 ou 4 heures) MPSI-Schwarz : Prytanée National Militaire Pascal Delahaye 28 septembre 2015 1 Codage en base 2 Définition 1 : Tout nombre décimal

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

Document 1 : modélisation d un appareil photographique

Document 1 : modélisation d un appareil photographique PCSI1-Lycée Michelet 2014-2015 APPROCHE DOCUMENTAIRE : appareil photo numérique Extrait du programme : en comparant des images produites par un appareil photographique numérique, discuter l influence de

Plus en détail

TEST D ALIMENTATION CONTINUE

TEST D ALIMENTATION CONTINUE TEST D ALIMENTATION CONTINUE Pour vérifier et tester la conception, le besoin en alimentations conformes aux normes ne cesse de progresser au niveau technologique. C est plus ou moins devenu une nécessité

Plus en détail

Hydraulique des terrains

Hydraulique des terrains Hydraulique des terrains Séance 3 : Hypothèses de l écoulement en conduite Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Cinématique d écoulement -Lignes caractéristiques -Vitesses et débits B. Hypothèse

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Les Différents types de Requêtes dans Access

Les Différents types de Requêtes dans Access Les Différents types de Requêtes dans Access Il existe six types de requêtes. Les Requêtes «Sélection», qui sont le mode par défaut et correspondent à des «vues» des tables originelles. Cela signifie que

Plus en détail

TP HF Manipulation 3 ANALYSEUR DE RESEAUX VECTORIELS

TP HF Manipulation 3 ANALYSEUR DE RESEAUX VECTORIELS TP HF Manipulation 3 ANALYSEUR DE RESEAUX VECTORIELS I. Introduction En hyperfréquence, la caractérisation des dispositifs passifs ou actifs est assez différentes des techniques utilisées en basse fréquence.

Plus en détail