Cours 4: Programmation linéaire

Dimension: px
Commencer à balayer dès la page:

Download "Cours 4: Programmation linéaire"

Transcription

1 Cours 4: Programmation linéaire Position du problème Algorithme du simplexe générique Dualité. Dégénérescence et terminaison de l algorithme 1-1

2 Cours 4: Programmation linéaire Position du problème Algorithme du simplexe générique Dualité. Dégénérescence et terminaison de l algorithme 2-1

3 Un problème de programmation linéaire Donnée: Une matrice réelle A = (a i,j ) de taille m n, un vecteur b = (b 1,..., b m ) de taille m, un vecteur c = (c 1,..., c n ) de taille n. Problème: Trouver un point x = (x 1,..., x n ) qui satisfait les m contraintes a i,1 x a i,n x n b i, et maximise le produit c x = c 1 x c n x n. Reformulation matricielle: on cherche max(c x Ax b). Remarque: Les a i,j, b i et c i peuvent être négatifs, on peut donc modéliser des contraintes ou = et chercher min au lieu de max. 3-1

4 4-1 Un exemple bateau: le fleuriste Donnée. En stock: 50 lys, 80 roses, 80 jonquilles. Composition des bouquets au catalogue: 10 lys, 10 roses, 20 jonquilles: 4 euros x bouquets y bouquets 10 lys, 20 roses, 10 jonquilles: 5 euros Problème Quels bouquets préparer si on est assuré de tout vendre? y Contraintes: sur les lys: 10x + 10y sur les roses: 10x + 20y c 22 sur les jonquilles: 20x + 10y x 0 y 0 x Fonction économique à maximiser: max(4x + 5y). Lorsqu on a les contraintes x i 0 on peut toujours penser en termes économiques: produits finis, matières premières, bénéfice.

5 Interprétation géométrique Donnée: Une matrice réelle A = (a i,j ) de taille m n, un vecteur b = (b 1,..., b m ) de taille m, un vecteur c = (c 1,..., c n ) de taille n. Chaque équation a i,1 x a i,n x n b i coupe l espace en 2, le long d un l hyperplan normal au vecteur L i = (a i,1,..., a i,n ). L ensemble des x satisfaisant Ax b forme un polyhèdre convexe P 5-1

6 Interprétation géométrique Donnée: Une matrice réelle A = (a i,j ) de taille m n, un vecteur b = (b 1,..., b m ) de taille m, un vecteur c = (c 1,..., c n ) de taille n. Chaque équation a i,1 x a i,n x n b i coupe l espace en 2, le long d un l hyperplan normal au vecteur L i = (a i,1,..., a i,n ). L ensemble des x satisfaisant Ax b forme un polyhèdre convexe P éventuellement vide 5-2

7 Interprétation géométrique Donnée: Une matrice réelle A = (a i,j ) de taille m n, un vecteur b = (b 1,..., b m ) de taille m, un vecteur c = (c 1,..., c n ) de taille n. Chaque équation a i,1 x a i,n x n b i coupe l espace en 2, le long d un l hyperplan normal au vecteur L i = (a i,1,..., a i,n ). L ensemble des x satisfaisant Ax b forme un polyhèdre convexe P éventuellement vide ou non borné 5-3

8 Interprétation géométrique Donnée: Une matrice réelle A = (a i,j ) de taille m n, un vecteur b = (b 1,..., b m ) de taille m, un vecteur c = (c 1,..., c n ) de taille n. Chaque équation a i,1 x a i,n x n b i coupe l espace en 2, le long d un l hyperplan normal au vecteur L i = (a i,1,..., a i,n ). L ensemble des x satisfaisant Ax b forme un polyhèdre convexe P éventuellement vide ou non borné Le vecteur c indique la direction dans laquelle on optimise: max(c x x P ) L optimum peut être à l infini. 5-4

9 Interprétation géométrique Donnée: Une matrice réelle A = (a i,j ) de taille m n, un vecteur b = (b 1,..., b m ) de taille m, un vecteur c = (c 1,..., c n ) de taille n. Chaque équation a i,1 x a i,n x n b i coupe l espace en 2, le long d un l hyperplan normal au vecteur L i = (a i,1,..., a i,n ). L ensemble des x satisfaisant Ax b forme un polyhèdre convexe P éventuellement vide ou non borné Le vecteur c indique la direction dans laquelle on optimise: max(c x x P ) L optimum peut être à l infini. S il est fini, il est atteint en un sommet. C est toujours le cas si P est borné. 5-5

10 Interprétation géométrique Donnée: Une matrice réelle A = (a i,j ) de taille m n, un vecteur b = (b 1,..., b m ) de taille m, un vecteur c = (c 1,..., c n ) de taille n. Chaque équation a i,1 x a i,n x n b i coupe l espace en 2, le long d un l hyperplan normal au vecteur L i = (a i,1,..., a i,n ). L ensemble des x satisfaisant Ax b forme un polyhèdre convexe P éventuellement vide ou non borné Le vecteur c indique la direction dans laquelle on optimise: max(c x x P ) Par convexité, un sommet est optimum si et seulement si il est meilleur que ses voisins. 5-6

11 Cours 4: Programmation linéaire Position du problème Algorithme du simplexe générique Dualité. Dégénérescence et terminaison de l algorithme 6-1

12 7-1 Algorithme du simplexe, premier essai Initialiser x avec un sommet quelconque de P Tant qu on a pas trouvé une direction infinie où c x croit, et qu il existe x voisin de x avec c x > c x, faire x := x. Remarques: Glouton... Qu est ce qu un sommet, un voisin? Sommet = intersection de n hyperplans, donné par I = {indices des n équations} Voisin = partage n 1 équations un sommet a n(m n) voisins? On veut un voisin qui soit un sommet de P. Le long d une arête (I \ {i}), seul le premier voisin rencontré est dans P : comparer les distances. n = 2 m = 5

13 Détecter les directions infinies où c x croît. Si le polyhèdre n est pas borné, c x peut croître indéfiniment: Lemme: les 2 cas suivants s excluent mutuellement: c s écrit c = P i y il i avec les y i 0 l optimum est borné il existe u tq c u > 0 et Au 0 8-1

14 Détecter les directions infinies où c x croît. Si le polyhèdre n est pas borné, c x peut croître indéfiniment: Lemme: les 2 cas suivants c s écrit c = P s excluent mutuellement: i y il i avec les y i 0 l optimum est borné il existe u tq c u > 0 et Au 0 8-2

15 Détecter les directions infinies où c x croît. Si le polyhèdre n est pas borné, c x peut croître indéfiniment: Lemme: les 2 cas suivants s excluent mutuellement: c s écrit c = P i y il i avec les y i 0 il existe u tq c u > 0 et Au 0 En effet: c = ya cu = yau donc si y 0 et Au 0, on a cu 0. Application: si au cours de l exécution on rencontre une arête de direction u tq Au 0 et cu > 0, on a trouvé une direction de croissance infinie et on peut s arrêter. Si au point x I, c = P i I y il i avec y i 0, on a trouvé l optimum. l optimum est borné 8-3

16 Algorithme du simplexe, version générique Soit x I le sommet courant, solutions des n équations (L k x = b k ) k I Exprimer c dans la base {L k } k I : c = P k I y kl k. Si y k 0 pour tout k I, on a trouvé l optimum. Sinon on choisit le plus petit i I tq y i < 0 et on considère l arête définie par les équations de I = I \ {i}. Soit u son vecteur directeur tq L i u = 1 (c est une colonne de (A I ) 1 ). Calculer la vitesse vers L j quand on suit u: v j = L j u. si v j 0 on s éloigne de l hyperplan L j : si j, max =. Parmi les voisins sur l arête, prendre celui qui est dans P. C est celui qui est le plus proche parmi ceux du bon côté: donné par un des j tels que v j > 0 qui minimisent b j L j x I v j. faire I = I \ {i} {j}, recalculer x I et reprendre. 9-1

17 Algorithme du simplexe, analyse Soit x I le sommet courant, solutions des n équations (L k x = b k ) k I Si on avance vers le sommet x J, J = I \ {i} {j}, alors: c = P k I y kl k, avec y i 0 pour k < i, y i < 0. Comparons l objectif c x I avec c x J : c x J = c x I + c bj L j x I v j u = c x I + b j L j x I v j c u or c u = P k I y kl k u = y i > 0 puisque u est dans les hyperplans L k, k i et L i u = 1. comme prévu x J améliore l objectif... sauf si b j L j x = 0! Si plus de n hyperplans L k passent par x I, certaines arêtes dégénèrent et on peut avoir x J = x I, l algorithme risque de boucler. Une solution: perturber les b i pour éliminer les dégénérescences. 10-1

18 Algorithme du simplexe, initialisation Pour démarrer l algorithme il faut avoir un sommet de P. On cherche: argmax(cx Ax b) On peut toujours poser x i = y i z i (le nombre de variables double) et maximiser (c, c) `y z pour (A, A)`y z b et `y z 0. On cherche donc: argmax(cx Ax b, x 0) Si les b i sont positifs, (0,..., 0) est notre sommet initial. Sinon on cherche un sommet de P = {x Ax b, x 0} On fait cela en cherchant parmi les (x 1,..., x n, t) tq a i,1 x a i,n x n t b i pour tout i, un point qui minimise t. On connait un sommet initial (0,..., 0, T ) pour ce problème linéaire. Il existe (et on obtient) un sommet de P ssi t = 0 dans sa solution. 11-1

19 Cours 4: Programmation linéaire Position du problème Algorithme du simplexe générique Dualité. Dégénérescence et terminaison de l algorithme 12-1

20 13-1 Primal/dual et théorème de dualité Théorème (cas inégalités+positivité). Si l un des 2 problèmes suivant (P) max(cx Ax b, x 0) (D) min(yb ya c, y 0) admet une solution finie, alors l autre aussi et on a min(yb ya c, y 0) = max(cx Ax b, x 0) Interprétation. Retour au fleuriste. Primal max(4x + 5x ) y 1 10x + 10x 50 y 2 10x + 20x 80 y 20x + 10x 3 80 x 0, x 0 Le théorème dit qu on peut obtenir une borne optimale par multiplicateur. Si on augmente la denrée i de i, le gain augmente de i y i. Dual min(50y 1 +80y 2 +80y 3 ) 10y y y y y y 3 5 y 1 0, y 2 0, y x + 5x (10y y y 3 )x + (10y y y 3 )x 50y y y 3

21 Primal/dual et théorème de dualité Primal / Dual, cas général. Le théorème s applique aux paires: Primal max(c 1 x c n x n ) a i1 x a in x n b i pour i I a i1 x a in x n = b i pour i E x j 0 pour j P. Dual min(b 1 y b m y m ) a 1j y a mj y m c j pour j P a 1j y a mj y m = c j pour j N y i 0 pour i I. où m = I + E et n = P + N Les inégalité donnent dans le dual des variables contraintes à être positives, les égalités des variables quelconques (penser à l interprétation des variables duales comme multiplicateurs). En TD: le théorème de dualité maxflow = mincut 14-1

22 Cours 4: Programmation linéaire Position du problème Algorithme du simplexe générique Dualité. Dégénérescence et terminaison de l algorithme 15-1

23 Dégénérescence et risque de bouclage Dégénérescence: un sommet appartient à plus de n hyperplans. Il n est pas forcément acceptable de perturber. Parmi les voisins de x {2,3} il y a x {1,3}, x {1,4}, x {1,2}, x {2,4}. Ce sont même ses plus proches voisins... En dimension supérieure il peut être nécessaire de changer plusieurs lignes pour trouver un vrai voisin dans P. Il peut y avoir un nombre exponentiel de faux voisins. Notre algorithme du simplexe prend un voisin le plus proche: il faut bien le choisir pour ne pas risquer de boucler indéfiniment en changeant I sans changer x I : x {2,3} x {1,3} x {1,2} x {2,3}

24 Algorithme du simplexe, version finale Soit x I le sommet courant, solutions des n équations (L k x = b k ) k I Exprimer c dans la base {L k } k I : c = P k I y kl k. Si y k 0 pour tout k I, on a trouvé l optimum. Sinon on choisit le plus petit i I tq y i < 0 et on considère l arête définie par les équations de I = I \ {i}. Soit u son vecteur directeur tq L i u = 1 (c est une colonne de (A I ) 1 ). Calculer la vitesse vers L j quand on suit u: v j = L j u. si v j 0 on s éloigne de l hyperplan L j : si j, max =. Parmi les voisins sur l arête, prendre celui qui est dans P, c est celui qui est le plus proche parmi ceux du bon côté: le plus petit parmi les j tels que v j > 0 qui minimisent b j L j x I v j. faire I = I \ {i} {j}, recalculer x I et reprendre. 17-1

25 Algorithme du simplexe, preuve de terminaison Si l algo boucle c est qu on est revenu au même I, sans changer c x I (c x I croît). On observe l évolution des indices présents dans I. r inchangé 18-1 I I I I Soit r le plus grand indice qui est entre ou sort durant la boucle, I et I les ensembles d indices à des temps d entrée et de sortie de r. Comme r sort de I : c = P i I y i L i, avec y i 0 pour i < r, et y r < 0. Soit u la direction de l arête sélectionnée lors du traitement de I : alors L i u = 0 pour i I \ {r} et, comme r entre dans I, on a pour j < r, L j u < 0 dès que b j L j u = 0, ce qui est le cas pour j I \ I. D où cu = P i I y i L i u = P i<r, i I y i L i u + y r L r u < 0. Ceci contredit le fait que suivant le u choisi on améliore l objectif: (cu > 0).

26 Algorithme du simplexe, complexité Puisque le nombre de voisins d un sommet est n(m 1) au plus, chaque étape a un coût polynomial. Le nombre de sommets peut être exponentiel (jusqu à `m n ) en m et n, et il existe des exemples pour lesquels le simplexe visite effectivement un nombre exponentiel de sommets... (Worst case analysis). On constate que cela ne se produit quasiment jamais en pratique... On peut montrer qu en moyenne sur des problèmes aléatoires l algorithme est polynomial (Average case analysis). Mieux on peut montrer que si on perturbe aléatoirement des données arbitraires, l algorithme reste polynomial (Smooth analysis). 19-1

27 Programmation linéaire, algorithmes polynomiaux. Le simplexe n est pas polynomial mais presque... De fait il existe des algorithmes polynomiaux pour la programmation linéaire: notamment les méthodes de l ellipsoide et du point intérieur. Attention toutefois: il y a des algorithmes polynomiaux si on cherche les optimaux à coordonnées dans R. On verra que, contrairement à ce qui se passe pour les problèmes de flots, le problème devient dur si on veut des solutions entières. 20-1

28 Cours 4: Programmation linéaire Position du problème Algorithme du simplexe générique Dualité. Dégénérescence et terminaison de l algorithme Retenir: - Il existe d excellente boites noires pour résoudre les LP. - Modélisation par LP (en PC). Thm Primal-Dual. 21-1

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery.

Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery. Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement

Plus en détail

Sujet 4: Programmation stochastique propriétés de fonction de recours

Sujet 4: Programmation stochastique propriétés de fonction de recours Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011 Dans ce sujet... 1 Propriétés de la fonction

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

LES MÉTHODES DE POINT INTÉRIEUR 1

LES MÉTHODES DE POINT INTÉRIEUR 1 Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

Programmation linéaire

Programmation linéaire CHAPTER 1 Programmation linéaire 1.1. Qu'est-ce que la programmation linéaire 1.1.1. Exemple: le problème du régime de Polly [1, p.3]. Besoins journaliers: Énergie: 2000 kcal Protéines: 55g Calcium: 800

Plus en détail

RECHERCHE OPERATIONNELLE

RECHERCHE OPERATIONNELLE RECHERCHE OPERATIONNELLE 0. Introduction. Ce cours a été enseigné jusqu en 2002, en année de licence, à la MIAGE de NANCY. L objectif principal de ce cours est d acquérir une connaissance approfondie de

Plus en détail

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015 et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech david.madore@enst.fr 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L

Plus en détail

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1 CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)

Plus en détail

Cours de recherche opérationnelle I

Cours de recherche opérationnelle I 1 Cours de recherche opérationnelle I Nadia Brauner Nadia.Brauner@imag.fr Grenoble, 2014-2015 Auteurs Ont participé à la rédaction de ce cours (par ordre d arrivée) Nadia Brauner Christophe Rapine Julien

Plus en détail

INFO-F-310 - Algorithmique 3 et Recherche Opérationnelle

INFO-F-310 - Algorithmique 3 et Recherche Opérationnelle INFO-F- - Algorithmique et Recherche Opérationnelle Yves De Smet Bernard Fortz - Table des matières I Introduction Aide à la décision et modèles mathématiques Quelques exemples de modèles mathématiques

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Travaux dirigés n 1. Programmation linéaire

Travaux dirigés n 1. Programmation linéaire Université de Reims Champagne Ardenne U.F.R. de Sciences Exactes et Naturelles MASTER 1 Informatique - 2014/2015 Pierre Delisle Travaux dirigés n 1 Programmation linéaire Exercice 1 (Résolution d'un programme

Plus en détail

Algorithmique et Programmation Fonctionnelle

Algorithmique et Programmation Fonctionnelle Algorithmique et Programmation Fonctionnelle RICM3 Cours 9 : Lambda-calcul Benjamin Wack Polytech 2014-2015 1 / 35 La dernière fois Typage Polymorphisme Inférence de type 2 / 35 Plan Contexte λ-termes

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

Programmation mathématique Discrète et Modèles Linéaires

Programmation mathématique Discrète et Modèles Linéaires Université Pierre et Marie Curie Master IAD Module PDML Programmation mathématique Discrète et Modèles Linéaires Pierre Fouilhoux pierre.fouilhoux@lip6.fr 29 septembre 2013 Table des matières I Programmation

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

Mathématiques appliquées à l'économie et à la Gestion

Mathématiques appliquées à l'économie et à la Gestion Mathématiques appliquées à l'économie et à la Gestion Mr Makrem Ben Jeddou Mme Hababou Hella Université Virtuelle de Tunis 2008 Continuité et dérivation1 1- La continuité Théorème : On considère un intervalle

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Quelques tests de primalité

Quelques tests de primalité Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest Jean-Marc.Couveignes@u-bordeaux.fr École de printemps C2 Mars

Plus en détail

Corrigé des TD 1 à 5

Corrigé des TD 1 à 5 Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites

Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites Couplage efficace entre Optimisation et Simulation stochastique Application à la maintenance optimale d une constellation de satellites Benoît Beghin Pierre Baqué André Cabarbaye Centre National d Etudes

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Rupture et plasticité

Rupture et plasticité Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements

Plus en détail

Eléments de Théorie des Graphes et Programmation Linéaire

Eléments de Théorie des Graphes et Programmation Linéaire INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d Electricité et de Mécanique Eléments de Théorie des Graphes et Programmation Linéaire Didier Maquin Professeur à l INPL Version

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Cours Optimisation Partie Optimisation Combinatoire. Année scolaire 2008-2009. Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera.

Cours Optimisation Partie Optimisation Combinatoire. Année scolaire 2008-2009. Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera. Cours Optimisation Partie Optimisation Combinatoire 3ième année ISAE Année scolaire 2008-2009 Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera.fr Septembre 2008 Résumé Ce document couvre

Plus en détail

Optimisation for Cloud Computing and Big Data

Optimisation for Cloud Computing and Big Data 1 / 23 Optimisation for Cloud Computing and Big Data Olivier Beaumont, Lionel Eyraud-Dubois 2 / 23 Aujourd hui Problèmes de fiabilité on va oublier la dynamicité Placement de VMs en programmation par contraintes

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Lagrange, où λ 1 est pour la contrainte sur µ p ).

Lagrange, où λ 1 est pour la contrainte sur µ p ). Chapitre 1 Exercice 1 : Portefeuilles financiers Considérons trois types d actions qui sont négociées à la bourse et dont les rentabilités r 1, r 2 et r 3 sont des variables aléatoires d espérances µ i

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Une introduction aux codes correcteurs quantiques

Une introduction aux codes correcteurs quantiques Une introduction aux codes correcteurs quantiques Jean-Pierre Tillich INRIA Rocquencourt, équipe-projet SECRET 20 mars 2008 1/38 De quoi est-il question ici? Code quantique : il est possible de corriger

Plus en détail

RO04/TI07 - Optimisation non-linéaire

RO04/TI07 - Optimisation non-linéaire RO04/TI07 - Optimisation non-linéaire Stéphane Mottelet Université de Technologie de Compiègne Printemps 2003 I Motivations et notions fondamentales 4 I1 Motivations 5 I2 Formes quadratiques 13 I3 Rappels

Plus en détail

Théorèmes de Point Fixe et Applications 1

Théorèmes de Point Fixe et Applications 1 Théorèmes de Point Fixe et Applications 1 Victor Ginsburgh Université Libre de Bruxelles et CORE, Louvain-la-Neuve Janvier 1999 Published in C. Jessua, C. Labrousse et D. Vitry, eds., Dictionnaire des

Plus en détail

Architecture des Systèmes d Information Architecture des Systèmes d Information

Architecture des Systèmes d Information Architecture des Systèmes d Information Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau

Plus en détail

UNIVERSITE PARIS VII - DENIS DIDEROT U.F.R. D'INFORMATIQUE THESE

UNIVERSITE PARIS VII - DENIS DIDEROT U.F.R. D'INFORMATIQUE THESE UNIVERSITE PARIS VII - DENIS DIDEROT U.F.R. D'INFORMATIQUE Année 1998 N attribué par la bibliothèque _ THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE PARIS VII Discipline : Informatique présentée

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

L exclusion mutuelle distribuée

L exclusion mutuelle distribuée L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué

Plus en détail

1 Recherche en table par balayage

1 Recherche en table par balayage 1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Gestion réactive des opérations de maintien et d actualisation réglementaire et technologique des systèmes complexes.

Gestion réactive des opérations de maintien et d actualisation réglementaire et technologique des systèmes complexes. Gestion réactive des opérations de maintien et d actualisation réglementaire et technologique des systèmes complexes. LE QUERE Yann, SEVAUX Marc, TRENTESAUX Damien, TAHON Christian Equipe Systèmes de Production

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique

Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique Introduction à la Programmation par Contraintes (PPC) Ruslan Sadykov LIX, École Polytechnique Contenu Introduction Modélisation Problèmes de satisfaction des contraintes Exemples des modèles PPC simples

Plus en détail

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos olivier.bos@u-paris2.fr

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Ordonnancement robuste et décision dans l'incertain

Ordonnancement robuste et décision dans l'incertain Ordonnancement robuste et décision dans l'incertain 4 ème Conférence Annuelle d Ingénierie Système «Efficacité des entreprises et satisfaction des clients» Centre de Congrès Pierre Baudis,TOULOUSE, 2-4

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Techniques d ordonnancement pour les SoC

Techniques d ordonnancement pour les SoC Techniques d ordonnancement pour les SoC Pierre Boulet équipe WEST Pierre.Boulet@lifl.fr Ordonnancement DEA informatique Lille p. 1/104 Plan Ordonnancement de tâches Placement sur SoC Ordonnancement de

Plus en détail