L3 Phytem Outils mathématiques Correction du TD n o 7 Distributions

Dimension: px
Commencer à balayer dès la page:

Download "L3 Phytem Outils mathématiques Correction du TD n o 7 Distributions"

Transcription

1 ENS de Cachan L3 Phytem Outils mathématiques Coection du TD n o 7 Distibutions Execice 1. Soient p et q deux enties natuels. Calcule la distibution T = x p δ q où δ i est la déivée i ième de la mesue de Diac su. Coection : x p C donc x p δ q a un sens. Soit ϕ D, x p δ q, ϕ = 1 q δ, x p ϕ q [ d q = 1 q x ϕ] p. 1 dx D apès la fomule de Leibniz d q x p ϕ = dx q i= C q i d i d q i x p ϕ = dx dx 1. Si p > q, la quantité s annule en x =. En effet, d i x p = C p i dx xp i et p i est stictement positif.. Si p q, alos la quantité s écit p 1 F i,q x + i= q F i,q x. i=p q F i,q x. La pemièe de ces deux sommes s annule à l oigine pou la même aison que pécédemment, et la deuxième s écit q C q d i d q i d p d q p i x p ϕ = Cp q x p ϕ dx dx dx dx ca i=p d i x p = si i p + 1. dx On a donc dans ce cas, d apès 1 x p δ q, ϕ = 1 q Cpp!ϕ q q p = 1p q! δ q p, ϕ. q p! i= En ésumé si p > q x p δ q = 1 p q! q p! δq p si p q.

2 Execice. Calcule la déivée au sens des distibutions de la fonction localement intégable ln x su. Coection : La fonction ln x pou x est intégable au voisinage de l oigine ca pou tout < 1, x ln x tend ves losque x tend ves et donc ln x 1 x pou x non nul dans un voisinage de l oigine. Soit ϕ D, on a d ln x, ϕ = ln x, dϕ = dx dx ln x dϕ dx. 3 dx On pouait pense à faie une intégation pa paties, mais la déivée de ln x est la fonction 1 x qui n est pas intégable au voisinage de l oigine. On utilise alos la méthode suivante : d apès le théoème de Lebesgue ln x ϕ xdx = lim ln x ϕ x xdx = lim I 4 ca D aute pat, 1 { x } ln x ϕx ln x ϕx L 1. + I = ln x ϕ xdx + ln x ϕ xdx = [ln x ϕx] + [ln x ϕx]+ x ϕx = ln ϕ ϕ x dx. x ϕx x dx O, et, pa conséquent On déduit de 3, 4 et 5 que ϕ ϕ sup ϕ x, lim I = lim x d dx ln x = vp 1 x. ϕx dx. 5 x

3 Execice 3. Soit la distibution définie dans le plan pa la fonction localement intégable { 1 Ex, t = si t x > si t x < Soit l opéateu des ondes défini pa ésoude E au sens des distibutions. = t x. Coection : Soit On a pou tout ϕ D, E, ϕ = 1 ϕ x t dtdx 1 = 1 [ ] ϕx, t dx 1 t t= x = 1 ϕ x, x dx 1 t = 1 ϕ x, xdx 1 t 1 ϕ t, tdt + 1 x = 1 ϕ x, xdx 1 t 1 ϕ t, tdt + 1 x D aute pat, pou a : d ϕay, y = a dy = t x. t ϕ x dxdt [ ] ϕx, t t x ϕ x ϕ t ϕ t, tdt x ϕ t ϕ x ϕ ay, y + x dt x= t t, tdt + 1 x, xdx x, xdx t t, tdt ϕ ay, y. t ϕ t, tdt x On en déduit E, ϕ = 1 d dy ϕy, ydy 1 d ϕ y, ydy dy E, ϕ = 1 ϕ, + 1 ϕ, = ϕ, = δ, ϕ, ϕ D E = δ dans D.

4 Execice Monte que la fonction définit un élément de D. fx; y = 1 x + iy. L opéateu de Cauchy-iemann est défini pa = 1 x + i. y Monte que f = πδ. Coection : 1. Tout d abod 1 fx, y = x + y 1 = 1 X où X = x, y. 1 On sait que la fonction X α est intégable au voisinage de l oigine dans n si α < n. Ici α = 1 et n = donc f est L 1 loc ce qui implique que f définit un élément de D.. Soit ϕ D, on a On passe en coodonnées polaies : On a où 1 1 f, ϕ = f, ϕ = x + iy x = cos θ, y = sin θ, quad = dxdy = ddθ. x = cos θ sin θ θ ; y = sin θ + cos θ θ. 1 π e iθ f, ϕ = iθ ϕ e + ieiθ ϕ, θ = ϕ cos θ, sin θ. f x + if dxdy. 6 y ϕ ddθ, θ D apès le théoème de Fubini, 1 π [ ] ϕ f, ϕ = d dθ i [ 1 π ] ϕ θ dθ d. Comme ϕ, = ϕ, et que ϕ, θ est π-péiodique, il vient : et, pa conséquent f, ϕ = 1 π ϕ, = πϕ, = π δ, ϕ f = πδ.

5 Execice 5. On considèe dans la fonction où Ht désigne la fonction de Heaviside. Ex, t = Ht e x 4πt 1. Monte que E définit une distibution su.. L opéateu de la chaleu est défini pa Monte que dans D P = t x. P E = δ. Coection : 1. On a la majoation Ex, t Ht 4πt et la fonction Ht 4πt est localement intégable dans. Donc, E L 1 loc et définit un élément de D.. Soit ϕ D, O t x E, ϕ = E, ϕ t + ϕ x = e x ϕ 4πt t dxdt = lim en vetu du théoème de Lebesgue, puisque 1 e x [, [ ϕx, t 4πt e x ϕ 4πt t + ϕ x dxdt. e x ϕ 4πt t dt dx = lim I, C ϕx, t t L 1. Dans I, on peut alos faie une intégation pa paties et écie I = e x ϕx, tdtdx + e x ϕx, t t 4πt 4πt O, De même I = 1 4 π e x = 1 t 4πt 4 π e x x t 5 ϕ dxdt = lim 4πt x x t 5 1 e x t 3, t= dx. 1 e x e x 4 t 3 ϕx, tdtdx ϕx, dx. 7 4π e x Dans J faisons deux intégations pa paties : e x = x x 4πt 4 πt 3 ϕ dxdt = lim 4πt x J. e x

6 et comme il vient J = + e x x = 4πt 1 x 4 1 π t 5 e x ϕ x, t 4πt x t πt 3 e x ϕx, tdxdt x= lim ϕx, t = lim x ± J = 1 4 π x t 5 dt + x ± + x 8 e x πt 5, [ x 4 πt 3 ϕ x, t =, x En utilisant les expessions de I et J données pa 7 et 8, il vient e x 4 I + J = ϕx, dx, 4π e x ϕx, t ] + x= 1 e x t 3 ϕx, tdtdx. 8 t e x E, ϕ = lim x 4 ϕx, dx = lim K. 4π Dans l intégale, faisons le changement de vaiable o K = y = x dx = dy e y ϕ y, dy = 1 e y ϕ y, dy, π π lim ϕ y, = ϕ, et e y ϕ y, sup ϕx e y L 1 donc, d apès le théoème de Lebesgue lim K = 1 e y dy ϕ, = ϕ,. π Donc t x E = δ. dt

7 Execice 6. Soit x 3 ; on note = x. 1. Calcule f losque f est une fonction qui ne dépend que de.. Soit f = f une fonction qui véifie dans 3 \{} l équation + a f = où a \{}. Ecie l équation difféentielle à laquelle satisfait g = f et en déduie la fome des solutions C dans 3 \{} de + a f =. 3. Soit f = f une telle solution. Monte que si on pose on a, dans D 3 l = lim f, + a f = Clδ où C est une constante que l on calculea. 4. En déduie, dans D 3 1. Coection : 1. On a = 3 x i=1 i. Calculons l expession de en coodonnées sphéiques : comme f = f, il suffit de calcule la patie du tansfomé de qui ne contient que des déivées pa appot à celles en θ, ψ appliquées à f donneont zéo. On a x i f = f x i = x i x i f = xi x i x 1 = f 1 θ, ψ x = f θ, ψ x 3 = f 3 θ, ψ f f + x i f = 1 x i f 3 + x i f f = i=1 = f + f. x i 3 f + 1 x f i i=1. Soit f = f telle que + a f = dans 3 \{}. Posons g = f. On a alos g = f + f g = f + f. D apès la question pécédente, on a, en multipliant pa : f + f + a f = dans 3 \{}, f + f + a f =,

8 et donc g + a g =. La solution généale de cette équation dans 3 \{} est g = c 1 cos a + c sin a et donc la solution généale de + a f = dans 3 \{} est la fonction C f = c 1 cos a 3. Avec les notations de l énoncé, c 1 = l, donc cos a sin a f = l + c sin a + c. 9 L 1 loc 3. On va monte que dans D 3, + a f = Clδ. sin a La fonction c est une fonction C cos a de tandis que l n est pas définie en. On peut donc calcule + a sin a sin a au sens usuel. O, d apès la question pécédente, est solution dans 3 \{} de + a f = cas où c 1 = et comme c est une fonction C, on a + a sin a = dans entie. Calculons, dans D, la quantité + a cos a : Soit ϕ D, + a cos a, ϕ = En utilisant le fait que cos a + a cos a, ϕ cos a L 1 loc, on a cos a, + a ϕ = + a ϕd. cos a = lim + a ϕd = lim I. D apès la fomule de Geen, on a : cos a [ cos a I = + a ϕ ϕd + = ϕ cos a ] dσ, avec dσ dω où dω est la mesue de la sphèe unité. O, dans 3 \{}, + a cos a = cas où c = donc [ cos a ϕ I = ϕ cos a ] dσ. En oute, et Ainsi avec ϕ 3 i=1 I = cos a = x i cos a = ϕ x i sup ϕ = dω }{{} A A cos a M a sin a cos a 3 ϕ x i = M ca x i 1. i=1 + a sin a ϕdω } = {{ } B x =1 + cos a ϕdω } = {{ } C dω losque,

9 B a cos a sup C = cos a ϕ, θ, ψdω = D apès le théoème de Lebesgue, et donc ϕx dω losque, x =1 où ϕ, θ, ψ = ϕf 1 θ, ψ, f θ, ψ, f 3 θ, ψ. lim C = ϕ dω x =1 + a cos a, ϕ = dω δ, ϕ x =1 ϕ D + a f = 4πlδ. cos a En paticulie, la distibution est une solution élémentaie de l opéateu + a dans 4π 3.

10 Execice 7. Soient p, q, m et n des enties. Calcule [ T = x p δ q] [x m δ n] où δ i est la déivée i ième de la mesue de Diac su. Coection : On a vu execice 1 que On en déduit que 1. Si p > q ou m > n alos T =.. Supposons p q et m n. Alos où si p > q x p δ q = 1 p q! q p! δq p si p q. T = A p,q,m,n δ q p δ n m A p,q,m,n = 1q+n q!n! q p!n m!. D aute pat, si T E E étant l espace des distibutions à suppot compact et S D on a α β S T = α S β T δ S = S donc d q p d n m T = A p,q,m,n δ δ = A p,q,m,nδ q+n p m. dx dx

11 Execice 8. Monte qu il n est pas possible de défini le poduit de convolution de tois distibutions quelconques, au sens où ce poduit ne peut-ête associatif. Coection : Supposons que l on puisse défini le poduit de convolution de tois distibutions u, v et w de telle manièe que u v w = u v w. Posons On auait donc D aute pat ce qui est absude. u = 1, v = δ, w = H. u v = 1 δ = d d 1 δ = dx dx 1 = u v w = H =. v w = δ H = d d δ H = dx dx H = δ u v w = 1 δ = 1

12 Execice Calcule, dans D n, lim p p n π n p 3 1 x = lim P p x. p p. En déduie que toute distibution à suppot compact est limite, au sens des distibutions, d une suite de polynômes. Coection : 1. Soit ϕ D n. Il existe M > tel que supp ϕ {x : x M}. Posons p 3 I p = ϕx 1 pn x dx. π n p x M Faisons le changement de vaiables y = px ; alos dy = p n dx. D où I p = 1 π n y pm p 3 1 y y p 3 ϕ dy = 1 p π n Fixons y n. Pou p assez gand on a p 3 1 y p 3 = e p3 ln 1 y p 3 p 3 1 y pm 1 y y p 3 ϕ dy. p lim p 1 y pm 1 y p 3 p3 = e y 1 n 1 p3 y e p 3 y. D aute pat et 1 y p 3 ϕ p 3 y ϕ p ϕ y p Ce y L 1 n et donc, pa le théoème de Lebesgue ce qui signifie que dans D n, lim I p = 1 p π n p n lim p π n n e y dy ϕ = ϕ p 3 1 x = δ. p. Soit T E n alos T P p a un sens. De plus, c est une fonction C. D aute pat, α T P p = T α P p = si α > p 3 donc T P p est un polynôme. Montons que T P p convege ves T dans D n : En effet, si U D n ou E n et ϕ D n ou C n, on a T, ϕ = T ˇϕ avec ˇϕt = ϕ t T P p, ϕ = [T P p ˇϕ] = [P p T ˇϕ]

13 ca T P p C et ϕ D n. On en déduit que et T ˇ ˇϕ est un élément de [ n. D apès la pemièe question, on a T P p, ϕ = P p, T ˇ ˇϕ lim Pp, T ˇ ˇϕ = T ˇ ˇϕ = T ˇϕ p donc On en déduit que dans D n, lim T P p, ϕ = T ˇϕ = T, ϕ, p lim T P p = T. p ϕ DΩ.

Chapitre 6: Moment cinétique

Chapitre 6: Moment cinétique Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae

Plus en détail

Equations aux dérivées partielles

Equations aux dérivées partielles Chapite 3 Equations aux déivées patiees 3.1 Qu est-ce qu une EDP? Soit u = u(x, y,... une fonction de pusieus vaiabes indépendantes en nombe fini. Une EDP pou a fonction u est une eation qui ie : es vaiabes

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

FINANCE Mathématiques Financières

FINANCE Mathématiques Financières INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0. 7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Permis de feu. Travail par point chaud. r Soudage r Brasage. r Découpage r Tronçonnage. r Meulage r Autres. r Poste à souder r Tronçonneuse

Permis de feu. Travail par point chaud. r Soudage r Brasage. r Découpage r Tronçonnage. r Meulage r Autres. r Poste à souder r Tronçonneuse Pemis de feu Tavail pa point chaud Patage vote engagement Ce document doit ête établi avant tout tavail pa point chaud (soudage, découpage, meulage, ) afin de péveni les isques d incendie et d explosion

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Produits d espaces mesurés

Produits d espaces mesurés Chapitre 7 Produits d espaces mesurés 7.1 Motivation Au chapitre 2, on a introduit la mesure de Lebesgue sur la tribu des boréliens de R (notée B(R)), ce qui nous a permis d exprimer la notion de longueur

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

INTRODUCTION. 1 k 2. k=1

INTRODUCTION. 1 k 2. k=1 Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à

Plus en détail

Théorèmes du Point Fixe et Applications aux Equations Diérentielles

Théorèmes du Point Fixe et Applications aux Equations Diérentielles Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

TRAVAUX DIRIGÉS DE M 6

TRAVAUX DIRIGÉS DE M 6 D M 6 Coection PCSI 1 013 014 RVUX DIRIGÉS DE M 6 Execice 1 : Pemie vol habité (pa un homme) Le 1 avil 1961, le commandant soviétique Y Gagaine fut le pemie cosmonaute, le vaisseau spatial satellisé était

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

11.5 Le moment de force τ (tau) : Production d une accélération angulaire

11.5 Le moment de force τ (tau) : Production d une accélération angulaire 11.5 Le moment de foce τ (tau) : Poduction d une accéléation angulaie La tige suivante est soumise à deux foces égales et en sens contaie: elle est en équilibe N La tige suivante est soumise à deux foces

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours MSUR T INTÉGRATION N UN DIMNSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 Table des matières 1 INTRODUCTION 2 1.1 xercices.............................

Plus en détail

Fonctions Analytiques

Fonctions Analytiques 5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Fonctions holomorphes

Fonctions holomorphes Université Joseph Fourier, Grenoble Maths en Ligne Fonctions holomorphes Christine Laurent-Thiébaut Ceci est le second volet de l étude des fonctions d une variable complexe, faisant suite au chapitre

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Cours d Analyse I et II

Cours d Analyse I et II ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m 1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Introduction. aux équations différentielles. et aux dérivées partielles

Introduction. aux équations différentielles. et aux dérivées partielles Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet pujo@math.univ-lyon1.fr

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

THÉORIE DE LA MESURE ET DE L INTÉGRATION.

THÉORIE DE LA MESURE ET DE L INTÉGRATION. THÉORIE DE LA MESURE ET DE L INTÉGRATION. THIERRY GALLAY Transcrit par Tancrède LEPOINT 29 UNIVERSITÉ JOSEPH FOURIER, GRENOBLE TABLE DES MATIÈRES Avant-propos Biographie sommaire...........................................

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

Intégration sur des espaces produits

Intégration sur des espaces produits Chapitre 5 Intégration sur des espaces produits 5.1 Produit de deux mesures Étant donnés deux espaces mesurés (Ω 1, F 1, µ 1 ) et (Ω 2, F 1, µ 2 ), le but de cette section est de construire une mesure

Plus en détail

Licence de Mathématiques 3

Licence de Mathématiques 3 Faculté des sciences et techniques Département de mathématiques 2004-2005 Licence de Mathématiques 3 M62 : Fonctions réelles de plusieurs variables Laurent Guillopé www.math.sciences.univ-nantes.fr/~guillope/m62/

Plus en détail

CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM.

CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM. Rabat, le 02 juillet 2004 CIRCULIRE N 02/04 RELTIVE UX CONDITIONS D ÉVLUTION DES VLEURS PPORTÉES À UN ORGNISME DE PLCEMENT COLLECTIF EN VLEURS MOBILIÈRES OU DÉTENUES PR LUI La pésente ciculaie vient en

Plus en détail

Méthodes Mathématiques Master 1 Mécanique-Physique & Ingénierie Aix-Marseille Université, 2014-2015. Uwe Ehrenstein

Méthodes Mathématiques Master 1 Mécanique-Physique & Ingénierie Aix-Marseille Université, 2014-2015. Uwe Ehrenstein Méthodes Mathématiques Master Mécanique-Physique & Ingénierie Aix-Marseille Université, 204-205 Uwe Ehrenstein 25 novembre 204 Table des matières Fonctions d une variable complexe 3. Fonction analytique

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Chapitre 1.5a Le champ électrique généré par plusieurs particules

Chapitre 1.5a Le champ électrique généré par plusieurs particules hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel

Plus en détail

INTRODUCTION AUX ÉQUATIONS AUX DÉRIVÉES PARTIELLES Cours de maîtrise, L. Boutet de Monvel

INTRODUCTION AUX ÉQUATIONS AUX DÉRIVÉES PARTIELLES Cours de maîtrise, L. Boutet de Monvel EDP - Cours de Maîtrise LBdM 1 INTRODUCTION AUX ÉQUATIONS AUX DÉRIVÉES PARTIELLES Cours de maîtrise, L. Boutet de Monvel Ce polycopié regroupe les notes du cours d Équations aux dérivées partielle de la

Plus en détail

La fonction d onde et l équation de Schrödinger

La fonction d onde et l équation de Schrödinger Chapitre 1 La fonction d onde et l équation de Schrödinger 1.1 Introduction En physique classique, une particule est décrite par sa position r(t). L évolution de sa position (la trajectoire de la particule)

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

C1 : Fonctions de plusieurs variables

C1 : Fonctions de plusieurs variables 1er semestre 2012/13 CPUMP 3 U 11 : Abrégé de cours Compléments Analyse 3 : fonctions analytiques Les notes suivantes, disponibles à l adresse http://www.iecn.u-nancy.fr/~bertram/, contiennent les définitions

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

Equations différentielles linéaires à coefficients constants

Equations différentielles linéaires à coefficients constants Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Mesure et Intégration (Notes de cours de L3)

Mesure et Intégration (Notes de cours de L3) Mesure et Intégration (Notes de cours de L3) Ahmed Zeriahi Version préliminaire-octobre 2011 Avertissement : Ceci est une version préliminaire des notes du cours que l auteur a dispensé en troisème année

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

DiaDent Group International

DiaDent Group International www.diagun.co.k DiaDent Goup Intenational Dispositif de compactage sans fil à chaleu intégée Copyight 2010 DiaDent Goup Intenational www.diadent.com Dispositif de compactage sans fil à chaleu intégée w

Plus en détail

Analyse et Commande des Systèmes Non Linéaires

Analyse et Commande des Systèmes Non Linéaires Analyse et Commande des Systèmes Non Linéaires J. Lévine Centre Automatique et Systèmes école des Mines de Paris 35 rue Saint Honoré 77305 Fontainebleau Cedex E-mail : Jean.Levine@ensmp.fr Mars 2004 2

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Systèmes asservis non linéaires

Systèmes asservis non linéaires Christian JUTTEN Systèmes asservis non linéaires Université Joseph Fourier - Polytech Grenoble Cours de troisième année du département 3i Options Automatique Août 2006 1 Table des matières 1 Introduction

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

MÉTHODE DE MONTE CARLO.

MÉTHODE DE MONTE CARLO. MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental

Plus en détail

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Introduction à la. Points Critiques. Otared Kavian. et Applications aux Problèmes Elliptiques. Springer-Verlag

Introduction à la. Points Critiques. Otared Kavian. et Applications aux Problèmes Elliptiques. Springer-Verlag Otared Kavian Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Avant propos

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail