Thème 17: Optimisation

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "Thème 17: Optimisation"

Transcription

1 OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir de la température d un corps au moment t, du volume d un gaz dans un ballon sphérique de rayon x, de la vitesse d un corps au temps t Disposant de cette fonction, sa dérivée pourra nous être utile pour déterminer ses valeurs extrêmes. Celles-ci sont parfois appelées valeurs optimales parce que, vu leur signification, elles constituent les valeurs les plus favorables. Déterminer ces valeurs constitue ce que l on appelle un problème d optimisation L optimisation lors de la construction de boîtes Modèle 1 : On souhaite construire une boîte en découpant quatre carrés aux coins d une feuille cartonnée, et en rabattant les bords restants. La feuille mesure 22 cm de long et 18 cm de large. De la taille des carrés découpés dépendra le volume de la boîte. Calculer la dimension des carrés de sorte que la boîte ait le plus grand volume possible. Optimisation

2 46 THÈME 17 Exercice 17.1: On désire construire une boîte en carton à partir d une feuille rectangulaire en coupant 6 carrés à chaque coin et au milieu des côtés et en pliant les côtés. Si la feuille de carton admet comme dimensions: 45 x 30 cm, le but de cet exercice sera de déterminer les dimensions de la boîte fermée admettant un volume maximum. p x a) Quelle est la fonction à optimiser, quelle en est la formule de base? b) Justifier les relations suivantes : 45 3x p = 30 2x l = 2 c) Déterminer E D, l ensemble des valeurs admissibles pour x. d) Montrer que le volume exprimé en fonction de x est : V(x) = 3x 3 90x x e) Déterminer la valeur de x pour laquelle le volume est maximum. f) Que vaut alors ce volume optimisé? l

3 OPTIMISATION 47 Exercice 17.2: Les boîtes d allumettes sont généralement formées de 2 parties distinctes ; la boîte elle-même ainsi qu un couvercle coulissant. Ses dimensions doivent assurer un volume de 28,875 cm 3 pour une longueur de 5,5 cm. La figure ci-dessous montre le patron des 2 parties où l on constate que le couvercle doit être légèrement plus large pour assurer le coulissement. Déterminer la hauteur h et la largeur x permettant de construire la boîte admettant un volume (extérieur) de 28,875 cm 3 en minimisant l aire de la surface en carton utilisé. h/2 5,5 cm h h/2 h x h 5,5 cm x + 0,05 x + 0,05 h h + 0,05 h + 0,05 a) Quelle est la fonction à optimiser, quelle en est la formule en fonction de x et h? b) À l aide de l information concernant le volume, montrer que h peut s exprimer en fonction de x par la relation : h = 5,25 x c) Montrer que la surface totale en carton en fonction de x est : S(x) = 16,5x3 +16,85x ,375x +110,25 x 2 d) Montrer que x 3, 54 cm est un zéro de S (x). e) À l aide du graphe ci-contre, en déduire le tableau de croissance de S(x) pour x 0. f) Quelles sont alors les dimensions optimales de cette boîte d allumettes. g) Les dimensions des boîtes vendues par Feudor (Coop, Migros) sont de 1,5 3,5 5,5 cm. Ces dimensions sont-elles optimales?

4 48 THÈME 17 Une méthode générale? La variété des problèmes d optimisation est telle qu il est bien difficile de donner une méthode générale de résolution. Nous allons néanmoins donner sous forme d une marche à suivre, une stratégie d approche de ces problèmes. Cependant, ce n est qu au prix de quelques efforts et d entraînements que vous arriverez à une certaine aisance dans la résolution de ces problèmes. Essayez donc avec persévérance! 17.2 Marche à suivre pour la résolution des problèmes d optimisation Lisez le problème attentivement (plusieurs fois) en réalisant parallèlement une figure d étude pour y indiquer toutes les informations. Exprimez la quantité Q à optimiser (une aire, un volume, des coûts, ) comme fonction d une ou de plusieurs variables. Si Q dépend de plus d une variable, disons n variables, trouvez au moins (n 1) équations liant ces variables. Utilisez ces équations pour exprimer Q comme fonction d une seule variable (par substitutions). Déterminer l ensemble de définition E D des valeurs admissibles de cette variable. À l aide d un tableau de signes de la dérivée de Q, étudiez la croissance de cette fonction. Calculez les extremums de Q sans oublier de contrôler ce qui se passe au bord de E D. Répondez finalement à la question posée à l aide d une phrase.

5 OPTIMISATION L optimisation d une aire dans une figure géométrique Optimisation Modèle 2 : ABCD est un carré de côté 6. Le point I est le milieu de [CD]. M est un point quelconque de [AB], N est le point de [CB] tel que CN = BM. Quelle doit être la position de M sur [AB] pour que l aire du Δ MNI soit minimale? B M Solution: Relire l énoncé du problème et profiter de faire une figure d étude "intelligente" : A N La quantité à optimiser est l aire du triangle MNI et se calcule grâce à : C I D Les (n 1) équations liant ces variables : Exprimons l aire du triangle en fonction d une variable : L ensemble des valeurs possibles E D :

6 50 THÈME 17 Solution (fin): Calcul de la dérivée de A(x) puis étudier sa croissance : Recherche des min (avec le bord du domaine) : La réponse est donc : Exercice 17.3: ABCD est un carré de 8 cm de côté. A B C D est un carré de x cm de côté. Pour quelle valeur de x, la partie ombrée a-t-elle la plus grande aire? A B' x C' D' D Que vaut alors cette aire optimale? B C Exercice 17.4: On considère le rectangle ABCD de 12 cm de long et 8 cm de large. Soit M le point milieu de CD. On inscrit dans ce rectangle un parallélogramme admettant deux de ses côtés parallèles à AM. Déterminer la position du point P sur AB tel que ce parallélogramme soit d aire maximum. Que vaut alors cette aire? D A M P C B

7 OPTIMISATION L optimisation d un coût de construction Modèle 3 : hauteur profondeur On désire construire une caisse en bois (sans couvercle) de volume 0,64 m 3 et dont la hauteur est égale à la profondeur. Le bois prévu pour le fond coûte Fr par m 2, celui pour les faces Fr par m 2. Quels sont les dimensions et le prix de la caisse la moins chère (on admet que l épaisseur du bois est négligeable)? Optimisation

8 52 THÈME 17 Exercice 17.5: Une cabine de douche de forme parallélépipédique à base carrée est fabriquée à partir de 2 matériaux différents : le sol (carré) revient à Fr par m 2 ; les cinq autres parois coûtent Fr par m 2. Sachant que le coût total des matériaux est de Fr , quelles sont les dimensions de la cabine si l on veut que son volume soit le plus grand possible? a) Quelle est la fonction à optimiser, quelle en est la formule en fonction de x (côté du carré) et h (la hauteur de la douche)? b) À l aide de l information concernant le prix des différentes parois, montrer que h peut s exprimer en fonction de x par la relation : h = 15 5x2 4x c) Montrer que le volume de la cabine en fonction de x est : V(x) = 5 4 x x d) Déterminer la valeur de x pour laquelle ce volume est maximum. e) Quelles sont alors les dimensions optimales de cette cabine de douche? Exercice 17.6: L entreprise de portes et fenêtres qui vous emploie projette la construction d un entrepôt de 450 m 2 de surface au sol. Les exigences municipales de la commune de Morges sur l esthétisme des rues commerciales obligent les commerçants à recouvrir la façade de leurs édifices avec des matériaux de première qualité alors que les côtés et l arrière peuvent être recouverts avec des matériaux de moindre qualité. Les coûts ont été estimés à Fr le mètre carré pour la façade et de Fr le mètre carré pour les côtés et l arrière. Sachant que la hauteur de l édifice sera de 3 mètres, déterminer le coût minimum possible de recouvrement des 4 parois de l entrepôt.

9 OPTIMISATION L optimisation de la surface Modèle 4 : Parmi tous les rectangles admettant un périmètre de 1 m, quel est celui dont l aire est maximale? Que vaut alors cette aire? Optimisation

10 54 THÈME 17 x Exercice 17.7: y On dispose de 250 m de clôture grillagée pour construire 6 cages mitoyennes et identiques pour un zoo (cf. schéma ci-contre) a) Exprimer y en fonction de x. b) Montrer que la surface au sol d une cage est donnée par : S(x) = 1 24 ( 3x x) c) Quelles dimensions doit-on donner à une de ces cages de manière à maximaliser sa surface au sol? Exercice 17.8: Un éleveur de bovins désire enclore un terrain rectangulaire bordant une rivière rectiligne. Il dispose de 1000 m de fil et ne veut pas enclore le côté longeant la rivière, car ses bovins ne savent pas nager. Calculer la surface maximale qu il peut créer L optimisation d un cylindre Modèle 5 : On fait tourner un rectangle de périmètre 40 cm autour de l un de ses axes de symétrie. Déterminer les dimensions du rectangle pour que le cylindre ainsi obtenu ait le plus grand volume. Optimisation

11 OPTIMISATION 55 Exercice 17.9: On fait tourner un rectangle de périmètre 40 cm autour de l un de ses axes de symétrie. Déterminer les dimensions du rectangle pour que le cylindre ainsi obtenu ait : a) la plus grande aire latérale ; b) la plus grande aire totale Un petit mélange de tout!! Exercice 17.10: Un aquarium (ouvert au-dessus) de 15 cm de haut doit avoir une contenance de 600 cm 3. Désignons par x la longueur et par y la largeur de la base (voir figure). Déterminer les dimensions de cet aquarium permettant de minimiser la surface S de verre. Exercice 17.11: x y 1 m On désire accoler à une construction existante un abri rectangulaire ouvert composé de deux parois verticales de 1 m de profondeur et d un toit plat (voir figure). Le toit est exécuté en zinc qui coûte 40 fr. le m 2 et les deux autres côtés en contreplaqué qui coûte 15 fr. le m 2. Si on dispose de 300 fr, déterminer les dimensions de cet abri admettant un volume maximum. Que vaut alors ce volume? Exercice 17.12: On se propose d envoyer un colis de volume égal à 12 dm 3 dont la forme est celle d un parallélépipède rectangle de base carrée (AB = BC). Son emballage est maintenu à l aide d une ficelle comme le montre la figure. Trouver les dimensions du colis permettant d utiliser le moins de ficelle possible. Exercice 17.13: Une feuille de papier doit contenir 600 cm 2 de texte imprimé. Les marges supérieures et inférieures doivent avoir 5 cm chacune, et celles de côté 3 cm chacune. Déterminer les dimensions de la feuille pour lesquelles il faudra un minimum de papier.

12 56 THÈME 17

13 OPTIMISATION 57

14 58 THÈME 17

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace A l école primaire Cycle 2 (programme du 19/06/2008) CP CE1 Reconnaître et nommer le cube et le pavé droit. Reconnaître, décrire, nommer quelques solides droits : cube, pavé Manuel

Plus en détail

Module 8 : Périmètre et aire de figures planes

Module 8 : Périmètre et aire de figures planes RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 8 : Périmètre et aire de figures planes Guide de l élève Module 8 Périmètre et aire de figures planes Évaluation diagnostique...3 Aire de parallélogrammes,

Plus en détail

TRIGONOMETRIE ET CALCUL NUMERIQUE

TRIGONOMETRIE ET CALCUL NUMERIQUE TRIGONOMETRIE ET CALCUL NUMERIQUE Questions 2010-2013 Exercice 1 2 2 sin(4 x)cos( x) 2sin( x)cos (2 x) 1 2sin ( x) (valeurs numériques) x 45 k 90 ;10 k 120 ;50 k 120 k Exercice 2 tg x 3tg x 4 4 (valeurs

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

Exercices de 5 ème Chapitre 8 Volumes Énoncés. 3. Quelle est la nature des faces latérales de ce solide et la nature de leur représentation?

Exercices de 5 ème Chapitre 8 Volumes Énoncés. 3. Quelle est la nature des faces latérales de ce solide et la nature de leur représentation? Énoncés Exercice 1 1. Quel est la nature précise du solide représenté ci-contre? Compléter sa perspective cavalière. 2. Donner le nombre de sommets, d'arêtes et de faces de ce solide. 3. Quelle est la

Plus en détail

9 è et 10 è années 2013

9 è et 10 è années 2013 Partie A: Chaque bonne réponse vaut 3 points. Jeu-concours international KANGOUROU DES MATHÉMATIQUES 1. Le nombre n'est pas divisible par (A). (B). (C). (D). (E). 2. Les huit demi-cercles inscrits à l'intérieur

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

OPTIMISATION SOUS CONTRAINTES

OPTIMISATION SOUS CONTRAINTES OPTIMISATION SOUS CONTRAINTES Sommaire 1. Optimisation entre des bornes... 1 2. Exercice... 4 3. Optimisation sous contrainte à variables multiples... 5 Suite à une planification de la production, supposons

Plus en détail

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE TP0 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE I. QU EST-CE QU UNE LENTILLE CONVERGENTE?. Caractéristiques des lentilles disponibles avec le matériel d optique: Définitions : Une lentille est un solide

Plus en détail

L utilisation de la calculatrice est autorisée. Ce sujet comporte 5 pages numérotées de 1 à 5.

L utilisation de la calculatrice est autorisée. Ce sujet comporte 5 pages numérotées de 1 à 5. DEVOIR COMMUN n 1 Année scolaire 014-015 Épreuve de : MATHÉMATIQUES Durée : heures Le 16/01/015 L utilisation de la calculatrice est autorisée. Ce sujet comporte 5 pages numérotées de 1 à 5. Le sujet est

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

BREVET BLANC *** MATHEMATIQUES *** Année 2015

BREVET BLANC *** MATHEMATIQUES *** Année 2015 BREVET BLANC *** MATHEMATIQUES *** Année 2015 L orthographe, le soin, la qualité, la clarté et la précision des raisonnements seront pris en compte à hauteur de 4 points sur 40 dans l appréciation de la

Plus en détail

TEST PRÉPARATOIRE NEWTON 2014 A) 500 B) 10 C) 1 000 D) 100 E) 2 000 A) 3 B) 6 C) 4 D) 2 E) 5 A) 10 B) 0 C) -15 D) -9 E) -18

TEST PRÉPARATOIRE NEWTON 2014 A) 500 B) 10 C) 1 000 D) 100 E) 2 000 A) 3 B) 6 C) 4 D) 2 E) 5 A) 10 B) 0 C) -15 D) -9 E) -18 TEST PRÉPARATOIRE NEWTON 2014 1. La valeur de n dans l équation: n x 5% = 100 est A) 500 B) 10 C) 1 000 D) 100 E) 2 000 2. 3/4 de 1/4 de 16 =? A) 3 B) 6 C) 4 D) 2 E) 5 3. La valeur de (-2-5) + (-5-3) est

Plus en détail

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x Exercice Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x A B E F H G D Le fond de la boîte est le rectangle EFGH. La feuille est au format A4, donc

Plus en détail

: 01 39 87 63 33 4, rue de l'églantier : 0950025l@ac-versailles.fr 95500 Gonesse www.clg-auguste-gonesse.ac-versailles.fr

: 01 39 87 63 33 4, rue de l'églantier : 0950025l@ac-versailles.fr 95500 Gonesse www.clg-auguste-gonesse.ac-versailles.fr Brevet Blanc n 1 Attention : la page 5 est à joindre à la copie d examen. N'oubliez pas d y indiquer votre numéro de candidat. PARTIE NUMÉRIQUE (12 points) Mathématiques Année scolaire 2011 / 2012 Durée

Plus en détail

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer.

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer. I Aire d une surface A cause du remembrement, la commune de Thérouanne propose à M. Ducheval et à M. Leboeuf d échanger leurs parcelles de terrain qui ont les formes ci-dessous. L échange est-il équitable?

Plus en détail

UNITÉS ET MESURES PÉRIMÈTRES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

UNITÉS ET MESURES PÉRIMÈTRES. Dossier n 2 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE UNITÉS ET MESURES PÉRIMÈTRES Dossier n 2 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE C. D. R. UNITÉS ET MESURES

Plus en détail

TD 3 : Problème géométrique dual et méthode des moindres carrés

TD 3 : Problème géométrique dual et méthode des moindres carrés Semestre, ENSIIE Optimisation mathématique 4 mars 04 TD 3 : Problème géométrique dual et méthode des moindres carrés lionel.rieg@ensiie.fr Exercice On considère le programme géométrique suivant : min x>0,y>0

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET REPÈRE 13DNBPROMATMEAG3 DIPLÔME NATIONAL DU BREVET SESSION 2013 Épreuve de : MATHÉMATIQUES SÉRIE PROFESSIONNELLE Durée de l épreuve : 2 h 00 Coefficient : 2 Le candidat répond sur une copie modèle Éducation

Plus en détail

Communication graphique

Communication graphique Introduction générale Partie I. La projection parallèle 1. Le dessin multivue 2. La méthode de Monge 3. L axonométrie 4. Courbes de Bézier 5. La projection cotée (topographie) Projection cotée Méthode

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

4.5 Coefficients de pression et de forces. 4.5.1 Ecoulement de l air autour d une construction

4.5 Coefficients de pression et de forces. 4.5.1 Ecoulement de l air autour d une construction 4.5 Coefficients de pression et de forces Pour les bâtiments, il convient de déterminer les coefficients de pressions extérieure et intérieure. Les coefficients de pression extérieure permettent de calculer

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00

DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00 DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00 ------------------------- Le candidat répondra sur une copie

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

CRPE Blanc 2015 ESPE DE GRENOBLE (Bonneville, Chambéry, Grenoble, Valence) Epreuve de mathématiques

CRPE Blanc 2015 ESPE DE GRENOBLE (Bonneville, Chambéry, Grenoble, Valence) Epreuve de mathématiques CRPE Blanc 2015 ESPE DE GRENOBLE (Bonneville, Chambéry, Grenoble, Valence) Epreuve de mathématiques PREMIERE PARTIE (13 points) Dans ce problème, on étudiera un procédé de fabrication d'une " brique "

Plus en détail

Son et Lumière. L optique géométrique

Son et Lumière. L optique géométrique Son et Lumière Leçon N 3 L optique géométrique Introdution Nous allons au cours de cette leçon poser les bases de l optique géométrique en en rappelant les principes fondamentaux pour ensuite nous concentrer

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

TP spécialité N 3 La Lunette Astronomique 1 / 7

TP spécialité N 3 La Lunette Astronomique 1 / 7 TP spécialité N 3 La Lunette Astronomique / 7 I- Matériel disponible. - Un banc d optique avec accessoires : Une lanterne avec la lettre «F», deux supports pour lentille, un porte écran, un miroir plan,

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres?

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres? Problèmes et équations. Pour chacun des problèmes ci-dessous, on essaiera de donner une solution algébrique ( à l aide d une équation, d un système d équations, d une inéquation ) mais aussi, à chaque

Plus en détail

Baccalauréat STI Génie civil Métropole 16 septembre 2010

Baccalauréat STI Génie civil Métropole 16 septembre 2010 Durée : 4 heures Baccalauréat STI Génie civil Métropole 16 septembre 010 L utilisation d une calculatrice est autorisée pour cette épreuve. Le candidat doit traiter les deux exercices et le problème. EXERCICE

Plus en détail

1) Montrer que l aire totale A des cloisons latérales est A = 20x.

1) Montrer que l aire totale A des cloisons latérales est A = 20x. Aménagement de salle Exercice 1 : Une entreprise est sollicitée pour réaliser l aménagement d une salle destinée à accueillir les stands du salon INTERMAT à Paris présentant les nouveaux matériaux du secteur

Plus en détail

(A) 38 (B) 39 (C) 40 (D) 42 (E) 49 (A) 0 (B) 2 (C) 4 (D) 6 (E) 8. (C) 2 (D) +6 (E) Aucune de ces réponses

(A) 38 (B) 39 (C) 40 (D) 42 (E) 49 (A) 0 (B) 2 (C) 4 (D) 6 (E) 8. (C) 2 (D) +6 (E) Aucune de ces réponses 9 e année - 000 Page 1 Partie A 1. Le prochain terme de la suite 4, 5, 8, 13, 0, 9,... est : (A) 38 (B) 39 (C) 40 (D) 4 (E) 49. À quoi est égal + + + 3? (A) 1 (B) (C) 30 3 11 (D) (E) Aucune de ces réponses

Plus en détail

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. 3 ème COLLÈGE NAZARETH BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. EXERCICE 1 : ( /3) 1. Soit : A = 8 3 5 3 : 20 21. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin.

Plus en détail

Brevet des collèges Polynésie juin 2011

Brevet des collèges Polynésie juin 2011 Brevet des collèges Polynésie juin 0 Durée : heures ACTIVITÉS NUMÉRIQUES points Exercice Cet exercice est un questionnaire à choix multiples. Pour chaque question, quatre réponses sont proposées mais une

Plus en détail

LES PROPORTIONS ET LES PARTAGES PROPORTIONNELS. Une proportion est une égalité de deux rapports (un rapport est une fraction, un quotient).

LES PROPORTIONS ET LES PARTAGES PROPORTIONNELS. Une proportion est une égalité de deux rapports (un rapport est une fraction, un quotient). CHAPITRE III LES PROPORTIONS ET LES PARTAGES PROPORTIONNELS I ] DEFINITION : Une proportion est une égalité de deux rapports (un rapport est une fraction, un quotient). Exemple : 3 = 3,6 est une proportion

Plus en détail

Baccalauréat L Enseignement de spécialité Asie Juin 2010

Baccalauréat L Enseignement de spécialité Asie Juin 2010 Baccalauréat L Enseignement de spécialité Asie Juin 2010 EXERCICE 1 Il s agit de remplir la grille suivante dont chaque case blanche doit contenir exactement un chiffre (entre 0 et 9). 1. Pour y parvenir,

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Transferts thermiques par conduction

Transferts thermiques par conduction Transferts thermiques par conduction Exercice 1 : Température de contact entre deux corps* On met en contact deux conducteurs thermiques cylindriques, calorifugés sur leurs surfaces latérales. On se place

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

LES COUPES VERTICALES

LES COUPES VERTICALES LES COUPES VERTICALES 1- GENERALITES : La coupe verticale est effectuée sur la totalité de la construction. Elle peut être droite ou brisée à plans parallèles. Le repérage de la coupe doit figurer sur

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES Durée de l épreuve : 2 heures. Ce sujet comporte 6 pages numérotées de 1 à 6. Dès qu il vous est remis, assurez-vous qu il est complet. L usage de la calculatrice

Plus en détail

FICHE STAGIAIRE N 15

FICHE STAGIAIRE N 15 FICHE STAGIAIRE N 15 Le drapeau Européen Objectifs pédagogiques : - Connaître le drapeau de l Union Européenne au regard de sa couleur, de ses symboles et de son histoire - Acquérir des connaissances en

Plus en détail

Table des matières. 13.1 champ d application. 13.2 aménagement des espaces libres

Table des matières. 13.1 champ d application. 13.2 aménagement des espaces libres Aménagement de terrain Table des matières 13.1 champ d application 13.2 aménagement des espaces libres 13.3 clôtures, haies et murets 13.3.1 matériaux permis 13.3.2 matériaux prohibés 13.3.3 implantation

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

RELEVE DE COQUES. I ) Mise en place de la coque.

RELEVE DE COQUES. I ) Mise en place de la coque. RELEVE DE COQUES Effectuer le relevé d une coque est une chose simple mais qui demande un peu de méthode et de soin avant les premiers coups de crayon sur la feuille de papier. I ) Mise en place de la

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2010

DIPLÔME NATIONAL DU BREVET SESSION 2010 DIPLÔME NATIONAL DU BREVET SESSION 2010 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont deux feuilles

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible.

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible. L orthographe, le soin, la qualité et la précision de la rédaction seront pris en compte à hauteur de 4 points sur 40 dans l évaluation de la copie. L utilisation de la calculatrice est autorisée. Les

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Brevet des collèges, correction, Métropole, 28 juin 2011

Brevet des collèges, correction, Métropole, 28 juin 2011 Brevet des collèges, correction, Métropole, 28 juin 2011 Activités numériques 12 points Exercice 1 Un dé cubique a 6 faces peintes : une en bleu, une en rouge, une en jaune, une en vert et deux en noir.

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Brevet blanc à rendre début mars. 1/7

Brevet blanc à rendre début mars. 1/7 Brevet blanc à rendre à la rentrée de mars 20 Partie Numérique Exercice 1. Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question une seule réponse est exacte. Aucune justification

Plus en détail

Le dessin technique. Le dessin technique doit être compris par tous. Pour cela, il doit y quelques règles de présentation.

Le dessin technique. Le dessin technique doit être compris par tous. Pour cela, il doit y quelques règles de présentation. 1/5 Le dessin technique ou dessin industriel est un élément essentiel de la communication technique. Il s agit d un ensemble de conventions de représentation des objets qui assurent que l objet produit

Plus en détail

Diplôme National du Brevet Brevet Blanc n 1

Diplôme National du Brevet Brevet Blanc n 1 Janvier 2011 Diplôme National du Brevet Brevet Blanc n 1 MATHÉMATIQUES Série Collège DURÉE DE L'ÉPREUVE : 2 h 00 L usage de la calculatrice est autorisé Le candidat remettra sa copie, accompagnée des documents

Plus en détail

Devoir-maison, à rendre le lundi 4 novembre 2013

Devoir-maison, à rendre le lundi 4 novembre 2013 Devoir-maison, à rendre le lundi 4 novembre 2013 Ce devoir-maison donnera lieu à une note sur 20 qui sera intégrée dans la moyenne du premier trimestre. Soin et orthographe : 1 point. Exercice 1. Brevet

Plus en détail

Excel 2002 Avancé. Guide de formation avec exercices et cas pratiques. Patrick Morié, Bernard Boyer

Excel 2002 Avancé. Guide de formation avec exercices et cas pratiques. Patrick Morié, Bernard Boyer Excel 2002 Avancé Guide de formation avec exercices et cas pratiques Patrick Morié, Bernard Boyer Tsoft et Groupe Eyrolles, 2003 ISBN : 2-212-11238-6 5 - ANALYSE ET SIMULATION MODÈLE ITÉRATIF 1 - NOTION

Plus en détail

Dossier: Quelle est la différence entre le P 650 (ADR) et le PI 650 (IATA)?

Dossier: Quelle est la différence entre le P 650 (ADR) et le PI 650 (IATA)? DECEMBRE 2015 Dossier: Quelle est la différence entre le P 650 (ADR) et le PI 650 (IATA)? Aussi bien l instruction d emballage 650 de l ADR que celle de l IATA impose certaines exigences aux emballages

Plus en détail

CHAPITRE 4 LES CONSTRUCTIONS PRINCIPALES

CHAPITRE 4 LES CONSTRUCTIONS PRINCIPALES CHAPITRE 4 LES CONSTRUCTIONS PRINCIPALES 4.1 NOMBRE DE BÂTIMENTS ET D USAGES EXERCÉS DANS UN BÂTIMENT PRINCIPAL Sous réserve des dispositions particulières et à l exception des projets intégrés, des complexes

Plus en détail

Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir. d une même problématique?

Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir. d une même problématique? Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir Enoncé : d une même problématique? Une histoire de boîtes (cinquième) On dispose d une feuille

Plus en détail

Mesures et durée - Correction

Mesures et durée - Correction Mesures et durée - Correction EXERCICE 1 : Connaissances 1. Convertir les durées suivantes en secondes : a) deux tiers d heure. 2 3 600 = 2400 secondes 3 b) 1,2 heure. 1, 2 3 600 = 4320 secondes 2. Convertir

Plus en détail

Rallye mathématique de la Sarthe 2014/2015 LA PETITE CABANE

Rallye mathématique de la Sarthe 2014/2015 LA PETITE CABANE 6-5 Rallye mathématique de la Sarthe 2014/2015 Vendredi 29 mai 2015 Finale : énoncé Atelier n 1 LA PETITE CABANE ETAPE N 1 : CHOIX DU DEVIS La direction des Etangs-Chauds désire repeindre la petite cabane,

Plus en détail

Géométrie synthétique : Juillet 2005 (première série) Nom. Question 3 : (25%) Numéro

Géométrie synthétique : Juillet 2005 (première série) Nom. Question 3 : (25%) Numéro Géométrie synthétique : Juillet 2005 (première série) Question 3 : (25%) On donne dans le même plan, un point fixe F, et un cercle fixe de centre O et de rayon R. Par F, on mène une droite qui intersecte

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Généralités sur les graphes

Généralités sur les graphes Généralités sur les graphes Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Notion de graphe 3 1.1 Un peu de vocabulaire.......................................... 3 1.2 Ordre d un graphe,

Plus en détail

Présentation du sujet :

Présentation du sujet : Présentation du sujet : Les déménageurs distraits sont repartis en laissant la commode d une pauvre dame à la bonne place, mais face au mur! Elle ne peut pas la soulever ni la faire glisser, juste la faire

Plus en détail

Université Paris-Est Val-de-Marne Créteil. Fiche 2 Résolution d équations

Université Paris-Est Val-de-Marne Créteil. Fiche 2 Résolution d équations Université Paris-Est Val-de-Marne Créteil DAEU-B Fiche 2 Résolution d équations 1 Une équation est une question Une équation correspond à une formulation mathématique de certaines questions. Elle se présente

Plus en détail

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame Diplôme National du Brevet Épreuve blanche Proposition de corrigé Externat Notre Dame Vendredi 9 décembre 2011 durée de l'épreuve : 2 h I - Activités numériques II - Activités géométriques III Problème

Plus en détail

Brevet des collèges Amérique du Nord 7 juin 2011

Brevet des collèges Amérique du Nord 7 juin 2011 Durée : 2 heures Brevet des collèges Amérique du Nord 7 juin 2011 Correction ACTIVITÉS NUMÉRIQUES Exercice 1 12 points Le professeur choisit trois nombres entiers relatifs consécutifs rangés dans l ordre

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

Présentation du logiciel Xcas

Présentation du logiciel Xcas Présentation du logiciel Xcas Xcas est un logiciel très complet qui permet d effectuer : Du calcul numérique, valeur exactes ou approchées ; Du calcul formel, du plus simple, développer factoriser jusqu

Plus en détail

Géométrie dans l Espace

Géométrie dans l Espace Géométrie dans l Espace Année scolaire 006/007 Table des matières 1 Vecteurs de l Espace 1.1 Extension de la notion de vecteur à l Espace............................. 1. Calcul vectoriel dans l Espace......................................

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

DEVOIR COMMUN DE MATHÉMATIQUES

DEVOIR COMMUN DE MATHÉMATIQUES Classe de Seconde DEVOIR COMMUN DE MATHÉMATIQUES Vendredi 14 février 2014 Durée de l épreuve : 2 H 00 Ce sujet comporte 6 pages numérotées de 1 à 6. Dès que ce sujet vous est remis, assurez-vous qu il

Plus en détail

brevet blanc janvier 2014 - corrigé

brevet blanc janvier 2014 - corrigé brevet blanc janvier 014 - corrigé Exercice 1 Jean-Michel est propriétaire d un champ, représenté par le triangle ABC ci-dessous. Il achète à son voisin le champ adjacent, représenté par le triangle ADC.

Plus en détail

Projet Calcul Machine à café

Projet Calcul Machine à café Projet Calcul Machine à café Pierre-Yves Poinsot Khadija Salem Etude d une machine à café, plus particulièrement du porte filtre E N S I B S M é c a t r o 3 a Table des matières I Introduction... 2 Présentation

Plus en détail

Comment faire son Kimono!

Comment faire son Kimono! Comment faire son Kimono! Le Yukata correspond à une catégorie de kimono qui répond à des règles de réalisations un peu moins complexes que le kimono de cérémonie. Plus simple à réaliser donc, pour une

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

CHAPITRE 2 GRAPHES 2.1 LES GRAPHES ET LEURS COMPOSANTES.

CHAPITRE 2 GRAPHES 2.1 LES GRAPHES ET LEURS COMPOSANTES. CHAPITRE 2 GRAPHES 2.1 LES GRAPHES ET LEURS COMPOSANTES. Faire le numéro 5 a)b) de la page 39 du cahier math 3000 Remarque importante : La somme des degrés de tous les sommets d un graphe est toujours

Plus en détail

Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter.

Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter. Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter. Veuillez visionner le document sur la formation en ligne. Corniche : objet technique à dessiner. Plaçons

Plus en détail

Programme de calcul et résolution d équation

Programme de calcul et résolution d équation Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges ASIE Juin 2014 Durée : 2h00 Calculatrice autorisée Exercice 1 On laisse tomber une balle d une hauteur de 1 mètre. 3 points A chaque rebond elle rebondit des

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB Chapitre 3 La notion de vecteurs CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Vecteurs Définition de la translation qui transforme un point A du plan en un point B. Vecteur AB associé. Égalité de deux vecteurs

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Quand et pourquoi utiliser une base de données NoSQL?

Quand et pourquoi utiliser une base de données NoSQL? Quand et pourquoi utiliser une base de données NoSQL? Introduction Les bases de données NoSQL sont devenues un sujet très à la mode dans le milieu du développement web. Il n est pas rare de tomber sur

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

Diplôme national du Brevet Nouvelle Calédonie 9 décembre 2014

Diplôme national du Brevet Nouvelle Calédonie 9 décembre 2014 Durée : heures Diplôme national du Brevet Nouvelle Calédonie 9 décembre 014 A. P. M. E. P. Exercice 1 : Questionnaire à choix multiples 4 points Cet exercice est un questionnaire à choix multiples (QCM).

Plus en détail

Aire sous une courbe et calcul de primitives

Aire sous une courbe et calcul de primitives Aire sous une courbe et calcul de primitives Le calcul de primitives d une fonction et celui de l aire de la surface bordée par le graphique de cette fonction sont intimement liés. Les exemples qui suivent

Plus en détail

Module 24 : Analyse de scénarios

Module 24 : Analyse de scénarios Module 24 : Analyse de scénarios 24.0 Introduction Ce module enseigne un sous-ensemble de techniques de création de modèle qui, dans Excel 2007, constitue l «analyse de scénarios». Ces techniques sont

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 01 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

Mécanique des solides déformables

Mécanique des solides déformables Mécanique des solides déformables Auteur Michel MAYA 1 Descriptions 2 Représentations graphiques Ce cours est mis à disposition selon les termes de la licence Creative Commons Paternité + Pas d utilisation

Plus en détail