Nombres complexes : rappels et compléments

Dimension: px
Commencer à balayer dès la page:

Download "Nombres complexes : rappels et compléments"

Transcription

1 Caitre 0 Nombres comlexes : raels et comléments 0.1 Définitions et notations On raelle qu un nombre comlexe z est défini comme la somme d un nombre réel x et d un nombre dit imaginaire noté i y, où y est un réel, et i est un nombre tel i 2 = 1 : z = x + i y x = Re[z], y = Im[z]. Les oérations d addition, de multilication abituelles dans IR s aliquent également dans CI, en sorte que si z = x + i y et z = x + i y, alors z + z = x + x + i (y + y ) et z z = (x x y y ) + i (x y + x y). Les nombres comlexes euvent être rerésentés comme des vecteurs d un lan (e.v. à 2 dimensions, cf.infra) avec deux vecteurs de base 1 et i. Cette rerésentation est bijective. Le nombre z = x + i y est aelé affixe du oint de coordonnées (x, y). Le conjugué de z CI est le nombre noté z ou z tel que : z = Re[z] i Im[z]. Le conjugué d un nombre réel est aussi réel, et le conjugué d un nombre imaginaire est le nombre imaginaire oosé. Dans la rerésentation géométrique, le nombre z est le symétrique de z ar raort à l axe réel. Le conjugué de z est évidement z (la symétrie est involutive). Le conjugué de la somme ou du roduit sont la somme ou le roduit des conjugués. Le module de z est défini ar la relation : z = z z = x 2 + y 2 IR +. Axe imaginaire i y 1 z z Arg(z) Axe réel x Dans la rerésentation géométrique z est la longueur du vecteur associé à z. Le module de z est le même que celui de z ou de z. On note Fig. 1 Paramétrisation cartésienne et que le module constitue en quelque sorte une généralisation le la valeur olaire du lan comlexe. absolue des nombres réels, et c est our cela que l on utilise la même notation. On a bien sûr z 1 z 2 = z 1 z 2. L argument de z est l angle qui, dans la rerésentation géométrique, séare l axe des réels du vecteur rerésentatif de z. En d autres termes, le coule ( z, Arg(z)) est donné ar les coordonnées olaires de ce vecteur. On a donc les deux égalités suivantes : Re(z) = z cos(arg(z)) et Im(z) = z sin(arg(z)), (1) qui euvent encore être rises comme définition de l argument. On note Arg(z) = Arg(z). 1

2 UPMC LM100 Année Jean Hare Fonction exonentielle Fonction exonentielle réelle et comlexe Série entière Pour des nombres réels, l exonentielle est définie ar la série entière : ex(x) = n=0 x n n! = 1 + x 1! + x2 2! + + xn n! +. (2) Cette série ossède un rayon de convergence infini, c est à dire qu elle ossède une limite our tout x IR. On eut démontrer que cette fonction vérifie la relation : ex(a + b) = ex(a) ex(b). (3) N.B. Plutôt que de déveloer les termes de caque monôme, il est lus simle d utiliser la relation : ex(x) = lim n (1 + x n )n car on en déduit ex(x + y) = lim n (1 + (x + y)/n) n et our n max( x, y ) on eut écrire : (1 + (x + y)/n) (1 + x/n)(1 + y/n), d où le résultat. Équation différentielle On eut obtenir la dérivée de l exonentielle en dérivant la série terme à terme : ex (x) = n=0 n xn 1 n! = x! = ex(x). (4) Pour obtenir la deuxième égalité, on a noté que le remier terme est nul (n = 0), et que l indice n étant muet, on eut re-numéroter avec = n 1. En anticiant sur un cours ultérieur, on en déduit que le fonction exonentielle vérifiée l équation différentielle f (x) = f(x). N.B. On eut aussi utiliser la relation (3) our écrire : ex(x + ) ex(x) = ex(x) ex() 1 ex(x) /2 + 1 et constater que la fraction tend vers 1 lorsque tend vers 0, d où le résultat. Si l on utilise la règle de dérivation des fonctions comosées (f g) (x) = f g(x) g (x) on eut en déduire que toute fonction f de la forme f(x) = A ex(α x), où A et α sont des constantes réelles quelconques, est solution de l équation : f (x) = df(x) = α ex(α x) = α f(x). (5) dx On eut en outre montrer que toutes les solutions de cette équation sont de cette forme. Exonentielle comlexe On eut remarquer que la série (2) our être étendue aux nombres comlexes, en remlaçant le nombre x IR ar un nombre z CI. Nous admettrons qu elle ossède effectivement une limite dans CI, en général non réelle. Nous admettrons aussi que la fonction ainsi définie ossède toutes les roriétés évoquées ci-dessus. En articulier, l équation (5) est vraie même si le nombre α est comlexe (N.B. : on dérive toujours ar raort à la variable x réelle). Il est alors intéressant de considérer la fonction comlexe g(x) de la variable réelle définie comme suit et d évaluer sa dérivée : g(x) = cos x + i sin x g (x) = ( sin x) + i (cos x) = i(i sin x + cos x) = i g(x). En vertu de ce qui récède, nous devons en conclure que g(x) = A ex(i x), et il suffit de considérer le cas x = 0 our en déduire que A = 1. On en tire la relation très imortante, valable our tout x IR :

3 UPMC LM100 Année Jean Hare 3 cos x + i sin x = ex(i x). (6) Cette relation ossède nombre de conséquences, dont nous allons résenter les rinciales dans le rocain aragrae, mais dont nous ouvons déjà mettre en avant la lus sectaculaire : e iπ = Proriétés de l exonentielle comlexe Module Tout d abord, nous ouvons constater que le nombre comlexe ex(iθ) est de module 1, uisque cos 2 θ + sin 2 = 1, et que ex(iθ) arcourt tout le cercle unité lorsque θ varie de 0 à 2π, ou de π à π, ou tout autre intervalle de longueur 2π. Il s ensuit que la relation (1), s écrit our tout nombre comlexe z : z = z z = z ex(i Arg(z)), z = z ex( i Arg(z)) et z = z ex(i(arg(z) + π)). (7) z Interrétation géométrique de la multilication Considérons maintenant le roduit de deux nombres comlexes z 1 et z 2. On eut les écrire : z 1 = z 1 e iθ 1 et z 2 = z 2 e iθ 2 z 1 z 2 = z 1 z 2 ex(i(θ 1 + θ 2 ) ce qui montre que le roduit ar un nombre comlexe réalise une similitude, qui est le roduit d une rotation (d angle=argument) ar une omotétie (raort=module). On comrend donc ourquoi le roduit z z donne un nombre réel. On eut bien sûr s en assurer en considérant la définition à artir des arties réelles (à faire en exercice), en utilisant les formules trigonométriques sur cos(θ 1 + θ 2 ) et sin(θ 1 + θ 2 ). Racines carrées et d ordre n La notion de racine carrée est définie dans IR comme une fonction réelle ositive d un réel ositif. Pourtant, l équation x 2 = a où a IR + ossède bien dans IR deux solutions oosées, et c est de façon conventionnelle que l on coisit celle qui est ositive. On ne eut as établir de convention similaire dans CI (as de relation d ordre), et à titre d exemle, 1 eut désigner aussi bien i que i, sans qu un coix articulier s imose de façon naturelle. Il en est de même our les racines d ordre n > 2. On eut en articulier s intéresser aux racines d ordre n IN de 1, dites racines n-ièmes de l unité. Il s agit des solutions de l équation : x n = 1. On eut dans un remier tems noter que les solutions sont nécessairement de module 1, et s écrivent donc sous la forme ex(iθ). L équation à résoudre s écrit alors our θ sous la forme : n θ = 2π où Z. 2π/5 = 72 On en déduit que tout comlexe de la forme z = ex( i2π/n) est solution de cette équation, mais on constate aisément que des valeurs de différant de n ou d un multile de n donnent la même solution. En conclusion, les racines n-ièmes de l unité sont au nombre de n, équiréarties sur le cercle unité, formant les sommets d un olygone régulier, avec l un des sommets Fig. 2 Les cinq racines cinquièmes de l unité. en z 0 = 1 (cf.figure). Ce olygone est toujours symétrique ar raort à l axe des réels car z n = 1 z n = 1 = 1 ; our n air il est en outre symétrique ar raort à l origine (symétrie centrale) car z n = 1 ( z) n = 1.

4 UPMC LM100 Année Jean Hare 4 Déveloement en série des fonctions trigonométriques En rarocant les équations (2) et (6), et en constatant que les termes d ordre air sont réels et ceux d ordres imair sont imaginaires, on obtient le déveloement en série des fonctions trigonométriques cos θ et sin θ : cos θ = ( 1) x2 et sin θ = ( 1) x 2+1 (2)! (2 + 1)!. (8) Formules de Moivre La relation (6) ermet de calculer les fonctions trigonométriques des cos(n x)et de sin(n x) sous la forme d un olynôme en cos(x) et de sin(x). On a en effet : cos(nx) + i sin(nx) = ex(i nx) = (cos x + i sin x) n soit en utilisant ar formule du binôme et en séarant les arties réelles et imaginaires corresondant resectivement aux uissances aires et imaires de i sin(x) : ( ) n (e iθ ) n = cos n x (i sin x) ( ) = ( 1) n ( ) 2 cos n x sin x + i ( 1) 1 n 2 cos n x sin x,air,imair E( n 2 ) ( ) E( = n n 1 ( 1) q cos n 2q x sin 2q x + i 2 ) ( ) n ( 1) q cos n 2q 1 x sin 2q+1 x, 2q 2q + 1 q=0 où la fonction E(x) désigne la artie entière de x. On note bien que le cosinus comorte une uissance aire de sin x, et est donc une fonction aire, tandis que le sinus qui comorte une uissance imaire de sin x est une fonction imaire Fonction logaritme Il est naturel de comléter la définition de l exonentielle comlexe ar celle du logaritme, en tant que fonction réciroque de la récédente. Cette fonction doit bien sûr coïncider avec son omologue réel our un argument réel ositif, et osséder la roriété symétrique de (3), à savoir log(z 1 z 2 ) = log(z 1 ) + log(z 1 ). En utilisant la décomosition (7) our z CI, il vient alors : q=0 log(z) = log( z ) + log(ex(i Arg(z))) = log( z ) + i Arg(z). (9) On notera que, dans la mesure où l argument du nombre comlexe z n est défini que modulo 2π, la fonction, logaritme ne sera une vraie fonction que si l on imose en outre une condition sur les valeurs rises ar Arg(z). 0.3 Polynômes et racines L ensemble CI des nombres comlexes ossède de remarquables roriétés vis à vis des équations olynomiales. Nous commencerons ar les équations du second degré, qui sont les seules à osséder une solution générale exlicite simle Équation du second degré La réécriture du trinôme sous sa forme canonique urement algébrique, n est évidement en rien modifiée si l on suose, contrairement à ce qui a u être fait jusqu ici, que les coefficients a, b et c sont des nombres comlexes, et que l inconnue x le soit aussi : [ ( a x 2 + b x + c = a x + b ) 2 + c ( ) ] [ 2 ( b a = a x + b ) ] 2 b2 4ac. 4a

5 UPMC LM100 Année Jean Hare 5 Lorsqu on résout une telle équation dans IR, le remier terme dans les [ ]est un réel ositif, et le second terme doit donc être ositif aussi ( 0) our que l équation a x 2 +b x+c = 0 ossède des solutions réelles (deux dans le cas général). Lorsqu on travaille dans CI, il n en n est rien, le second terme ossède toujours deux racines carrées, et l équation a deux solutions de la forme : x 1 = b + r et x 1 = b r, où r est l une quelconque des deux racines carrées de = b 2 4ac. Dans le cas articulier où l on a un olynôme à coefficients réels, mais que l on accete une (des) solution(s) comlexe(s), on a donc deux cas : 0 : on retrouve alors les solutions réelles usuelles, éventuellement confondues si = 0. < 0 : les deux racines carrées de s écrivent ±i, et les solutions sont donc : x ± = b ± i. On observe que dans le second cas les deux solutions sont conjuguée l une de l autre Cas général On démontre, et nous admettrons ici, le téorème de Gauss-d Alembert selon lequel tout olynôme de degré n à coefficients comlexes P (x) ossède exactement n racines r ( = 1 n) dans CI, éventuellement confondues, en sorte que l on uisse le factoriser entièrement, c est à dire écrire : P (x) = α(x r 1 ) (x r n ). A défaut de démonstration, nous en avons vu deux exemles, le cas du degré 2, et le cas articulier de degré n où P (x) = x n 1. Dans le cas articulier où les coefficients du olynôme sont réels, les éventuelles racines comlexes se classent ar aires de valeurs conjuguées l une de l autre, ainsi que nous l avons observé dans le cas articulier où n = 2. En effet, si P (z) = 0, on a P (z) = 0, où P (x) est le olynôme déduit de P en remlaçant caque coefficient ar son conjugué. Pour un olynôme à coefficients réels, P = P, d où le résultat. Un autre exemle est fourni ar le olynôme du troisième degré : P (x) = x 3 3x 2 + 4x 2, dont le grae est donné sur la figure ci-contre. Comme sa dérivée est P (x) = 3x 2 6x + 4 est toujours ositive, P (x) est croissant et ne ossède qu une seule racine réelle, x = 1 en l occurrence. On eut alors cercer les racines de P (x)/(x 1) = x 2 2x + 2, qui sont 1 ± i, comlexes conjuguées l une de l autre Fig. 3 Polynôme du troisième degré ossédant une racine réelle et deux racines comlexes.

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Module : réponse d un système linéaire

Module : réponse d un système linéaire BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée

Plus en détail

dénombrement, loi binomiale

dénombrement, loi binomiale dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Des familles de deux enfants

Des familles de deux enfants Des familles de deux enfants Claudine Schwartz, IREM de Grenoble Professeur, Université Joseh Fourier Les questions et sont osées dans le dernier numéro de «Pour la Science» (n 336, octobre 2005, article

Plus en détail

S2I 1. quartz circuit de commande. Figure 1. Engrenage

S2I 1. quartz circuit de commande. Figure 1. Engrenage TSI 4 heures Calculatrices autorisées 214 S2I 1 L essor de l électronique nomade s accomagne d un besoin accru de sources d énergies miniaturisées. Les contraintes imosées à ces objets nomades sont multiles

Plus en détail

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Introduction. 1. 1 Justication historique. La résolution de l'équation du degré (par la méthode de Cardan) amena les mathématiciens italiens du seizième 3ème siècle

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Nombres complexes. cours, exercices corrigés, programmation

Nombres complexes. cours, exercices corrigés, programmation 1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis

Plus en détail

Accès optiques : la nouvelle montée en débit

Accès optiques : la nouvelle montée en débit Internet FTR&D Dossier du mois d'octobre 2005 Accès otiques : la nouvelle montée en débit Dans le domaine du haut débit, les accès en France sont our le moment très majoritairement basés sur les technologies

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Intérêts. Administration Économique et Sociale. Mathématiques XA100M

Intérêts. Administration Économique et Sociale. Mathématiques XA100M Intérêts Administration Économique et Sociale Mathématiques XA100M 1. LA NOTION D INTÉRÊT 1.1. Définition. Définition 1. L intérêt est la rémunération d un prêt d argent effectué par un agent économique

Plus en détail

TP : Outils de simulation. March 13, 2015

TP : Outils de simulation. March 13, 2015 TP : Outils de simulation March 13, 2015 Chater 1 Initialisation Scilab Calculatrice matricielle Exercice 1. Système Unix Créer sous Unix un réertoire de travail outil_simulation dans votre home réertoire.

Plus en détail

Un modèle de composition automatique et distribuée de services web par planification

Un modèle de composition automatique et distribuée de services web par planification Un modèle de comosition automatique et distribuée de services web ar lanification Damien Pellier * Humbert Fiorino ** * Centre de Recherche en Informatique de Paris 5 Université Paris Descartes 45, rue

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Bois. P.21 Bois-béton à Paris. Carrefour du Bois. Saturateurs. Usinage fenêtres. Bardages P.25 P.34 P.31 P.37. La revue de l activité Bois en France

Bois. P.21 Bois-béton à Paris. Carrefour du Bois. Saturateurs. Usinage fenêtres. Bardages P.25 P.34 P.31 P.37. La revue de l activité Bois en France CMP Bois n 19-12 avril - mai 2010 P.25 Carrefour du Bois P.34 cm La revue de l activité Bois en France Bois Saturateurs P.31 Usinage fenêtres P.37 Bardages Tout our l usinage du bois massif. Tout d un

Plus en détail

Cours de mathématiques Première année. Exo7

Cours de mathématiques Première année. Exo7 Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection

Plus en détail

Catalogue 3 Chaine sur Mesure

Catalogue 3 Chaine sur Mesure Catalogue 3 Chaine sur Mesure SUBAKI Les Chaines 2009 CAALGUE 3 Classification chaine sur mesure sériés de chaîne ye de chaîne subaki Caractéristiques RUNNER BS Performance suérieure Général Chaînes à

Plus en détail

Cours d Analyse I et II

Cours d Analyse I et II ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Premiers pas avec Mathematica

Premiers pas avec Mathematica Premiers pas avec Mathematica LP206 : Mathématiques pour physiciens I Année 2010/2011 1 Introduction Mathematica est un logiciel de calcul formel qui permet de manipuler des expressions mathématiques symboliques.

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Fonctions Analytiques

Fonctions Analytiques 5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques). CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1 3- LE MONOOLE DISCRIMINANT Le monoole eut vendre ertaines unités de roduit à des rix différents. On arle de disrimination ar les rix. Selon une terminologie due à igou (The Eonomis of Welfare, 1920), on

Plus en détail

Vous êtes un prestataire touristique dans les Monts de Guéret? L Office de Tourisme du Grand Guéret peut vous accompagner!

Vous êtes un prestataire touristique dans les Monts de Guéret? L Office de Tourisme du Grand Guéret peut vous accompagner! Le guide 2015 e u q i t s i r u o t e r i du artena Vous êtes un restataire touristique dans les Monts de Guéret? L Office de Tourisme du Grand Guéret eut vous accomagner! Qui sommes nous? 2 Edito Nouveau

Plus en détail

Equations différentielles linéaires à coefficients constants

Equations différentielles linéaires à coefficients constants Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Développements limités usuels en 0

Développements limités usuels en 0 Développements limités usuels en 0 e x sh x ch x sin x cos x = + x! + x! + + xn n! + O ( x n+) = x + x3 3! + + xn+ (n + )! + O ( x n+3) = + x! + x4 4! + + xn (n)! + O ( x n+) = x x3 3! + + ( )n xn+ (n

Plus en détail

Développements limités

Développements limités Université Joseph Fourier, Grenoble Maths en Ligne Développements limités Bernard Ycart Les développements limités sont l outil principal d approximation locale des fonctions. L objectif de ce chapitre

Plus en détail

Commande prédictive des systèmes non linéaires dynamiques

Commande prédictive des systèmes non linéaires dynamiques Rébliqe Algérienne Démocratiqe et olaire Ministère de l Enseignement Sérier et de la Recherche Scientifiqe Université Molod Mammeri de Tizi-Ozo Faclté de Génie Electriqe et Informatiqe Déartement Atomatiqe

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

NFE107 Urbanisation et architecture des systèmes d information. Juin 2009. «La virtualisation» CNAM Lille. Auditeur BAULE.L 1

NFE107 Urbanisation et architecture des systèmes d information. Juin 2009. «La virtualisation» CNAM Lille. Auditeur BAULE.L 1 Juin 2009 NFE107 Urbanisation et architecture des systèmes d information CNAM Lille «La virtualisation» Auditeur BAULE.L 1 Plan INTRODUCTION I. PRINCIPES DE LA VIRTUALISATION II. DIFFÉRENTES TECHNIQUES

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Chambre Régionale de Métiers et de l Artisanat. Région Auvergne. Région Auvergne

Chambre Régionale de Métiers et de l Artisanat. Région Auvergne. Région Auvergne Chambre Régionale de Métiers et de l Artisanat L Artisanat en Auvergne, l Energie du Déveloement Région Auvergne Région Auvergne Edito Edito Valoriser la formation des jeunes et des actifs : un enjeu

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

VOIP. Pr MOUGHIT Mohamed m.moughit@gmail.com. Cours VOIP Pr MOUGHIT Mohamed 1

VOIP. Pr MOUGHIT Mohamed m.moughit@gmail.com. Cours VOIP Pr MOUGHIT Mohamed 1 VOIP Pr MOUGHIT Mohamed m.moughit@gmail.com Cours VOIP Pr MOUGHIT Mohamed 1 Connexion fixe, rédictible Connexion établie avant la numérotation user Centre de commutation La Radio est le suort imrédictible

Plus en détail

Santé et hygiène bucco-dentaire des salariés de la RATP

Santé et hygiène bucco-dentaire des salariés de la RATP Santé et hygiène bucco-dentaire des salariés de la RATP Percetion des salariés et examen clinique du raticien Période 2006-2009 14 juin 2012 Dominique MANE-VALETTE, Docteur en Chirurgie dentaire dominique.mane-valette@rat.fr

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

DIVERSIFICATION DES ACTIVITES ET PRIVATISATION DES ENTREPRISES DE CHEMIN DE FER : ENSEIGNEMENTS DES EXEMPLES JAPONAIS

DIVERSIFICATION DES ACTIVITES ET PRIVATISATION DES ENTREPRISES DE CHEMIN DE FER : ENSEIGNEMENTS DES EXEMPLES JAPONAIS Ecole Nationale des Ponts et Chaussées Laboratoire Paris-Jourdan Sciences Economiques DIVERSIFICATION DES ACTIVITES ET PRIVATISATION DES ENTREPRISES DE CHEMIN DE FER : ENSEIGNEMENTS DES EXEMPLES JAPONAIS

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Mathématiques Algèbre et géométrie

Mathématiques Algèbre et géométrie Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches

Plus en détail

Découvrez les bâtiments* modulaires démontables

Découvrez les bâtiments* modulaires démontables Découvrez les bâtiments* modulaires démontables w Industrie w Distribution * le terme «bâtiment» est utilisé our la bonne comréhension de l activité de Locabri. Il s agit de structures modulaires démontables

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Cours arithmétique et groupes. Licence première année, premier semestre

Cours arithmétique et groupes. Licence première année, premier semestre Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Les marchés du crédit dans les PVD

Les marchés du crédit dans les PVD Les marchés du crédit dans les PVD 1. Introduction Partout, les marchés du crédit sont au centre de la caacité des économies à croître, uisqu ils financent l investissement. Le Taleau 1 montre ar exemle

Plus en détail

Sous le feu des questions

Sous le feu des questions ARTICLE PRINCIPAL Assureurs Protection juridique Sous le feu des questions Comment les assureurs Protection juridique vont-ils désormais romouvoir leurs roduits? Seraient-ils artisans d une assurance Protection

Plus en détail