CONVERSION DE PUISSANCE

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "CONVERSION DE PUISSANCE"

Transcription

1 Spé ψ Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué de plusieurs sous-ensembles qui von êre éudiés successivemen. La phoographie ci-conre représene deux mas éoliens servan de suppor aux aérogénéraeurs : ils son de haueur 30 mères, les pales éan de longueur 14 mères. La puissance nominale de chaque aérogénéraeur es P n = 300 kw. Les pales enraînen une générarice élecrique qui doi fournir une énergie élecrique «uile». Les aérogénéraeurs son souven reliés au réseau élecrique de disribuion ce qui nécessie une énergie sous forme alernaive, de fréquence 50 Hz e de valeur efficace de ension sable e égale à V n = 400 Vols. PARTIE I GENERATRICE SYNCHRNE La générarice uilisée es une machine à couran alernaif de ype synchrone, à exciaion indépendane. Le principe simplifié d une elle machine, el qu il sera uilisé dans la suie es le suivan : «l indui» de la machine, bornes e du schéma de la figure 1, fourni une ension sinusoïdale noée v M (), au moyen d un schéma élecrique équivalen fourni par la figure 2 cidessous : Sur ce schéma, e M () désigne la force élecromorice (ou f.e.m.) e i M () représene le couran délivré par la machine (convenion généraeur). Le couran, la f.e.m. e la ension son ous supposés sinusoïdaux, de même pulsaion ω M. n peu alors noer : ( ) = 2 sin ( ω + α ) ; v ( ) = V 2 sin ( ω ) ; i ( ) = I 2 sin ( ω ϕ) e E E+ E ω figure 1 E M, V M e I M représenen respecivemen la valeur efficace de e M (), v M () e i M (). L angle α es le déphasage «avance» de la f.e.m. par rappor à la ension ; l angle ϕ es le déphasage «reard» du couran par rappor à la ension. La viesse de roaion de la machine synchrone sera noée ω e son couran d exciaion sera noé I E : il s agi d un couran coninu qui doi circuler enre les bornes E+ e E du schéma de la figure 1. Compe enu de ces noaions, les propriéés de la machine permeen d écrire les relaions suivanes : E M = k ω M I E. k es une consane «de consrucion», L représene une inducance équivalene. Leurs valeurs numériques son les suivanes : k = 0,11 V s A 1 ; L = 3 mh. I-1) Rappeler le principe de foncionnemen d une générarice synchrone en soulignan les caracérisiques principales Spé ψ page 1/5 Devoir n 6 v M () L e M () i M () figure 2 v M ()

2 I-2) L aérogénéraeur ourne à viesse consane e la machine synchrone ourne égalemen à la viesse consane ω Μ. Le couran d exciaion de la machine es égalemen mainenu consan. Les valeurs numériques son les suivanes : ω M = 314 rd s 1 e I E = 25 A. Dans ces condiions, la valeur efficace de la f.e.m. ainsi que la pulsaion son consanes. a) Jusifier l expression de E M e calculer les valeurs numériques de E M e de la fréquence f M de oues les grandeurs sinusoïdales. Quelle es, en r mn 1, la viesse de roaion de la machine noée N 0? Quelle es l inerpréaion de α? b) La machine délivre un couran de valeur efficace I M1 = 300 A, en phase avec la ension (récepeur résisif). Tracer l allure du diagramme de Fresnel représenan les ampliudes complexes E M, V M e I M en faisan apparaîre, si besoin es, les angles orienés α e ϕ. c) Calculer numériquemen la valeur efficace de la ension V M1 aux bornes de la machine. I-3) En réalié, le récepeur n es pas puremen résisif e possède une impédance Z C. a) Tracer l allure du diagramme de Fresnel représenan les ampliudes complexes E M, V M e I M pour un angle ϕ négaif quelconque, en faisan apparaîre, si besoin es, les angles orienés α e ϕ. b) Éablir la relaion donnan E M sin(α) en foncion de I M, ϕ e Z où Z es l impédance de la bobine L. Cee relaion dépend-elle du signe de ϕ. c) Donner l expression de la puissance moyenne reçue par la charge, noée P, en foncion de E M, V M, Z e de l angle α. Quel es le domaine de définiion de α? d) Pour une valeur de ension V M fixée, quelle valeur α 0 de l angle α perme d obenir une puissance maximale si la viesse rese consane e l exciaion égalemen? e) Pour cee valeur de ension e pour ce angle α 0, quelle es alors la naure du récepeur? PARTIE II REDRESSEMENT Afin d éliminer les problèmes liés à la variaion de viesse de roaion de l éolienne nécessaire pour assurer le maximum de puissance qui dépend de la viesse du ven, on doi uiliser un éage de conversion élecronique avan de délivrer la puissance au réseau. Le disposiif es alors celui représené sur la figure 3 où deux converisseurs, appelés Redresseur e nduleur, son disposés en cascade enre la machine e le récepeur. ω v M () = REDRESSEUR i L u C L C v L C C figure 3 v C = NDULEUR SECTEUR n noera la présence de l inducance L C e du condensaeur C C. Dans oue cee parie 2, on considère que la ension v C aux bornes du condensaeur rese consane, égale à V C. n néglige l influence de L e l on peu donc considérer que la ension alimenan le redresseur es égale à : ( ) ( ) 2 sin ( ) v = e = E ω avec E M = 400 V e M ω M = 314 rd s 1. Le redresseur es un pon double à diodes comme représené sur la figure 4 ci-conre, les diodes éan considérées comme parfaies. n considère que ce monage D 1 D 2 Spé ψ page 2/5 figure Devoir 4 n 6 v M i M D 1 i L D 2 u C

3 redresseur foncionne en conducion coninue e que, par conséquen, le couran i L () qu il délivre ne s annule jamais lorsque le monage foncionne en régime éabli, seul régime éudié ici. Compe enu des noaions, on aura donc : i L () > 0. II-1) Calcul de la ension V C. a) À parir du racé de la ension e M (), jusifier e racer l allure de la ension u C () en sorie du redresseur. b) Déerminer, en foncion de E M, l expression liérale donnan la valeur moyenne U C0 de cee ension u C (). c) En déduire l expression de la ension V C aux bornes du condensaeur. Calculer numériquemen V C. II-2) n souhaie déerminer la valeur minimale à donner à l inducance L C. Pour cela, on uilise la décomposiion en série de Fourier de la ension u C (). Comme la foncion u C () es paire, 2 T C l ampliude de son fondamenal es donné par la relaion UC1 2 = uc ( ) cos( C) d T ω. 0 E M. a) Déerminer la valeur efficace de son erme fondamenal, noé U C1, en foncion de Rappel : sin ( a) sin ( b) = 1 sin ( a + b) + sin ( a b) 2. b) Déerminer la valeur efficace V L1 du erme fondamenal de la ension v L () en foncion de E M. c) En déduire l expression de la valeur efficace du erme fondamenal du couran i L (), erme noé I L1, en foncion de E M, ω M e L C. d) Quelle es la valeur minimale à donner à l inducance L C pour que l ampliude du fondamenal du couran i L () rese inférieure à 5 A? Calculer numériquemen cee valeur. II-3) Le disposiif délivre une puissance moyenne P = 300 kw. a) Déerminer la valeur moyenne I L0 du couran i L (). Calculer numériquemen I L0. b) Que peu-on conclure sur l allure du couran i L () si la conraine de la quesion II- 2-d es vérifiée? II-4) Quels son les effes d un ralenissemen de l aérogénéraeur? C PARTIE III ASSERVISSEMENT DU CURANT D EXCITATIN Dans le disposiif éudié précédemmen, une variaion de viesse peu s avérer préjudiciable au bon foncionnemen de la conversion d énergie. Afin de la compenser, on réalise un asservissemen en piloan le couran d exciaion i E de la machine. En effe, on peu considérer que la ension v C obenue (cf. figure 3) es proporionnelle à ce couran e l on noera donc : v C = k C i E. Une augmenaion du couran i E perme donc d augmener cee ension. La valeur numérique du coefficien de proporionnalié es : k C = 4 Ω. Le bobinage d exciaion de la machine (bornes E+ e E T L E de la figure 1) peu aisémen êre modélisé par un dipôle résisif e u inducif, de résisance R E e d inducance L E comme indiqué sur la T () figure 5 ci-conre. V 0 D u S Sur cee même figure 5 es égalemen dessiné le disposiif de commande du couran réalisé au moyen d un simple hacheur figure 5 série, lui-même alimené par une source de ension V 0 consane. L inerrupeur noé T es parfai e se compore de la façon suivane : lorsque sa commande u T es posiive, il es fermé (équivalen à un cour-circui) e lorsque sa commande u T es négaive, il es ouver (équivalen à une impédance infinie). La diode D es parfaie (aucune pere, commua- Spé ψ page 3/5 Devoir n 6 ie R E

4 ions insananées). n rappelle que le rappor cyclique d un hacheur série correspond à la fracion de période pendan laquelle l inerrupeur T es «fermé». III-1) Le signal de commande u T es obenu par comparaison d une ension u H (), supposée varian «lenemen» au cours du emps, avec une foncion périodique f() de forme riangulaire, d ampliude u H0 = 10 V (on noera T H la période de f()). La figure 6 ci-conre présene le monage uilisan un A.L.I. parfai, alimené par des sources de ensions symériques + V DD e V DD (avec V DD > u H0 ) non représenées. Sur le documen réponse ci-dessous, à rendre avec la copie, racer l allure des ensions u T () e u S (). u H () f() + figure 6 III-2) Le rappor cyclique es mainenu consan, égal à β 0, pendan plusieurs périodes successives de f(), ce qui correspond donc à une ension u H consane. n s inéresse alors à un régime éabli périodique de oues les grandeurs élecriques éudiées sur ce hacheur. En pariculier, le couran i E () es périodique. a) Déerminer l expression de la valeur moyenne U S0 de la ension u S en foncion de β 0 e de V 0. b) Déerminer la valeur moyenne du couran i E () noée I E0, en foncion de β 0, V 0 e R E. III-3-a) En prenan comme origine des emps un insan de fermeure de l inerrupeur T, déerminer le couran i E () en uilisan V 0, les paramères R E e L E e les valeurs maximale (resp minimale) noées I MAX e I MIN du couran i E (). Ces deux valeurs son supposées sricemen posiives. LE n noera τ E =. R E b) n suppose dans la suie que la période T H es rès faible devan τ E. Déerminer l expression rès simple donnan I MIN en foncion de β 0, V 0 e R E. c) Déerminer l expression donnan I MAX en foncion de I MIN, T H, β 0 e τ E. III-4) n souhaie déerminer la valeur limie de la fréquence de commuaion f H. a) En uilisan les expressions simplifiées obenues aux quesions précédenes, déerminer l expression de l ondulaion du couran i E noée i E en foncion uniquemen de β 0, V 0, L E e T H. b) Quelle valeur de rappor cyclique β 0 rend cee ondulaion maximale? c) Déerminer, en foncion de L E, l expression de la période de découpage maximale du hacheur, noée T HMAX, assuran une ondulaion I E < 1 A, quel que soi le rappor cyclique. Calculer alors la fréquence minimale f MIN de foncionnemen de ce hacheur pour les valeurs numériques suivanes : L E = 50 mh e V 0 = 400 V. u T () Spé ψ page 4/5 Devoir n 6

5 Documen réponse Nom e prénom :... u H0 f() u H () T H 2T H 3T H 4T H u T () u S () Spé ψ page 5/5 Devoir n 6

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

Intégration de Net2 avec un système d alarme intrusion

Intégration de Net2 avec un système d alarme intrusion Ne2 AN35-F Inégraion de Ne2 avec un sysème d alarme inrusion Vue d'ensemble En uilisan l'inégraion d'alarme Ne2, Ne2 surveillera si l'alarme inrusion es armée ou désarmée. Si l'alarme es armée, Ne2 permera

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite DOCUMENT DE TRAVAIL 2003-12 Impac du vieillissemen démographique sur l impô prélevé sur les rerais des régimes privés de reraie Séphane Girard Direcion de l analyse e du suivi des finances publiques Ce

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE Ce aricle es disponible en ligne à l adresse : hp://www.cairn.info/aricle.php?id_revue=ecop&id_numpublie=ecop_149&id_article=ecop_149_0073 Risque associé au conra d assurance-vie pour la compagnie d assurance

Plus en détail

SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE

SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE Le seul ballon hybride solaire-hermodynamique cerifié NF Elecricié Performance Ballon hermodynamique 223 lires inox 316L Plaque évaporarice

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

GUIDE DES INDICES BOURSIERS

GUIDE DES INDICES BOURSIERS GUIDE DES INDICES BOURSIERS SOMMAIRE LA GAMME D INDICES.2 LA GESTION DES INDICES : LE COMITE DES INDICES BOURSIERS.4 METHODOLOGIE ET CALCUL DE L INDICE TUNINDEX ET DES INDICES SECTORIELS..5 I. COMPOSITION

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle Aricle «Les effes à long erme des fonds de pension» Pascal Belan, Philippe Michel e Berrand Wigniolle L'Acualié économique, vol 79, n 4, 003, p 457-480 Pour cier ce aricle, uiliser l'informaion suivane

Plus en détail

Cahier technique n 114

Cahier technique n 114 Collecion Technique... Cahier echnique n 114 Les proecions différenielles en basse ension J. Schonek Building a ew Elecric World * Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés

Plus en détail

Le mécanisme du multiplicateur (dit "multiplicateur keynésien") revisité

Le mécanisme du multiplicateur (dit multiplicateur keynésien) revisité Le mécanisme du muliplicaeur (di "muliplicaeur kenésien") revisié Gabriel Galand (Ocobre 202) Résumé Le muliplicaeur kenésien remone à Kenes lui-même mais il es encore uilisé de nos jours, au moins par

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

Ned s Expat L assurance des Néerlandais en France

Ned s Expat L assurance des Néerlandais en France [ LA MOBILITÉ ] PARTICULIERS Ned s Expa L assurance des Néerlandais en France 2015 Découvrez en vidéo pourquoi les expariés en France choisissen APRIL Inernaional pour leur assurance sané : Suivez-nous

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB) Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un

Plus en détail

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE 009-01 EFFICIENCE INFORMATIONNELLE DES MARCHES DE L OR A PARIS ET A LONDRES, 1948-008 UNE VERIFICATION ECONOMETRIQUE DE LA FORME FAIBLE Thi Hong Van HOANG Efficience informaionnelle des marchés de l or

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Cahier technique n 141

Cahier technique n 141 Collecion Technique... Cahier echnique n 141 Les perurbaions élecriques en BT R. Calvas Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés à l inenion des ingénieurs e echniciens

Plus en détail

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A UIMBERTEAU UIMBERTEAU TRAVAUX PRATIQUES 5 ISTALLATIO ELECTRIQUE DE LA CAE D'ESCALIER DU BATIMET A ELECTROTECHIQUE Seconde B.E.P. méiers de l'elecroechnique ELECTROTECHIQUE HABITAT Ver.. UIMBERTEAU TRAVAUX

Plus en détail

CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES

CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES Thomas Jeanjean To cie his version: Thomas Jeanjean. CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES. 22ÈME

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................

Plus en détail

B34 - Modulation & Modems

B34 - Modulation & Modems G. Pinson - Physique Appliquée Modulaion - B34 / Caracérisiques d'un canal de communicaion B34 - Modulaion & Modems - Définiions * Half Duplex ou simplex : ransmission un sens à la fois ; exemple : alky-walky

Plus en détail

LE PARADOXE DES DEUX TRAINS

LE PARADOXE DES DEUX TRAINS LE PARADOXE DES DEUX TRAINS Énoné du paradoxe Déaillons ou d abord le problème dans les ermes où il es souen présené On dispose de deux oies de hemins de fer parallèles e infinimen longues Enre les deux

Plus en détail

MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie.

MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie. / VARIATION/ ACCOMP PLAY/PAUSE REW TUNE/MIDI 3- LESSON 1 2 3 MIDI Qu es-ce que MIDI? MIDI es l acronyme de Musical Insrumen Digial Inerface, une norme inernaionale pour l échange de données musicales enre

Plus en détail

Calcul Stochastique 2 Annie Millet

Calcul Stochastique 2 Annie Millet M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3

Plus en détail

Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA

Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA Un modèle de proecion pour des conras de reraie dans le cadre de l ORSA - François Bonnin (Hiram Finance) - Floren Combes (MNRA) - Frédéric lanche (Universié Lyon 1, Laboraoire SAF) - Monassar Tammar (rim

Plus en détail

Séquence 2. Pourcentages. Sommaire

Séquence 2. Pourcentages. Sommaire Séquence 2 Pourcenages Sommaire Pré-requis Évoluions e pourcenages Évoluions successives, évoluion réciproque Complémen sur calcularices e ableur Synhèse du cours Exercices d approfondissemen 1 1 Pré-requis

Plus en détail

Relation entre la Volatilité Implicite et la Volatilité Réalisée.

Relation entre la Volatilité Implicite et la Volatilité Réalisée. Relaion enre la Volailié Implicie e la Volailié Réalisée. Le cas des séries avec la coinégraion fracionnaire. Rappor de Recherche Présené par : Mario Vázquez Velasco Direceur de Recherche : Benoî Perron

Plus en détail

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie Copules e dépendances : applicaion praique à la déerminaion du besoin en fonds propres d un assureur non vie David Cadoux Insiu des Acuaires (IA) GE Insurance Soluions 07 rue Sain-Lazare, 75009 Paris FRANCE

Plus en détail

Mémoire présenté et soutenu en vue de l obtention

Mémoire présenté et soutenu en vue de l obtention République du Cameroun Paix - Travail - Parie Universié de Yaoundé I Faculé des sciences Déparemen de Mahémaiques Maser de saisique Appliquée Republic of Cameroon Peace Wor Faherland The Universiy of Yaoundé

Plus en détail

Froid industriel : production et application (Ref : 3494) Procédés thermodynamiques, systèmes et applications OBJECTIFS LES PLUS DE LA FORMATION

Froid industriel : production et application (Ref : 3494) Procédés thermodynamiques, systèmes et applications OBJECTIFS LES PLUS DE LA FORMATION Froid indusriel : producion e applicaion (Ref : 3494) Procédés hermodynamiques, sysèmes e applicaions SUPPORT PÉDAGOGIQUE INCLUS. OBJECTIFS Appréhender les différens procédés hermodynamiques de producion

Plus en détail

NUMERISATION ET TRANSMISSION DE L INFORMATION

NUMERISATION ET TRANSMISSION DE L INFORMATION , Chapire rminale S NUMERISATION ET TRANSMISSION DE L INFORMATION I TRANSMISSION DE L'INFORMATION ) Signal e informaion ) Chaîne de ransmission de l informaion La chaîne de ransmission d informaions es

Plus en détail

3 POLITIQUE D'ÉPARGNE

3 POLITIQUE D'ÉPARGNE 3 POLITIQUE D'ÉPARGNE 3. L épargne exogène e l'inefficience dynamique 3. Le modèle de Ramsey 3.3 L épargne opimale dans le modèle AK L'épargne des sociéés dépend largemen des goûs des agens, de faceurs

Plus en détail

Chapitre 9. Contrôle des risques immobiliers et marchés financiers

Chapitre 9. Contrôle des risques immobiliers et marchés financiers Capire 9 Conrôle des risques immobiliers e marcés financiers Les indices de prix immobiliers ne son pas uniquemen des indicaeurs consruis dans un bu descripif, mais peuven servir de référence pour le conrôle

Plus en détail

EPARGNE RETRAITE ET REDISTRIBUTION *

EPARGNE RETRAITE ET REDISTRIBUTION * EPARGNE RETRAITE ET REDISTRIBUTION * Alexis Direr (1) Version février 2008 Docweb no 0804 Alexis Direr (1) : Universié de Grenoble e LEA (INRA, PSE). Adresse : LEA, 48 bd Jourdan 75014 Paris. Téléphone

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau Ecole des HEC Universié de Lausanne FINANCE EMPIRIQUE Eric Jondeau FINANCE EMPIRIQUE La prévisibilié des rendemens Eric Jondeau L hypohèse d efficience des marchés Moivaion L idée de base de l hypohèse

Plus en détail

Les deux déficits, budgétaire et du compte courant, sont-ils jumeaux? Une étude empirique dans le cas d une petite économie en développement

Les deux déficits, budgétaire et du compte courant, sont-ils jumeaux? Une étude empirique dans le cas d une petite économie en développement Les deux déficis, budgéaire e du compe couran, sonils jumeaux? Une éude empirique dans le cas d une peie économie en développemen (Version préliminaire) Aueur: Wissem AJILI Docorane CREFED Universié Paris

Plus en détail

CANAUX DE TRANSMISSION BRUITES

CANAUX DE TRANSMISSION BRUITES Canaux de ransmissions bruiés Ocobre 03 CUX DE TRSISSIO RUITES CORRECTIO TRVUX DIRIGES. oyer Canaux de ransmissions bruiés Ocobre 03. RUIT DE FOD Calculer le niveau absolu de brui hermique obenu pour une

Plus en détail

Sélection de portefeuilles et prédictibilité des rendements via la durée de l avantage concurrentiel 1

Sélection de portefeuilles et prédictibilité des rendements via la durée de l avantage concurrentiel 1 ASAC 008 Halifax, Nouvelle-Écosse Jacques Sain-Pierre (Professeur Tiulaire) Chawki Mouelhi (Éudian au Ph.D.) Faculé des sciences de l adminisraion Universié Laval Sélecion de porefeuilles e prédicibilié

Plus en détail

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa No 996 3 Décembre La coordinaion inerne e exerne des poliiques économiques : une analyse dynamique Fabrice Capoën Pierre Villa CEPII, documen de ravail n 96-3 SOMMAIRE Résumé...5 Summary...7. La problémaique...9

Plus en détail

Donner les limites de validité de la relation obtenue.

Donner les limites de validité de la relation obtenue. olutions! ours! - Multiplicateur 0 e s alculer en fonction de. Donner les limites de validité de la relation obtenue. Quelle est la valeur supérieure de? Quel est le rôle de 0? - Multiplicateur e 0 s alculer

Plus en détail

DE L'ÉVALUATION DU RISQUE DE CRÉDIT

DE L'ÉVALUATION DU RISQUE DE CRÉDIT DE L'ÉALUAION DU RISQUE DE CRÉDI François-Éric Racico * Déparemen des sciences adminisraives Universié du Québec, Ouaouais Raymond héore Déparemen Sraégie des Affaires Universié du Québec, Monréal RePAd

Plus en détail

Les Comptes Nationaux Trimestriels

Les Comptes Nationaux Trimestriels REPUBLIQUE DU CAMEROUN Paix - Travail Parie ---------- INSTITUT NATIONAL DE LA STATISTIQUE ---------- REPUBLIC OF CAMEROON Peace - Work Faherland ---------- NATIONAL INSTITUTE OF STATISTICS ----------

Plus en détail

CAHIER 13-2000 ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE

CAHIER 13-2000 ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE Jean-Michel BOSCO N'GOMA CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS

Plus en détail

Programmation, organisation et optimisation de son processus Achat (Ref : M64) Découvrez le programme

Programmation, organisation et optimisation de son processus Achat (Ref : M64) Découvrez le programme Programmaion, organisaion e opimisaion de son processus Acha (Ref : M64) OBJECTIFS LES PLUS DE LA FORMATION Appréhender la foncion achas e son environnemen Opimiser son processus achas Développer un acha

Plus en détail

Séminaire d Économie Publique

Séminaire d Économie Publique Séminaire d Économie Publique Les niveaux de dépenses d'infrasrucure son-ils opimaux dans les pays en développemen? Sonia Bassi, LAEP Discuan : Evans Salies, MATISSE & ADIS, U. Paris 11 Mardi 8 février

Plus en détail

OBJECTIFS LES PLUS DE LA FORMATION

OBJECTIFS LES PLUS DE LA FORMATION Formaion assurance-vie e récupéraion: Quand e Commen récupérer? (Ref : 3087) La maîrise de la récupéraion des conras d'assurances-vie requalifiés en donaion OBJECTIFS Appréhender la naure d un conra d

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

Estimation des matrices de trafics

Estimation des matrices de trafics Cédric Foruny 1/5 Esimaion des marices de rafics Cedric FORTUNY Direceur(s) de hèse : Jean Marie GARCIA e Olivier BRUN Laboraoire d accueil : LAAS & QoSDesign 7, av du Colonel Roche 31077 TOULOUSE Cedex

Plus en détail

Document de travail FRANCE ET ALLEMAGNE : UNE HISTOIRE DU DÉSAJUSTEMENT EUROPEEN. Mathilde Le Moigne OFCE et ENS ULM

Document de travail FRANCE ET ALLEMAGNE : UNE HISTOIRE DU DÉSAJUSTEMENT EUROPEEN. Mathilde Le Moigne OFCE et ENS ULM Documen de ravail 2015 17 FRANCE ET ALLEMAGNE : UNE HISTOIRE DU DÉSAJUSTEMENT EUROPEEN Mahilde Le Moigne OFCE e ENS ULM Xavier Rago Présiden OFCE e chercheur CNRS Juin 2015 France e Allemagne : Une hisoire

Plus en détail

MINISTERE DE L ECONOMIE ET DES FINANCES

MINISTERE DE L ECONOMIE ET DES FINANCES Un Peuple - Un Bu Une Foi MINISTERE DE L ECONOMIE ET DES FINANCES DIRECTION DE LA PREVISION ET DES ETUDES ECONOMIQUES Documen d Eude N 08 ENJEUX ECONOMIQUES ET COMMERCIAUX DE L ACCORD DE PARTENARIAT ECONOMIQUE

Plus en détail

BILAN EN ELECTRICITE : RC, RL ET RLC

BILAN EN ELECTRICITE : RC, RL ET RLC IN N TIIT :, T I. INTNSIT : = dq d en couran varable I = Q en couran connu Méhode générale d éablssemen des équaons dfférenelles : lo d addvé des ensons pus relaons dq caracérsques :, lo d Ohm u = aux

Plus en détail

GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, août 2003

GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, août 2003 GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, aoû 2003 Thomas JEANJEAN 2 Cahier de recherche du CEREG n 2003-13 Résumé : Depuis une vingaine d années, la noion d accruals discréionnaires

Plus en détail

Coaching - accompagnement personnalisé (Ref : MEF29) Accompagner les agents et les cadres dans le développement de leur potentiel OBJECTIFS

Coaching - accompagnement personnalisé (Ref : MEF29) Accompagner les agents et les cadres dans le développement de leur potentiel OBJECTIFS Coaching - accompagnemen personnalisé (Ref : MEF29) Accompagner les agens e les cadres dans le développemen de leur poeniel OBJECTIFS LES PLUS DE LA FORMATION Le coaching es une démarche s'inscrivan dans

Plus en détail

EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS

EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS CEDRIC TAPSOBA Diplômé IDS Inern/ CARE Regional Program Coordinaor and Gender Specialiy Service from USAID zzz WA-WASH Program Tel: 70 77 73 03/

Plus en détail

Pouvoir de marché et transmission asymétrique des prix sur les marchés de produits vivriers au Bénin

Pouvoir de marché et transmission asymétrique des prix sur les marchés de produits vivriers au Bénin C N R S U N I V E R S I T E D A U V E R G N E F A C U L T E D E S S C I E N C E S E C O N O M I Q U E S E T D E G E S T I O N CENTRE D ETUDES ET DE RECHERCHES SUR LE DEVELOPPEMENT INTER NATIONAL Pouvoir

Plus en détail

Evaluation des Options avec Prime de Risque Variable

Evaluation des Options avec Prime de Risque Variable Evaluaion des Opions avec Prime de Risque Variable Lahouel NOUREDDINE Correspondance : LEGI-Ecole Polyechnique de Tunisie, BP : 743,078 La Marsa, Tunisie, Insiu Supérieur de Finance e de Fiscalié de Sousse.

Plus en détail

Surface de Volatilité et Introduction au Risque de Crédit

Surface de Volatilité et Introduction au Risque de Crédit Modèles de Taux, Surface de Volailié e Inroducion au Risque de Crédi Alexis Fauh Universié Lille I Maser 2 Mahémaiques e Finance Spécialiés Mahémaiques du Risque & Finance Compuaionelle 214/215 spread

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

Pour 2014, le rythme de la reprise économique qui semble s annoncer,

Pour 2014, le rythme de la reprise économique qui semble s annoncer, En France, l invesissemen des enreprises reparira--il en 2014? Jean-François Eudeline Yaëlle Gorin Gabriel Sklénard Adrien Zakharchouk Déparemen de la conjoncure Pour 2014, le ryhme de la reprise économique

Plus en détail

CHELEM Commerce International

CHELEM Commerce International CHELEM Commerce Inernaional Méhodes de consrucion de la base de données du CEPII Alix de SAINT VAULRY Novembre 2013 1 Conenu de la base de données Flux croisés de commerce inernaional (exporaeur, imporaeur,

Plus en détail

NOTE SUR LES METHODES UNIVARIEES

NOTE SUR LES METHODES UNIVARIEES BRUSSELS EONOMI REVIEW - AHIERS EONOMIQUES DE BRUXELLES VOL 5 N 3 AUTUMN 7 NOTE SUR LES METHODES UNIVARIEES D EXTRATION DU YLE EONOMIQUE ANNA SESS ET MIHEL GRUN-REHOMME (UNIVERSITE PARIS, ERMES- NRS- UMR78)

Plus en détail

5.2 Théorème/Transformée de Fourier a) Théorème

5.2 Théorème/Transformée de Fourier a) Théorème . Théorème de Fourier et Transformée de Fourier Fourier, Joseph (788). Théorème/Transformée de Fourier a) Théorème Théorème «de Fourier»: N importe quelle courbe peut être décomposée en une superposition

Plus en détail

MODÈLE BAYÉSIEN DE TARIFICATION DE L ASSURANCE DES FLOTTES DE VÉHICULES

MODÈLE BAYÉSIEN DE TARIFICATION DE L ASSURANCE DES FLOTTES DE VÉHICULES Cahier de recherche 03-06 Sepembre 003 MODÈLE BAYÉSEN DE TARFCATON DE L ASSURANCE DES FLOTTES DE VÉHCULES Jean-François Angers, Universié de Monréal Denise Desardins, Universié de Monréal Georges Dionne,

Plus en détail

L impact de l activisme des fonds de pension américains : l exemple du Conseil des Investisseurs Institutionnels.

L impact de l activisme des fonds de pension américains : l exemple du Conseil des Investisseurs Institutionnels. L impac de l acivisme des fonds de pension américains : l exemple du Conseil des Invesisseurs Insiuionnels. Fabrice HERVE * Docoran * Je iens à remercier ou pariculièremen Anne Lavigne e Consanin Mellios

Plus en détail

Le développement de l assurance des catastrophes naturelles: facteur de développement économique

Le développement de l assurance des catastrophes naturelles: facteur de développement économique ARTICLES ARTICLES PROFESSIONNELS ACADÉMIQUES PROFESSIONAL ACADEMIC ARTICLES ARTICLES Assurances e gesion des risques, vol. 79(1-2), avril-juille 2011, 1-30 Insurance and Risk Managemen, vol. 79(1-2), April-July

Plus en détail

Vous vous installez en france? Société Générale vous accompagne (1)

Vous vous installez en france? Société Générale vous accompagne (1) Parenaria Sociéé Générale Execuive relocaions Vous vous insallez en france? Sociéé Générale vous accompagne (1) offre valable jusqu au 29/02/2012 offre valable jusqu au 29/02/2012 offre valable jusqu au

Plus en détail

N d ordre Année 2008 THESE. présentée. devant l UNIVERSITE CLAUDE BERNARD - LYON 1. pour l obtention. du DIPLOME DE DOCTORAT. (arrêté du 7 août 2006)

N d ordre Année 2008 THESE. présentée. devant l UNIVERSITE CLAUDE BERNARD - LYON 1. pour l obtention. du DIPLOME DE DOCTORAT. (arrêté du 7 août 2006) N d ordre Année 28 HESE présenée devan l UNIVERSIE CLAUDE BERNARD - LYON pour l obenion du DILOME DE DOCORA (arrêé du 7 aoû 26) présenée e souenue publiquemen le par M. Mohamed HOUKARI IRE : Mesure du

Plus en détail

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD LA COUCHE PHYSIQUE 1 FONCTIONS GENERALES Cee couche es chargée de la conversion enre bis informaiques e signaux physiques Foncions principales de la couche physique : définiion des caracérisiques de la

Plus en détail

Charges électriques - Courant électrique

Charges électriques - Courant électrique Courant électrique Charges électriques - Courant électrique Exercice 6 : Dans la chambre à vide d un microscope électronique, un faisceau continu d électrons transporte 3,0 µc de charges négatives pendant

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

Le passage des retraites de la répartition à la capitalisation obligatoire : des simulations à l'aide d'une maquette

Le passage des retraites de la répartition à la capitalisation obligatoire : des simulations à l'aide d'une maquette No 2000 02 Janvier Le passage des reraies de la répariion à la capialisaion obligaoire : des simulaions à l'aide d'une maquee Pierre Villa CEPII, documen de ravail n 2000-02 TABLE DES MATIÈRES Résumé...

Plus en détail

UNIVERSITÉ D ORLÉANS. THÈSE présentée par :

UNIVERSITÉ D ORLÉANS. THÈSE présentée par : UNIVERSITÉ D ORLÉANS ÉCOLE DOCTORALE SCIENCES DE L HOMME ET DE LA SOCIETÉ LABORATOIRE D ECONOMIE D ORLEANS THÈSE présenée par : Issiaka SOMBIÉ souenue le : 5 décembre 2013 à 14h00 pour obenir le grade

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail