P R O D U I T S C A L A I R E.

Dimension: px
Commencer à balayer dès la page:

Download "P R O D U I T S C A L A I R E."

Transcription

1 ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires On appelle produit scalaire des vecteurs u et v le nombre réel noté u v défini par : u v u v u v = lorsque u et v sont de même sens lorsque u et v sont de sens contraire Remarque Lorsque l un des vecteurs u ou v est nul, on a : u v =0 Définition On appelle carré scalaire du vecteur u, le produit scalaire de u par lui-même, c est à dire u u Par définition, on a alors, u u = u Proposition Soit i un vecteur unitaire Si u et v sont deux vecteurs tels que = v x' i où ( ) x; x' IR alors, u v = xx' u = x i et Démonstration Soient ( ) x; x' IR tel que u = x i et = = v x' i On a : u x i = x i = x et v = x' i = x' i = x' ainsi u v = x x' = xx' Corollaire Soient u et v deux vecteurs colinéaires et ( ), i- Si u et v sont de même sens alors u v = xx' ii- Si u et v sont de sens contraire alors u v = xx' x; x' IR Démonstration D après la proposition, u v = xx' i- Si u et v sont de même sens, x et x sont de même signe et donc xx ' est positif, d où xx ' = xx' et par suite u v = xx'

2 ii- Si u et v sont de sens contraire, x et x sont de signe opposé et donc xx ' est négatif, d où On conclut en disant que u v = xx ' Propriétés xx' = xx' et par suite u v = xx' Soit u, v et w trois vecteurs colinéaires i- u v+ w = u v + u w ; le produit scalaire est distributif par rapport à l addition ii- α IR, u α v = α u v Démonstration Soient u, v et w trois vecteurs colinéaires à un vecteur unitaire i ( ) 3 u = x i, = i v y et w = z i x; y; z IR : i- On a u v = xy et u w = xz donc u v+ u w = xy + xz ; par ailleurs, + + = ( + ) v w y z i et u v w = x( y + z ) = xy + xz ii- Soit IR α, u α v = x( αy) = αxy = α( xy) u α v = α u v donc v+ w u = u v + u w et α u v = α( xy) d où ) Cas de deux vecteurs quelconques Définition Soit u et v deux vecteurs et notons ' v le projeté orthogonal de v sur u On pose u v = u v' Définition Soit u et v deux vecteurs non nuls avec u = orthogonal de B sur ( OA ) Le produit scalaire de u et v est défini par Remarque v OA i- u 0 si et seulement si OA et OB ' ont même sens v et v = ii- u 0 si et seulement si OA et OB ' sont de sens contraire Exemple Soit ABC un triangle rectangle en A OB Soit B le projeté u v = OA OB' - -

3 ère S Produit scalaire On a AC = AB AB AB car le projeté orthogonal de C sur ( ) AB = On a BC = 0 AB AB puisque C se projette en B sur ( ) AB est le point B Corollaire Le produit scalaire de deux vecteurs orthogonaux est nul Exemple Soit ABCD un carré de côté a et I le milieu du segment [ AD ] On cherche à calculer le produit scalaire IB IC On a IB IC = ( IA + AB) IC = IA IC + AB IC En projetant le point C sur la droite (AD), on a et en projetant le point C sur la droite (AB), on a 3 donc IB IC = a + a = a IA IC = IA ID = IA AB IC = AB AB = a ID = a 3 ) Extension de la notion d orthogonalité Proposition Deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est nul Démonstration i- Si u = 0 ou v = 0 alors u v = 0 ii- Réciproquement, soient u et v deux vecteurs non nuls, tel que u = 0 Prenons u = OA v = 0 et v = OB v et notons B le projeté orthogonal de B sur ( OA ) ; alors u équivaut OA OB = 0 équivaut OA OB' = 0 équivaut à OB ' = 0 c est à dire O = B' Le triangle OBA est un triangle rectangle en O et prouve que u et v sont orthogonaux On a alors : u v u v = 0 Exemple Soit ABCD un carré de côté, I et J sont les milieux respectifs des segment [ AB ] et [ ] veut montrer que les droites ( AJ ) et (DI) sont perpendiculaires On a AI = ( AB + AC ) et DI = ( DA + DB ) donc, AJ DI = ( AB + AC) ( DA + DB) = ( AB DA + AB DB + AC DA + AC DB) BC On Comme ABCD est un carré, AB DA = AC DB = 0 et AB DB = BA BD = BA et AC DA = AC AD = AD Par conséquent, AJ DI = BA AD = 0 ce qui prouve que les droites (AJ) et (DI) sont perpendiculaires - 3 -

4 ) Autres expressions du produit scalaire Théorème Soient u et v deux vecteurs non nuls u v = u v cos u, v Démonstration La relation est vraie lorsque les vecteurs sont colinéaires, soit qu ils aient même sens cos u, v = : u v = u v, soit qu ils aient des sens contraires cos u, v = ce qui donne u v = u v Si les vecteurs u et v ne sont pas colinéaires, posons Lorsque θ est aigu u = OA et Lorsque θ est obtus v = OB u ; et θ v [ π ] u v = OA OB = OA OH u v = OA OB = OA OH cos ( θ ) u v = OA OB = OA OH u v = OA OH cos ( π θ ) u v = OA OB = OA OH cos ( θ ) Autre démonstration Soit i le vecteur unitaire associé au vecteur u, c est à dire i = u u Soit α une mesure de l angle orienté du couple de vecteurs v u; On a i ; v = α [ π ] Le projeté orthogonal de v sur u s écrit OH = v cos α i or, u et OH étant colinéaires, on a u v = u OH = u v cosα Exemple : Exercice [,5 point 5 min] Soit ABCD un carré de côté a, où a est un réel strictement positif On désigne par I le milieu du segment [BC] et par θ l angle IA ˆ C ) Calculer les longueurs AC et AI en fonction de a Exprimer alors le produit scalaire AC cos θ [,5 pt] AI en fonction de a et de ( ) - -

5 ère S Produit scalaire Soit a un réel strictement positif Comme ABCD est un carré de coté a, le triangle ABC est un triangle rectangle en B D après le théorème de Pythagore, = + d où AC AB BC = a Comme I est un point de [BC], on a aussi AC = a a 5 AI = = AB + BI = a + a d où A l aide de la propriété du produit scalaire, on a : AC = AI AC cos( θ ) a 5 AI = AI ce qui donne : 0 AI 3 AI = AB + AC, montrer que AI AC = a [,5 pt] AI = AB + AC d où : Pour tout réel a strictement positif, AC = a cos( θ ) ) En utilisant le fait que ( ) Comme I est le milieu de [BC], on a ( ) AI AC = ( AB + AC) AC = ( AB AC + AC AC) = AB AC + AC Comme AC se projette orthogonalement sur AB, on a alors 3 AI AC = AB AC + = ( a + a ) = a 3 Pour tout réel a strictement positif, AI AC = a 3 ) Déduire des deux expressions de AC valeur approchée, à AI la valeur exacte de ( θ ) cos puis donner une 0 près par défaut, de θ en degrés [,5 pt] * 0 3 Pour tout réel a IR +, AI AC = a cos( θ ) et AI AC = a donc ( ) a cos θ = a cos( θ ) = La valeur exacte de cos ( θ ) est cos ( θ ) = 0 Avec la calculatrice, on obtient θ 8, 3 ) Que peut-on déduire de la valeur de cet angle θ [0,5 pt] Comme la valeur de l angle est indépendante du coté a du carré, on en déduit que Dans n importe quel carré, la valeur de l angle IA ˆ C est indépendante de la longueur du côté a du carré - 5 -

6 II- LES PROPRIETES DU PRODUIT SCALAIRE ) Symétrie du produit scalaire Théorème Soient u et v deux vecteurs : u v = v u (Symétrie du produit scalaire) Démonstration D après le théorème précédent, lorsque u et v sont non nuls, on a v u = v u v, u cos mais ( u ; v) cos( v; u ) cos = d où l égalité u v = u v cos u, v et ) Opérations sur le produit scalaire Théorème Pour tous vecteurs, u, v et w et pour tout réel α, on a : i- u ( v + w) = u v + u w, ii- u ( v) = α( u v) α Démonstration i- Soient OA, OB et OC trois représentants des vecteurs u, v et w et prenons OD comme représentant du vecteur v + w u ( v + w) = OA OD = OA OH et u v = OA OB = OA OH puis u w = OA OD = OA OH ainsi u v + u w = OA ( OH + OH ) mais OH = HH car OB se projette en OH et CD se projette en H H donc u v + u w = OA ( OH + HH ) = OA OH d où l égalité ii- Soit α un réel non nul et u, v deux vecteurs quelconques Montrons que u α v = α u v Montrons que si u, v sont orthogonaux alors u α v = α u v = 0 Si u est orthogonal à v, alors u v = 0 De plus, α v est un vecteur colinéaire à v donc u et α v sont orthogonaux donc ( v) = 0 u α v = α u v u α ce qui établit la relation ( ) ( ) - 6 -

7 ère S Produit scalaire Supposons à présent u, v non orthogonaux Soit O, A, B et C quatre points distincts du plan tels que u = OA, v = OB et α v = OC On note H le projeté orthogonal de A sur (OC) Montrer que α u v u α v = 0 Supposons u et v non orthogonaux Soient OA, OB et OC trois représentants des vecteurs u, v et α v et notons H le projeté orthogonal de A sur (OC) On a u v = OA OB = OH OB donc, pour tout réel α non nul : α ( u v) = α( OH OB) par ailleurs, u ( α v) = OA OC = OH OC par soustraction, u v u α v = α OH OB et comme v et α ( ) OH OC = OH ( αob OC) α v sont colinéaires, on a prouve que α u v = u α v 3 ) En déduire la propriété voulue Pour tout réel α non nul et, pour tout vecteurs u et v, on a OC = αob d où α u v u α v = 0 ce qui u α v = α u v Exercice Soit ABC un triangle quelconque Soit H le point d intersection des hauteurs issues de A et de B ) Justifier que AH BC = BH AC = 0 Montrer par le calcul que CH AB = 0 Quelle propriété connue vient-on de démontrer? ) (AH) est perpendiculaire à (BC) donc AH BC = 0 et (BH) est perpendiculaire à (AC) donc BH AC = 0 ) CH AB = ( CA + AH ) AB = CA AB + AH AB = CA ( AH + HB) + AH AB = CA AH + CA HB + AH AB = AH CA AH AB ( CA AB) = AH + = AH CB =0 3 ) (CH) est donc la troisième hauteur du triangle ce qui prouve que les hauteurs d un triangle sont concourantes - 7 -

8 3 ) Applications Corollaire Le produit scalaire de deux vecteurs reste inchangé si on ajoute à l un d eux un vecteur orthogonal à l autre Preuve D après la relation u ( v + w) = u v + u w u ( v + w) = u v et la relation demeure Si u w, on a u w = 0 et donc ) Normes et produit scalaire Théorème Pour tous vecteurs u et v, on a : i- u + v = u + v + u v, ii- u v = u iii- ( u + v) ( u v) + = v u u v, v Démonstration évidente i- on a u + v = u + v u + v = u + v + u v Cette égalité fournit une autre expression du produit scalaire, u v = u + v u v Dans un quadrilatère ABCD où l on pose u = AB, v = AC et u + v = AD, on a AB AC = ( AD AB AC ) III- PRODUIT SCALAIRE ET CONFIGURATIONS ) Caractérisation du cercle de diamètre [AB] Théorème Soit A et B deux points distincts du plan Le cercle de diamètre [ AB ] est l ensemble des points M du plan tel que MA MB = 0 Démonstration Si M est confondu avec l un des points A ou B alors l un des deux vecteurs est le vecteur nul et la relation est satisfaite Supposons M distinct des points A et B AB, alors d après le théorème de l angle i- Si M est un point du cercle de diamètre [ ] droit, les droites ( MA ) et ( ) MB sont orthogonaux d où MA MB = 0 ii- Réciproquement, supposons MB = 0 MB sont perpendiculaires et donc les vecteurs MA et MA, alors les droites ( MA ) et ( ) perpendiculaires, et donc M est un point du cercle de diamètre [ AB ] MB sont - 8 -

9 ère S Produit scalaire ) Projection orthogonale Proposition Soit u un vecteur unitaire d un axe Le projeté orthogonal du vecteur v sur u est le vecteur v ' = ( u v)u Démonstration u et v ' sont colinéaires, donc il existe un réel tel que v ' = u Or u v = u v' = u u = u, mais comme u est un vecteur unitaire, on a u = u = et donc u v = En reportant dans la relation v ' = u, on a v ' = ( u v)u Corollaire Dans une base orthonormale ( j ) i;, lorsque u = xi + y j alors x = u i et y = u j 3 ) Transformations de MA MB, MA + MB, MA MB Théorème de la médiane Soit A et B deux points distincts du plan et I le milieu de [ ] M du plan, on a : i- MA MB = MI AB, ii- MA + MB = MI + AB, iii- MA MB = IM AB AB ; alors pour tout point Démonstration Remarquons d abord que comme I est le milieu de [ AB ], on a IA + IB = 0 et que IA = IB = AB i- MA MB = ( MI + IA) ( MI + IB) = MI + MI ( IA + IB) + IA IB = ( ) ( MI + MI 0 + AB AB) = MI AB ii et iii MA = MA = ( MI + IA) = ( IA IM ) = IA IA IM + IM = AB IA IM IM + MB = MB ( ) ( ) = MI + IB = IB IM = IB IB IM + IM = AB IB IM IM + Par addition, on a AB MA + MB = IM ( IA + IB) + IM = MI + AB Par soustraction, MA MB = IM ( IB IA) = IM AB Remarque Ces relations sont à connaître par cœur ainsi que leur démonstration - 9 -

10 IV- ANALYTICITE DU PRODUIT SCALAIRE ) Expression analytique du produit scalaire Théorème Dans une base orthonormale ( j ) et ( x' ; y' ) v est u v = xx' + yy' Démonstration i; une base orthonormale On a : Soit ( j ) ( xi + y j ) ( x' i + y' j ) = xx' i + ( xy' + x' y) i j yy' j i; le produit scalaire de deux vecteurs u ( x; y) u v = + mais i j = 0 et i = j = par choix de la base d où u v = xx' + yy' Remarques On retrouve les résultats suivants i- ( u v) u v = 0 xx + yy = 0 ii- Si ( x y) u ;, u + = x y iii- Lorsque A ( x A ; y A ) et B ( x B ; y B ), on a AB ( x ) ( ) B xa + yb ya = ) Vecteur normal à une droite Définition Etant donnée une droite D du plan, tout vecteur non nul orthogonal à un vecteur directeur de la droite D est appelé vecteur normal à D Remarques Soit D une droite d équation ax by = c 3 + avec ( a; b; c) IR et ( ; b) ( 0;0) D admet pour vecteur normal, le vecteur n ( a; b) En effet, si ud ( b; a) vecteur directeur de D, on a ud n = ( b) a + a b = ab + ab = 0 a est un, ce qui prouve que les vecteurs u D et n sont orthogonaux Soit D une droite non parallèle à l axe des ordonnées, d équation réduite y = mx + p Le vecteur ud ( ;m) est un vecteur directeur de la droite D et n ( m; ) est un vecteur normal à D 3 ) Equation d une droite définie par un vecteur normal Théorème Soit ( a b) n ; un vecteur non nul Une droite D admettant n comme vecteur 3 normal, a une équation cartésienne de la forme ax + by = c avec ( a; b; c) IR et ( a ; b) ( 0;0) La réciproque est vraie - 0 -

11 ère S Produit scalaire Démonstration i- Soit D une droite admettant le vecteur non nul ( a b) passant par le point A ( x A ; y A ) Soit ( x y) Le point ( x y) seulement si ( x x ) + b( y y ) = 0 ii- n ; comme vecteur normal et M ; un point du plan M ; appartient à la droite D si et seulement si n AM = 0 si et a A A si et seulement si ax + by = ax A + bya En posant c = ax A + by, on a que M D ax + by = c ce qui prouve que la droite A D a bien une équation de la forme voulue avec ( ; b) ( 0;0) a puisque n est un vecteur non nul La réciproque est déjà traitée : c est la remarque de la définition précédente Exemple Soit A ( ;), B ( 3;) et ( ;) C ) En notant I le milieu du segment [AB], donner une équation cartésienne de la médiatrice du segment [AB] ) Donner une équation cartésienne de la hauteur issue de A ) Le milieu du segment [AB] a pour coordonnées I ( ; 3 ) Or la médiatrice du segment [AB] M ; appartient à la médiatrice IM si et seulement si 8 x y = 5 admet le vecteur AB ( ; ) comme vecteur normal Ainsi, ( x y) du segment [AB] si et seulement si AB = 0 ) Le vecteur BC ( ;3) étant un vecteur normal à la hauteur issue de A, les vecteur BC et AM ( x + ; y ) sont orthogonaux si et seulement si BC AM = 0 si et seulement si x + 3 y = 7 ) Equation cartésienne d un cercle a- Cercle défini par son centre Ω et son rayon r Définition Soit Ω et M deux points distincts du plan et r un nombre réel positif On appelle cercle de centre Ω et de rayon r l ensemble des points M du plan tels que Ω M = r Lorsque Ω et M sont confondus, donc lorsque r = 0, on appelle ce cercle, le cercle point Ω Théorème Dans un repère orthonormal ( O i; j ) centre ( ) α; β Ω et de rayon IR+ Démonstration ; l équation cartésienne d un cercle de x α + y β = r r est : ( ) ( ) D après la définition, un point M ( x; y) appartient au cercle C ( Ω ;r ) avec ( α; β ) si et seulement si ΩM = r ΩM = r ( ) ( ) Exemple L équation du cercle ( O;) x α + y β = r C est x + y = Ω et r IR+ - -

12 b- Reconnaître l équation d un cercle Si on développe l équation obtenue précédemment, il vient : x + y αx βy = r α β La question de la réciproque se pose alors Toute équation de la forme x + y + ax + by = c 3 où ( a; b; c) IR est-elle l équation d un cercle dont on pourrait connaître les coordonnées du centre ainsi que le rayon? Utilisons la forme canonique du trinôme du second degré On a : x y ax by c x ax y by c x ax a a = = + y by b b = a b a b x + + y + = + + c On voit alors que sous cette forme, une condition nécessaire et suffisante pour que x + y + ax + by = c soit l équation d un cercle est que a + b + c 0 On pose alors r = a + b a b + c On obtient ainsi l équation d un cercle de centre Ω ; et de rayon r = a + b + c ( ) ( ) c Théorème Dans un repère orthonormal ( O i; j ) ; l équation x + y + ax + by = c où a est : a b i- celle d un cercle de centre Ω ; et de rayon r = a + b + c si a + b + c > 0, a b ii- celle d un cercle point Ω ; si a + b + c = 0, iii- l ensemble vide si a + b + c < 0 3 ( ; b; c) IR c- Cercle défini par son diamètre Théorème Soit A et B deux points distincts du plan L ensemble des points M du plan tels que MB = 0 AB MA est le cercle de diamètre [ ] Démonstration Les points A et B vérifient la relation car le vecteur nul est orthogonal à tout vecteur Si M est un point du plan distinct des points A et B tel que MA MB = 0 Ceci revient à dire que les vecteurs MA et MB sont orthogonaux et donc que les droites ( MA ) et ( ) l angle droit, le point M appartient au cercle de diamètre [ AB ] MB sont perpendiculaires en M D après le théorème de - -

13 ère S Produit scalaire Si M est un point du cercle de diamètre [ AB ], toujours d après le théorème de l angle droit, les droites ( MA ) et ( ) MA MB = 0 MB sont perpendiculaires en M et donc Théorème Soit C un cercle de centre Ω et A un point de C Un point M du plan appartient à la tangente à C en A si et seulement si AM AΩ = 0 Exemple Dans un repère orthonormal, on considère le cercle C ( Ω;5) avec Ω ( ; ) ) Déterminer une équation cartésienne du cercle C ) Montrer que le point A ( 5; ) appartient au cercle C 3 ) Déterminer une équation cartésienne de la tangente à C au point A - 3 -

14 V- LIGNES DE NIVEAU ET FONCTION SCALAIRE DE LEIBNIZ ) Nature du problème Il s agit de déterminer des lieux géométriques, c est à dire des ensembles de points f : P IR M f M et un réel donné On cherche Γ = M P f M = ; IR f M prend les formes suivantes : vérifiant une certaine relation Soit ( ) l ensemble { / ( ) }, où ( ) f ( M ) = u OM, f ( M ) = MA MB, f ( M ) = MA + MB, f ( M ) MA λ MB f ( M ) = α MA + βmb et f ( M ) = MA MB Ces ensembles de points sont appelés lignes de niveau de l application f =, Définition Soit f une application définie sur une partie U du plan à valeurs dans IR Soit un nombre réel On appelle ligne de niveau de, l ensemble des points U du plan tels que f ( M ) = ) Etude de f ( M ) u OM = Soit u un vecteur fixé non nul, O un point donné du plan et un nombre réel On cherche l ensemble Γ défini par Γ = { M P / u OM = ; IR} Si =0 alors Γ0 = M P / u OM = 0 Ainsi, M appartient à Γ 0 si et seulement si les vecteurs u et OM sont orthogonaux donc si et seulement si M est sur la droite passant par O et de vecteur normal u Si 0 Considérons la droite D de vecteur directeur u passant par le point O et soit M un point du plan non situé sur la droite D Appelons H le projeté orthogonal de M sur D Par définition du produit scalaire, u OM = u OH donc u OM = u OH = Comme OH est le projeté orthogonal de OM sur le vecteur u, le vecteurs OH et u sont colinéaires donc il existe un réel α tel que ( ) OM = u OH u OH = u OH = α u d où u α mais u OH = donc α u = α = u - -

15 ère S Produit scalaire On en déduit que u OM = équivaut à OH = u L ensemble Γ cherché est la droite orthogonale à l axe ( u ) l abscisse sur cet axe est u Théorème u O; passant par le point H dont Soit u un vecteur non nul et O un point du plan Pour tout réel fixé, l ensemble des points M du plan tels que f ( M ) u OM = est une droite orthogonale à u Autre méthode (analytique) Considérons le plan muni d un repère orthonormé coordonnées ( a; b) où ( ; b) IR a avec ( a ; b) ( 0;0) Soit ( ) O ; i, j et soit u un vecteur non nul de M x; y un point du plan D après l expression analytique du produit scalaire, on a alors, u OM = ax + by Donc, pour tout réel, u OM = ( ax + by = ) Avec cette dernière écriture, on reconnaît que les lignes de niveau de f sont les droites de a b vecteur normal u ( a; b) passant par le point H ; a + b a + b f M = MA MB ) Etude de ( ) Soit A et B deux points fixés du plan et notons O le milieu du segment [AB] On cherche l ensemble Γ = { M P / MA MB = ; IR} Soit M un point du plan tel que f ( M ) = MA MB D après le théorème de la médiane, ( M ) ( MA MB) ( MA MB) f = + = AB OM D où, pour IR, ( M ) f = AB OM = Les points A et B étant fixés, on peut poser u = AB et on est ramené au problème précédent avec u OM = Les lignes de niveau de f sont les droites perpendiculaires à (AB) Remarque Lorsque décrit IR, toute droite orthogonale à (AB) est une ligne de niveau de f f M = MA + MB 3 ) Etude de ( ) Soit A et B deux points fixés du plan et notons O le milieu du segment [AB] On cherche Γ = M P / MA + MB = ; IR l ensemble { } - 5 -

16 Soit M un point du plan tel que ( ) ( M ) f = MO + AB D où, pour IR MO = AB f M = MA + MB D après le théorème de la médiane,, ( M ) f = MO + AB = i- Si AB, Γ est le cercle de centre O de rayon r = AB, ii- Si < AB, Γ = Remarques i- Si ii- iii- Si = AB = AB,, Γ est le cercle point O r = AB, Γ est le cercle de diamètre [AB] Lorsque décrit l intervalle AB ; +, le réel AB cercle de centre O est une ligne de niveau de l application f décrit IR + ; ainsi tout f M = MA λ MB ) Etude de ( ) où IR + { } λ Soit A et B deux points fixés du plan On cherche l ensemble : Γ = M P / MA λ MB = ; IR { } On a f ( M ) = MA λ MB = ( MA λmb) ( MA + λmb) système {( A ; ), ( B;λ )} et J celui de {( A ; ), ( B; λ )}, on a : f ( M ) = [( + λ ) MI ] [( λ ) MJ ] = ( λ ) MI MJ donc ( M ) puisque λ IR { } + ; en notant I le barycentre du f = MI MJ = λ On pose K = Soit G le milieu du segment [IJ] D après le théorème de la médiane, λ MI MJ = K MG IJ = K MG = K + IJ i- Si K IJ, Γ est le cercle de centre G milieu de [IJ] et de rayon r = K + IJ, ii- Si K < IJ, Γ = f M = α MA + βmb Si + β = 0 5 ) Etude de ( ) α avec ( ; β ) ( 0;0) ( MA MB ) α + β = α, déjà vu au ) MA MB Si + β 0 α, on a β = α et donc α, considérons le barycentre G du système {( A ; α ), ( B; β )} alors, ( ) ( ) f M = α + β MG + αga + βgb On a - 6 -

17 ère S Produit scalaire αga βgb Ainsi, ( f ( M ) = ) MG = α + β Si α = β =, c est le théorème de la médiane, G = O déjà vu c est le cas 3 ) Si α = et β = λ, c est le cas ) Dans les autres cas, on a αga βgb K = α + β - Si K 0, Γ est le cercle de centre G et de rayon K - Si K < 0, Γ = αga βgb MG = on pose α + β 6 ) Etude de ( M ) f = MA MB, avec M distinct de B Soit A et B deux points fixés du plan On cherche l ensemble : Γ = { MA M P / = ; IR + } MB Soit M un point du plan, et IR+, = MA MB = 0 MB MA Si =, MA MB MB MA = = et Si, c est un cas particulier de ) AB, Γ est la médiatrice du segment [ ] Exercices sur les équations de droites 3 Soit la droite d équation cartésienne ax + by + c = 0 avec ( a; b; c ) IR et ( a ; b ) ( 0;0) et A ( x y A; A ) un point du plan On note H ( x y H; H ) le projeté orthogonal du point A sur la droite ) Donner les coordonnées d un vecteur normal n à la droite ) Calculer de deux manières différentes le produit scalaire n AH axa + bya + c 3 ) En déduire que la distance du point A à la droite est donnée par : AH = a + b ) Application numérique ; calculer la distance des points A ( 6;3) et B ( 5;) à la droite d équation x + 3y = 5 ) Soit deux droites parallèles D et D d équations cartésiennes respectives ax + by + c = avec ( a; b; c ) IR et ( a ; b ) ( 0;0) et a ' x + b' y + c' = 0 avec ( a; b; c ) IR et ( a '; b' ) ( 0;0) a- Soit A un point appartenant à D et A le projeté orthogonal de A sur D La distance AA est la distance des droites D et D Démontrer en utilisant 3 ) que c c' AA' = a + b b- Calculer la distance des droites D d équation x + y = 0 et D d équation x + y + = 0-7 -

18 - 8 -

19 ère S Produit scalaire - 9 -

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Séquence 2. Repérage dans le plan Équations de droites. Sommaire Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Exercices de géométrie

Exercices de géométrie Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigés d exercices sections 3 à 6. Liste des exos recommandés :

Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigés d exercices sections 3 à 6. Liste des exos recommandés : LM323 Envoi 2 2009-2010 Contenu de cet envoi Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigé du devoir 1. Un exercice de révision sur le chapître 1. Exercices sur l inversion. Corrigés

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Du Premier au Second Degré

Du Premier au Second Degré Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse

Plus en détail

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace Mabrouk Brahim Université Virtuelle de Tunis 2007 Ce cours a pour objet la présentation des différents concepts de la géométrie de l espace comme une continuation de ceux vus en

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Nombres complexes. cours, exercices corrigés, programmation

Nombres complexes. cours, exercices corrigés, programmation 1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

par Denis-Charles Cisinski & Georges Maltsiniotis

par Denis-Charles Cisinski & Georges Maltsiniotis LA CATÉGORIE Θ DE JOYAL EST UNE CATÉGORIE TEST par Denis-Charles Cisinski & Georges Maltsiniotis Résumé. Le but principal de cet article est de prouver que la catégorie cellulaire Θ de Joyal est une catégorie

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Comment démontrer que deux droites sont perpendiculaires?

Comment démontrer que deux droites sont perpendiculaires? omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Livret de liaison Seconde - Première S

Livret de liaison Seconde - Première S Livret de liaison Seconde - Première S I.R.E.M. de Clermont-Ferrand Groupe Aurillac - Lycée Juin 2014 Ont collaboré à cet ouvrage : Emmanuelle BOYER, Lycée Émile Duclaux, Aurillac. Patrick DE GIOVANNI,

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Mais comment on fait pour...

Mais comment on fait pour... Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition

Plus en détail

L ALGORITHMIQUE. Algorithme

L ALGORITHMIQUE. Algorithme L ALGORITHMIQUE Inspirée par l informatique, cette démarche permet de résoudre beaucoup de problèmes. Quelques algorithmes ont été vus en 3 ième et cette année, au cours de leçons, nous verrons quelques

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Exercice numéro 1 - L'escalier

Exercice numéro 1 - L'escalier Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES

CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail