Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1"

Transcription

1 Fich Bac S n 0 Trminal S Intégration - Calcul ds primitivs Exrcic n Détrminr ds primitivs ds fonctions suivants sur l'intrvall indiqué : 5 a) f (x)= (2 x+) 3 sur I =] 2 [ ;+ b) g ( x)= ln x sur I =]0 ;+ [ x c) h( x)= 3 x sur R d) k (x)=6sin(2 x)cos 3 (2 x) sur R Exrcic n 2 L plan st muni d'un rpèr orthonormal (O ; i ; j) d'unité graphiqu 2cm. On considèr la fonction f défini sur R par f ( x)=( x 2 2 x ) x. Soit F la fonction défini sur R par F (x)=(a x 2 +b x+c) x où a, b t c sont ds réls à détrminr. ) Calculr la dérivé d F n fonction d a, b t c. 2 ) Détrminr a, b t c pour qu F soit un primitiv d la fonction f. 3 ) Détrminr la primitiv F d la fonction f qui prnd la valur 5 n 0. 4 ) Calculr l'air du domain du plan délimité par la courb d f, l'ax ds abscisss t ls dux droits d'équations x=0 t x=2. On donnra ctt air n u.a. puis n cm 2. Exrcic n 3 Soit n un ntir naturl. On not f n la fonction défini sur R par On pos, pour tout ntir naturl n : u n = 0 f n ( x)dx. f n ( x)= n x a ) Calculr u. b) Montrr qu u 0 + u =. c) En déduir la valur xact d u 0. 2 a) Démontrr qu pour tout x>0 t tout ntir naturl n : nx x n x b) En déduir l sns d variation d la suit (u n ). 3 ) Démontrr qu pour tout ntir naturl n : 0 u n 0 4 a) Calculr l'intégral I n = 0 b) En déduir qu la suit (u n ) st convrgnt t calculr sa limit. + x Trm.S FichBACn 0 Intégration-Primitivs Abdllatif ABOUHAZIM. Lycé Fustl d Coulangs - Massy Pag /7

2 Corrigé Exrcic n L'ART DE LA TRANSFORMATION! Détrminr ds primitivs ds fonctions suivants sur l'intrvall indiqué : 5 a) Rchrch d'un primitiv d f (x)= sur (2 x+) 3 I =] 2 [ ;+ On pos : u(x)=2 x+ donc : u ' (x)=2. Puis, On transform f (x) n fonction d u t d u'. Par suit : f (x)= 5 u 3= u 3= 5 2 u' u = u Or, un primitiv d u ' u 3 st : u' u 3 u 2 +C= +C = 2 2 u 2+C Donc un primitiv d f st la fonction F défini par : F (x)= u 2 +C D'où : F (x)= 5 4(2 x+) 2 +C b) Rchrch d'un primitiv d g ( x)= ln x x On pos : u(x)=ln x donc : u ' (x)= x. sur I =]0 ;+ [ Puis, On transform g(x) n fonction d u t d u'. Par suit : g (x)= ln x x = x ln x=u ' u=u ' u. Or, un primitiv d u ' u st : u 2 2 +C= 2 u2 +C Donc un primitiv d g st la fonction G défini par : G(x)= 2 (ln x)2 +C c) Rchrch d'un primitiv d h( x)= 3x sur R Ctt fonction n fait pas parti ds fonctions d référnc, ni ds fonctions usulls, ni ds fonctions composés. Nous allons lui appliqur un transformation. L'xponntill étant défini sur R t touts ss valurs sont (strictmnt) positivs, la fonction h st bin défini t continu sur R ; donc ll admt ds primitivs. D'autr part, pour tout x R, h( x)= 3 x =( 3 x ) 2 = 2 x Et là, ça dvint plus simpl! Nous rconnaissons un form ax. On pos : u(x)= 3 2 x donc : u ' (x)= 3 2. Puis, On transform h (x) n fonction d u t d u'. Par suit : h(x)= 2 3 ( 3 2) 3 2 x = 2 3 u' u. Trm.S FichBACn 0 Intégration-Primitivs Abdllatif ABOUHAZIM. Lycé Fustl d Coulangs - Massy Pag 2/7 3

3 Or, un primitiv d la fonction composé u ' u st : u +C. Donc, un primitiv d h st la fonction H défini par : H (x)= x +C d) Rchrch d'un primitiv d k ( x)=6sin (2 x)cos 3 (2 x) sur R On pos : u(x)=cos(2 x) donc : u ' (x)= 2 sin(2 x). Puis, On transform k (x) n fonction d u t d u'. Par suit : k (x)= 3 ( 2sin(2 x)) (cos(2 x)) 3 = 3 u' u 3. Or, un primitiv d la fonction composé u ' u 3 st : 4 u4 +C. Donc, un primitiv d k st la fonction K défini par : K (x)= 3 4 cos4 (2 x)+c Exrcic n 2 L plan st muni d'un rpèr orthonormal (O ; i ; j) d'unité graphiqu 2cm. On considèr la fonction f défini sur R par f (x)=( x 2 2 x ) x. Soit F la fonction défini sur R par F (x)=(a x 2 +b x+c) x où a, b t c sont ds réls à détrminr. ) Calculr la dérivé d F n fonction d a, b t c. La fonction F s'écrit sous la form d'un produit u.v, avc u( x)=(a x 2 +b x+c) donc : u ' ( x)=2 a x+b t v (x)= x donc : v ' ( x)= x Comm (u.v)' =u '.v+u.v ', on a donc : F ' ( x)=(2 a x+b) x +(a x 2 +b x+c)( x ) donc F ' ( x)=(2 a x+b) x (a x 2 +b x+c) x On mt x n factur t on réduit l'xprssion ntr parnthèss pour obtnir : F ' ( x)=( a x 2 +(2 a b) x+(b c)) x 2 ) Détrminr a, b t c pour qu F soit un primitiv d la fonction f. F st un primitiv d la fonction f sur R si t sulmnt si : pour tout x R: F ' ( x)= f ( x). Par conséqunt : pour tout x R: ( a x 2 +(2 a b) x+(b c)) x =( x 2 2 x ) x. Comm pour tout x R: x 0 on a : a x 2 +(2 a b) x+(b c)= x 2 2 x Et, par idntification ds cofficints ds dux polynôms, on obtint : { a= { a= { a= 2a b= 2 donc 2 b= 2 donc b=0 b c= b c= c= CQFD. Par conséqunt : F ( x)=( x 2 +) x. Trm.S FichBACn 0 Intégration-Primitivs Abdllatif ABOUHAZIM. Lycé Fustl d Coulangs - Massy Pag 3/7

4 3 ) Détrminr la primitiv F d la fonction f qui prnd la valur 5 n 0. F st un autr primitiv d f sur R, donc il xist un constant C tll qu pour tout x R: F ( x)=f(x)+c. Mais alors, comm F vérifi la «condition initial» F (0)=5, on alors ls équivalncs suivants : F (0)=5 (ssi) ( 0 2 +) 0 +C =5 (ssi) +C=5 (ssi) C=4. Conclusion : La primitiv F d la fonction f qui prnd la valur 5 n 0 st la fonction défini par : F ( x)=( x 2 +) x ) Calculr l'air du domain du plan délimité par la courb d f, l'ax ds abscisss t ls dux droits d'équations x=0 t x=2. On donnra ctt air n u.a. puis n cm 2. Rappl : pour calculr un air ntr la courb d f t l'ax ds abscisss, sur [a ; b] ; il faut détrminr d'abord l sign d la fonction sur l'intrvall [a ; b] puis, sur la parti d l'intrvall où la fonction st positiv, l'air st égal à l'intégral d f ; sur la parti du domain où la fonction st négativ, l'air st égal à l'intégral d f. Dans notr cas, on étudi l sign d f ( x)=( x 2 2 x ) x sur [0 ; 2]. Comm pour tout x R: x > 0, on a : f ( x)>0 (ssi) x 2 2 x >0. On calcul l discriminant pour trouvr ls racins du trinôm s'il n xist : Δ=b 2 4 a c=( 2) 2 4 ( )=8. Comm Δ>0, l trinôm admt dux racins distincts : x = ( 2) = 2 = 2 0,442...<0 t x =+ 2 2,442...>2 L cofficint d x 2 étant positif, f (x) st positiv à l'xtériur ds racins t négativ ntr ls racins. Donc pour tout x [0 ; 2]: f (x )<0. Par conséqunt : l'air A du domain du plan délimité par la courb d f, l'ax ds abscisss t ls dux droits d'équations x=0 t x=2, st donné par : 2 A = 0 f (x)dx=[ F 2 (x)]0 = F (2) ( F (0))= F (0) F (2) A = [( 0 2 +) 0 ] [( 2 2 +) 2 ]=3 2 + Conclusion : A = u.a. (n unités d'airs). D plus comm OI = OJ = 2 cm, on a : u.a. = 2 2 = 4 cm², on a : A = 4(3 2 +) cm² (n cntimètrs carrés). J vérifi à la calculatric Sur TI, j tap : (-) 2nd CATALOG fnint ou fonctintgr( (X 2 2X ) X,X,0,2 ) t j'obtins, Trm.S FichBACn 0 Intégration-Primitivs Abdllatif ABOUHAZIM. Lycé Fustl d Coulangs - Massy Pag 4/7

5 J calcul un valur approché d mon résultat t j'obtins : =, Mon résultat st corrct! Exrcic n 3 Soit n un ntir naturl. On not f n la fonction défini sur R par f n ( x)= n x + x On pos, pour tout ntir naturl n : u n = 0 f n (x)dx..a ) Calculr u. x u = 0 f ( x)dx= 0 dx x + Mêm tchniqu qu l'xrcic n. On chrch un primitiv d la fonction f. On pos : u(x)=+ x donc : u ' (x)= x. Puis, On transform f (x) n fonction d u t d u'. Par suit : f (x)= u '. u On rmarqu, au passag, qu pour tout sur R : u(x)>0. Or, un primitiv d u ' st : ln u+c. Donc un primitiv d f u st la fonction F défini par : F (x)= ln (+ x )+C (N pas oublir l sign moins). Donc u =[F (x)] 0 = ln(+ )+ln(+ 0 ) Donc u = ln ( + ) +ln 2= ln ( + Conclusion : u 2 +). ) +ln 2 +) +ln 2..b) Montrr qu u 0 + u =. u 0 +u = 0 f 0 ( x)dx+ ( 0 f (x)dx= 0 ( f 0 (x)+ f ( x))dx x Donc : u 0 +u = 0 + dx x x) + + Par suit u 0 +u = 0 dx=[ x]0 = 0= CQFD..c) En déduir la valur xact d u 0. D'après c qui précèd, nous savons qu : u 0 + u =, donc u 0 = u. Et d'après la qustion.a) nous savons qu u 2, qu'on pourrait +) décomposr d'un autr manièr sachant qu ln = : u 2 +) +) 2 +ln +) 2 +. Donc u 0 = u = [ ln ( 2 +) + ] = ln ( 2 +). Conclusion : u ) CQFD. Trm.S FichBACn 0 Intégration-Primitivs Abdllatif ABOUHAZIM. Lycé Fustl d Coulangs - Massy Pag 5/7

6 2.a) Démontrr qu pour tout x > 0 t tout ntir naturl n : n x x n x On commnc par transformr ctt xprssion : [ n x x n x ] [ (n+) x n x ]. C qui constitu un écritur plus simpl! èr méthod : On fait un raisonnmnt par récurrnc : Pour chaqu ntir naturl n, on appll P n la proposition logiqu : P n : [Pour tout x > 0 : (n+) x n x ] Montrons par récurrnc qu pour tout n N, P n st vrai. i) Initialisation : Pour n=0, P 0 s'écrit : [pour tout x > 0 : x ]. Or, nous savons qu la fonction xponntill st strictmnt croissant sur R. Donc pour tout x > 0, on a : x < 0, donc : x 0. C qui donn x. Donc P 0 st vrai. ii) Hérédité : Soit n N. Supposons qu P n st vrai. Montrons qu P n+ st vrai. Par hypothès d récurrnc P n st vrai. Donc : [Pour tout x > 0: (n+) x n x ]. Or pour tout x > 0 : x > 0. Donc n multipliant par x, on obtint : Pour tout x > 0 : x (n+) x x n x Donc, pour tout x > 0 : (n+) x x n x x Donc, pour tout x > 0 : (n+) x x n x x C qui montr qu : P n+ st vrai. Conclusion : Pour tout n N t tout x > 0 : [ (n+) x n x ]. 2èm méthod : On pos q= x t on rmarqu qu pour tout x > 0 : 0 < q <. Donc la suit géométriqu (q n ) st strictmnt décroissant. Donc pour tout ntir n : q n+ q n. C qui donn, pour tout ntir naturl n t tout x > 0 : (n+) x n x. C'st plus court t tout aussi élégant! 2.b) En déduir l sns d variation d la suit ( u n ) Afin d comparr intégrals, il faut commncr par comparr ls fonctions. On sait qu, pour tout x > 0 : + x > 0. Donc, d'après c qui précèd : Pour tout n N t tout x > 0 : (n+) x n x donc, n divisant par + x > 0 : ( n+) x Pour tout x > 0 : + n x. Donc, pour tout x > 0 : f x + x n+ (x) f n (x) D'après la consrvation d l'ordr par ls intégrals t 0 <, on a : 0 f n+ (x)dx 0 f n ( x)dx. C qui donn : u n+ u n. Conclusion : La suit (u n ) st décroissant Trm.S FichBACn 0 Intégration-Primitivs Abdllatif ABOUHAZIM. Lycé Fustl d Coulangs - Massy Pag 6/7

7 3 ) Démontrr qu pour tout ntir naturl n : 0 u n 0 On sait qu, pour tout x > 0, on a : 0< x. Donc n ajoutant : +0<+ x 2. Donc, n prnant l'invrs : 2 +. Par conséqunt : 0 x +. x Maintnant, n multipliant par nx > 0, pour tout x > 0, on a : 0 n x D'après la consrvation d l'ordr par ls intégrals t 0 <, on a : 0 n x 0 + dx n x 0 x dx Conclusion : 0 u n 0 + x n x 4.a) Calculr l'intégral I n = 0 Il faut chrchr un primitiv d la fonction g défini par : g ( x)= n x On pos : u(x)= n x donc : u ' (x)= n. Puis, On transform g (x) n fonction d u t d u'. Par suit : g (x)= n ( n) n x. qu'on put aussi écrir : g (x)= n u ' u. Or, un primitiv d u ' u st : u +C. Donc un primitiv d g st la fonction G défini par : G(x)= n n x +C Donc I n =[G(x)] 0 = n n n 0 = n ( n ) Conclusion : I n = n ( n ). 4.b) En déduir qu la suit (u n ) st convrgnt t calculr sa limit. D'après la qustion précédnt, on sait qu : pour tout ntir n N: 0 u n I n. Il suffit d calculr la limit d I n lorsqu n tnd vrs l'infini. Or, d'un part : lim n + [ n] =0. Et d'autr part : donc lim ( n )=. Comm I n = ) n + n ( n obtnons : lim I n =0 n +. lim [ n ]= lim [ x ]=0 n + x, par produit ds limits, nous Conclusion : D'après l théorèm d comparaison (ou ds Gndarms), on put affirmr qu la suit (u n ) st convrgnt t u n =0. lim n + OUF! Trm.S FichBACn 0 Intégration-Primitivs Abdllatif ABOUHAZIM. Lycé Fustl d Coulangs - Massy Pag 7/7

f n (x) = x n e x. T k

f n (x) = x n e x. T k EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr

Plus en détail

Corrigé du baccalauréat S Pondichéry 13 avril 2011

Corrigé du baccalauréat S Pondichéry 13 avril 2011 Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Taux d évolution moyen.

Taux d évolution moyen. Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de

Plus en détail

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013 Enrichissmnt modal du Slctiv Mass Scaling Sylvain GAVOILLE 1 * CSMA 2013 11 Colloqu National n Calcul ds Structurs 13-17 Mai 2013 1 ESI, sylvain.gavoill@si-group.com * Autur corrspondant Résumé En raison

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Du Premier au Second Degré

Du Premier au Second Degré Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Mais comment on fait pour...

Mais comment on fait pour... Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

INTRODUCTION. 1 k 2. k=1

INTRODUCTION. 1 k 2. k=1 Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Matériau pour greffe MIS Corporation. Al Rights Reserved.

Matériau pour greffe MIS Corporation. Al Rights Reserved. Matériau pour grff MIS Corporation. All Rights Rsrvd. : nal édicaux, ISO 9001 : 2008 atio itifs m rn pos méd int i dis c a u x 9 positifs 3/42 té ls s dis /CE ur r l E. po ou u x U SA t s t appr o p a

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Guide de correction TD 6

Guide de correction TD 6 Guid d corrction TD 6 JL Monin nov 2004 Choix du point d polarisation 1- On décrit un montag mttur commun à résistanc d mttur découplé, c st à dir avc un condnsatur n parallèl sur R. La condition d un

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Garantie des Accidents de la Vie - Protection Juridique des Risques liés à Internet

Garantie des Accidents de la Vie - Protection Juridique des Risques liés à Internet Résrvé à votr intrlocutur AXA Portfuill : CR012764 N Clint : 1 r réalisatur : Matricul : 2 réalisatur : Matricul : Intégr@l Garanti ds Accidnts d la Vi - Protction ds Risqus liés à Intrnt J complèt ms

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Les nouvelles orientations politiques du budget 2015 du Gouvernement prévoient

Les nouvelles orientations politiques du budget 2015 du Gouvernement prévoient GO NEWSLETTER N 1/2015 19 janvir 2015 L «Spurpaak» du Gouvrnmnt t ss réprcussions sur la formation ACTUALITÉ L «Spurpaak» du Gouvrnmnt t ss réprcussions sur la formation Allianc pour la qualification profssionnll

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Les suites numériques

Les suites numériques Chapitre 3 Term. STMG Les suites numériques Ce que dit le programme : Suites arithmétiques et géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Suites arithmétiques et géométriques Expression du terme

Plus en détail

Journée d échanges techniques sur la continuité écologique

Journée d échanges techniques sur la continuité écologique 16 mai 2014 Journé d échangs tchniqus sur la continuité écologiqu Pris n compt d critèrs coûts-bénéfics dans ls étuds d faisabilité Gstion ds ouvrags SOLUTION OPTIMALE POUR LE MILIEU Gstion ds ouvrags

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Vu la loi n 17-99 portant code des assurances prom ulguée par le dahir n 1-02-238 du 25 rejeb 1423 (3 octobre 2002), telle qu'elle a été complétée ;

Vu la loi n 17-99 portant code des assurances prom ulguée par le dahir n 1-02-238 du 25 rejeb 1423 (3 octobre 2002), telle qu'elle a été complétée ; Arrêté du ministr s financs t la privatisation n 2241-04 du 14 kaada 1425 rlatif à la présntation s opérations d'assurancs (B.O. n 5292 du 17 févrir 2005). Vu la loi n 17-99 portant co s assurancs prom

Plus en détail

DOSSIER DE CANDIDATURE POUR UNE LOCATION

DOSSIER DE CANDIDATURE POUR UNE LOCATION DOSSIER DE CANDIDATURE POUR UNE LOCATION Ls informations donnés nécssairs pour traitr votr candidatur rstront confidntills. Un dossir incomplt n put êtr xaminé. C dossir d candidatur rst soumis à l approbation

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Chapitre 4: Dérivée d'une fonction et règles de calcul

Chapitre 4: Dérivée d'une fonction et règles de calcul DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

au Point Info Famille

au Point Info Famille Qustion / Répons au Point Info Famill Dossir Vivr un séparation La séparation du coupl st un épruv souvnt longu t difficil pour la famill. C guid vous présnt ls différnts démarchs n fonction d votr situation

Plus en détail

TVA et Systèmes d Information. Retour d expérience d entreprise. A3F - 26 mars 2015 Hélène Percie du Sert COFELY INEO

TVA et Systèmes d Information. Retour d expérience d entreprise. A3F - 26 mars 2015 Hélène Percie du Sert COFELY INEO isr la t l t t zon iqur nt TVA t Systèms d Information Rtour d xpérinc d ntrpris A3F - 26 mars 2015 Hélèn Prci du Srt COFELY INEO Pour Sup Ins À p NB. M 30/03/2015 Sommair isr la t l t t zon iqur nt I

Plus en détail

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné : Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point

Plus en détail

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m 1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Cours d Analyse I et II

Cours d Analyse I et II ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

C est signé 11996 mars 2015 Mutuelle soumise au livre II du Code de la Mutualité - SIREN N 780 004 099 DOC 007 B-06-18/02/2015

C est signé 11996 mars 2015 Mutuelle soumise au livre II du Code de la Mutualité - SIREN N 780 004 099 DOC 007 B-06-18/02/2015 st signé 11996 mars 2015 Mutull soumis au livr II du od d la Mutualité - SIREN N 780 004 099 DO 007 B-06-18/02/2015 Édition 2015 Madam, Monsiur, Vous vnz d crér ou d rprndr un ntrpris artisanal ou commrcial

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Théorèmes du Point Fixe et Applications aux Equations Diérentielles

Théorèmes du Point Fixe et Applications aux Equations Diérentielles Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

CLOUD TROTTER La Vache Noire Sud - 203 rue Oscar Roulet - 84440 Robion - Tél. : 04 90 76 56 27-06 80 050 050 - www.lavachenoiresud.

CLOUD TROTTER La Vache Noire Sud - 203 rue Oscar Roulet - 84440 Robion - Tél. : 04 90 76 56 27-06 80 050 050 - www.lavachenoiresud. Cloud Trottr La Vach Noir Sud - 203 ru Oscar Roult - 84440 Robion - Tél. : 04 90 76 56 27-06 80 050 050 - www.lavachnoirsud.com Cloud Trottr Cloud Trottr Prnz d la hautur! ds carts d caractèr pour donnr

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Le guide du parraina

Le guide du parraina AGREMENT DU g L guid du parraina nsillr co t r g ra u co n r, Partag rs ls mini-ntrprnu alsac.ntrprndr-pour-apprndr.fr Crér nsmbl Ls 7 étaps d création d la Mini Entrpris-EPA La Mini Entrpris-EPA st un

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

LE SURENDETTEMENT. a s s e c o. leo lagrange UNION NATIONALE DES ASSOCIATIONS FAMILIALES. union féminine civique et sociale

LE SURENDETTEMENT. a s s e c o. leo lagrange UNION NATIONALE DES ASSOCIATIONS FAMILIALES. union féminine civique et sociale LE SURENDETTEMENT 1 lo lagrang UNION NATIONALE 2 L'ENDETTEMENT 1984 : 4 ménags sur 10 avaint ds crédits (crédit à la consommation + immobilir) 1997 : 1 ménag sur 2 a un crédit n cours 55 % ds consommaturs

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Exemple de Plan d Assurance Qualité Projet PAQP simplifié

Exemple de Plan d Assurance Qualité Projet PAQP simplifié Exmpl d Plan d Assuranc Qualité Projt PAQP simplifié Vrsion : 1.0 Etat : Prmièr vrsion Rédigé par : Rsponsabl Qualité (RQ) Dat d drnièr mis à jour : 14 mars 2003 Diffusion : Equip Tchniqu, maîtris d œuvr,

Plus en détail

Equations différentielles linéaires à coefficients constants

Equations différentielles linéaires à coefficients constants Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Fonctions de plusieurs variables et changements de variables

Fonctions de plusieurs variables et changements de variables Notes du cours d'équations aux Dérivées Partielles de l'isima, première année http://wwwisimafr/leborgne Fonctions de plusieurs variables et changements de variables Gilles Leborgne juin 006 Table des

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Chapitre III : Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse

Chapitre III : Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc Filière DEUG : Sciences Mathématiques et Informatique (SMI) et

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Corrigé des TD 1 à 5

Corrigé des TD 1 à 5 Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Comment utiliser une banque en France. c 2014 Fabian M. Suchanek

Comment utiliser une banque en France. c 2014 Fabian M. Suchanek Commnt utilisr un banqu n Franc c 2014 Fabian M. Suchank Créditr votr compt: Étrangr Commnt on mt d l argnt liquid sur son compt bancair à l étrangr : 1. rntrr dans la banqu, attndr son tour 2. donnr l

Plus en détail