SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot"

Transcription

1 SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n a. Cette somme comporte n m + 1 termes. Remarque. La variable est muette : on peut la remplacer par n importe quelle autre variable. Autrement dit, a = =m p=m a p Exercice 1.1 =2 1. Attention! Le résultat d une somme ne peut pas dépendre de l indice de sommation, ça n aurait aucun sens! Une somme ne dépend que de ses bornes et du terme général sommé. 1.2 Règles de calcul Linéarité de la somme : (a + b ) = a + λa = λ a Attention! On ne peut mettre en facteur qu une expression qui ne dépend pas de l indice de sommation. b Remarque. Si on combine les deux propriétés précédentes, on a : (λa + µb ) = λ a + µ b Attention! La sommation se comporte mal avec les produits. Autrement dit, en général, ( ) ( ) a b a b 1

2 1.3 Sommes télescopiques Méthode Télescopage On appelle somme télescopique toute somme du type suivant (a +1 a ) = a n+1 a m =m Exercice 1.2 S n = =1 ln Sommes de puissances Notons S m (n) = m. On sait (série arithmétique) que S 1 (n) = =1 n(n + 1). Traitons le calcul de S 2 (n). 2 Première méthode On pose u = a 3 + b 2 + c et on déterminer a, b, c tels que u +1 u = 2 pour tout N. Deuxième méthode On exprime la somme [ ( + 1) 3 3] de deux manières différentes. On a par télescopage =1 [ ( + 1) 3 3] = (n + 1) 3 1 = n [ (n + 1) 2 + (n + 1) + 1 ]. =1 Et en développant chaque terme de la somme, on a aussi : [ ( + 1) 3 3] = =1 =1 =1 1 = 3S 2 (n) + 3S 1 (n) + n =1 Après calcul, on obtient S 2 (n) = n(n + 1)(2n + 1) 6 Exercice 1.3 S 3 (n). 2

3 1.4 Changement d indice Méthode Changement d indice On peut procéder à un changment d indice pour deux types de raison. Si l on veut changer l indice dans les termes à sommer. Par exemple, a +1 = =m n+1 l=m+1 en posant l = + 1 dans les termes de la somme et en remarquant que l prend alors toutes les valeurs entières entre m + 1 et n + 1. Ou encore, a n = =0 en posant l = n dans les termes de la somme et en remarquant que l prend alors toutes les valeurs entières entre 0 et n. Si l on veut changer les bornes de la somme. Par exemple, n+2 =2 a = en posant l = 2 de telle sorte que les bornes soient 0 et n et en changeant les indices des termes de la somme en remarquant que = l + 2. Dans les deux cas, on peut vérifier en considérant le premier et le dernier terme de la somme avant et après changement d indice. a l a l+2 a l Attention! On ne peut pas effectuer n importe quel changement d indice. Par exemple, soit S = On pourrait naïvement effectuer le chanegement d indice l = 2 de sorte que S = 6 a l. Mais 3 a 2. =0 3 a 2 = a 0 + a 2 + a 4 + a 6 =0 tandis que 6 a l = a 0 + a 1 + a 2 + a 3 + a 4 + a 5 + a 6 Le problème vient du fait que 2 ne prend pas toutes les valeurs entières entre 0 et 6 mais seulement les valeurs paires. Exercice 1.4 Compléter les trous dans les égalités suivantes : u +2 = u, =3 = =4 u = u, =1 n+2 =3 u +1 = = u 3

4 Exercice 1.5 la somme = n Sommation par paquets On a d abord tout simplement : p a = a + a si m p n =m =m =p+1 Exercice min(, n) et 2 =0 =0 max(, n). Séparation des termes d indices pairs et impairs Il existe plusieurs façons d écrire la somme des termes d indices pairs et et la somme des termes d indices impairs. a = =m =m pair = m n pair = = m 2 n n 2 = m 2 a + =m impair a + a 2 + a 2 + m n impair a a m 2+1 n 2 = m 1 2 a 2+1 a 2+1 Exemple Œ 2n ( 1) = =0 2n + 1 ( 1) = 2n+1 =0 2n 2l 2n 2l 2n = 2l + 1 2n = 2l + 1 2n 2l 2n 2l 2n 2l 1 2n 2l 1 l=1 n+1 l=1 4

5 2 Sommes classiques 2.1 Factorisation de a n b n Proposition 2.1 Soient a et b deux réels ou complexes et n N. Alors a n b n = (a b)(a + a n 2 b + + ab n 2 + b ) = (a b) a b = (a b) a b =0 =0 Remarque. On a en particulier a n 1 = (a 1)(a + a n a + 1) = (a 1) =0 a 2.2 Séries arithmétiques et géométriques Proposition 2.2 Séries arithmétiques Soient (a n ) une suite arithmétique et (n, p) N 2 tels que n p. p =n a = N a n + a p 2 où N = p n + 1 est le nombre de termes de la somme. En français, la somme de termes consécutifs d une suite arithmétique est égal au produit de la moyenne des termes extrêmes par le nombre de termes. Exemple 2.1 On retrouve en particulier que = =1 n(n + 1). 2 Proposition 2.3 Séries géométriques Soient (a n ) une suite géométrique de raison q et (n, p) N 2 tels que n p. p 1 q N a a = n si q 1 1 q Na n = Na p si q = 1 =n où N = p n + 1 est le nombre de termes de la somme. 1 q n+1 Remarque. On retiendra en particulier que q si q 1 = 1 q. =0 n + 1 si q = 1 5

6 Exercice =1 2.3 Sommes binomiales Coefficients binomiaux Définition 2.1 Factorielle n Pour n N, on note n! le produit des entiers de 1 à n i.e. n! =. On convient que 0! = 1. =1 Définition 2.2 Coefficient binomial Soit n N et 0, n. n n(n 1)... (n + 1) n! = =! (n )!! Remarque. Lorsque l on interprétera les coefficients binomiaux de manière combinatoire, on verra que l on peut convenir que ( n ) = 0 pour > n. Proposition 2.4 Propriétés des coefficients binomiaux Symétrie des coefficients binomiaux Soit (n, ) N 2 tel que n. n n = n Formule de Pascal Soit (n, ) (N ) 2 tel que n. n n 1 = + n 1 1 Relation utile Soit (n, ) (N ) 2 tel que n. n n 1 = n 1 Remarque. Ces relations sont encore vraies sans condition sur et n si l on convient que ( n ) = 0 pour > n. 6

7 Triangle de Pascal La relation de Pascal permet de construire le triangle de Pascal donnant les coefficients binomiaux de proche en proche. n = 0 1 n = n = n = n = n = = 0 = 1 = 2 = 3 = 4 = 5 On obtient une case en additionnant la case au-dessus et la case au-dessus à gauche : par exemple, 10 = ou 3 = Dénombrement de chemins Les coefficients binomiaux peuvent également s interpréter en termes de dénombrement de chemins dans un arbre binaire. En effet, le coefficient binomial ( n ) correspond aux nombres de chemins d un arbre binaire de «profondeur» n dans lesquels on a choisi fois la branche de gauche et donc n fois la branche de droite

8 2.3.2 Binôme de Newton Proposition 2.5 Formule du binôme Soient a et b deux complexes et n N. Alors (a + b) n = =0 n a b n Exemple 2.2 n On a = (1 + 1) n = 2 n et =0 =0 n ( 1) = (1 1) n = 0. Exercice 2.2 les sommes S 1 = = 0 n 2 et S 2 = 2 =1 2n ( 1) Sommes doubles 3.1 Définition et notations l On appelle somme double toute somme du type. Par définition, i= j=m l l = S i où S i =. i= j=m i= j=m On peut aussi noter cette même somme i l m j n ou encore (i,j),l m,n Si les bornes des dans les sommes sont identiques on a une notation plus condensée. Par exemple, i=1 j=1 = 1 i,j n Attention, les bornes de la deuxième somme peuvent dépendre de l indice de la première somme. Par exemple, i 1 i=2 j=1 Mais l inverse n arrive JAMAIS ou alors on a fait une erreur. On peut aussi avoir des notations plus condensées dans ce cas. Par exemple, i = i=1 j=1 1 j i n ou encore = i=1 j=i 1 i j n 8

9 3.2 Règles de calcul Ce sont les mêmes que pour une somme simple. Remarquons que l on peut mettre en facteur dans la deuxième somme toute expression qui ne dépend pas du deuxième indice. C est-à-dire, Ž a i b ij = a i b ij i j i j Cette dernière remarque nous permet de factoriser une double somme lorsqu on peut séparer les indices : ( ) Ž a i b j = a i b j i j i j Exercice 3.1 i=0 j=0 2 2i j. 3.3 Interversion des signes Si les bornes ne dépendent pas des indices, on peut intervertir les signes sans se poser de questions. l i= j=m = l j=m i= Sinon, les choses sont un peu plus délicates et on visualise souvent mieux la situation au moyen d un tableau. Méthode Interversion du signe dans Interversion au moyen d un tableau i=0 j=0 i. Dans le tableau ci-contre, on peut faire la somme des éléments i ligne par ligne : i=0 j=0 colonne par colonne : j=0 j=i Ces deux doubles sommes sont donc égales. Rien d étonnant à cela puisqu on peut réécrire ces deux sommes comme. 0 j i n i j a 00 1 a 10 a 11 2 a 20 a 21 a 22 3 a 30 a 31 a 32 a 33 4 a 40 a 41 a 42 a 43 a 44. Exercice 3.2 Écrire de deux manières différentes. 1 i<j n 9

10 Exercice 3.3 Vérifier que 2 = 2 et donner une expression simple de cette somme en intervertissant l ordre de sommation. =1 =1 l=1 3.4 Sommation par paquets Premier exemple Soit par exemple à calculer la somme double S = max(i, j). On peut séparer séparer cette somme en 1 i,j n trois «paquest» : ceux pour lesquels i < j, ceux pour lesquels i > j et ceux pour lesquels i = j. Ainsi S = max(i, j) + max(i, j) + max(i, i) 1 i<j n 1 j<i n = j + i + 1 i<j n j=2 i=1 j=2 i 1 i<j n 1 j<i n i=1 Les deux premières sommes sont les mêmes (on a juste permuté i et j) et j 1 j = j = (j 1)j = (S 2 (n) 1) (S 1 (n) 1) = S 2 (n) S 1 (n) i=1 Par conséquent, S = 2(S 2 (n) S 1 (n)) + S 1 (n) = 2S 2 (n) S 1 (n) = n(n + 1)(4n 1) Deuxième exemple Soit maintenant à calculer la somme double à n 1 donc 1 i,j n i j = 1 i,j n i j. Remarquons que i j peut prendre des valeurs de 0 =0 i j = = =1 i j = Reste à trouver le nombre de couples (i, j) tels que i j = pour 1, n 1 (le cas = 0 ne change pas la somme). j i On construit le tableau des i j pour n = 5. On voit qu on retrouve n fois la valeur 0 (mais elle ne nous intéresse pas) et 2(n ) fois la valeur pour 1, n On en déduit donc que 1 i,j n i j = =1 2(n ) = 2nS 1 (n 1) 2S 2 (n 1) = (n 1)n(n + 1)

11 4 Produits 4.1 Le symbole Notation 4.1 Soient m et n deux entiers naturels. Alors { n a m a m+1... a a n si m n, a = 1 sinon. On peut aussi noter m n =m a ou encore m,n a. Ce produit comporte n m + 1 facteurs. Attention! Les éléments intervenant dans un produit sont appelés des facteurs et non des termes. On parle de termes lorsqu on manipule des sommes. Exercice 4.1 n 2. =0 Il n est peut-être pas inutile de rappeler qu un produit est nul si et seulement si un de ses facteurs est nul. Exercice = 1000 ln(1 + ). 4.2 Règles de calcul et par récurrence et si les a sont tous non nuls ( ) ( ) a b = a b ( ) n a n = a pour n N ( ) n a n = a pour n Z Enfin, en utilisant les propriétés de l exponentiation, si les a sont tous strictement positifs ( ) λ a λ = a pour λ R Attention! On ne peut JAMAIS mettre en facteur une expression dans un produit même si elle ne dépend pas de l indice de sommation. Autrement dit, en général, λa λ a Cependant, on peut écrire n λa = λ n puisque le facteur λ apparaît n fois dans le produit. n a =1 =1 11

12 4.3 Produit télescopique On a le même type de remarque que pour les sommes en supposant tous les v non nuls. Exercice = et = n =m v +1 v = v n+1 v m 4.4 Passage au logarithme On peut facilement se ramener à une somme en remarquant que ( n ) ln a = ln a si tous les a sont strictement positifs. Exercice 4.4 n 2 =1 1 (+1). =m =m 12

le triangle de Pascal - le binôme de Newton

le triangle de Pascal - le binôme de Newton 1 / 51 le triangle de Pascal - le binôme de Newton une introduction J-P SPRIET 2015 2 / 51 Plan Voici un exposé présentant le triangle de Pascal et une application au binôme de Newton. 1 2 3 / 51 Plan

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

COURS DE DENOMBREMENT

COURS DE DENOMBREMENT COURS DE DENOMBREMENT 1/ Définition des objets : introduction Guesmi.B Dénombrer, c est compter des objets. Ces objets sont créés à partir d un ensemble E, formé d éléments. A partir des éléments de cet

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Le raisonnement par récurrence

Le raisonnement par récurrence Le raisonnement par récurrence Nous notons N l ensemble des entiers naturels : N = {0,,, } Nous dirons naturel au lieu de entier naturel Le principe du raisonnement par récurrence Soit A une partie de

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Partiel - 12 mars 2014

Partiel - 12 mars 2014 Licence STS, semestre 4 013 14 Mathématiques pour l Informatique (Info 9) 1 mars 014 http://www.lri.fr/~paulin/mathinfo Partiel - 1 mars 014 L examen dure heures. L énoncé est composé de 5 pages. Toutes

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

Matrices et déterminants

Matrices et déterminants Matrices et déterminants Matrices Définition.. Une matrice réelle (ou complexe) M = (m i,j ) (m, n) à m lignes et n colonnes est un tableau à m lignes et n colonnes de réels (ou de complexes). Le coefficient

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels.

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels. Licence de Sciences et Technologies EM21 - Analyse Fiche de cours 1 - Nombres réels. On connaît les ensembles suivants, tous munis d une addition, d une multiplication, et d une relation d ordre compatibles

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

1.1.1 Composantes contravariantes, covariantes d un vecteur

1.1.1 Composantes contravariantes, covariantes d un vecteur Chapitre 1 Prérequis Ce chapitre regroupe les définitions et les résultats sur les tenseurs qui sont utilisés dans la théorie des coques et des membranes. Il comprend deux parties : 1. L algèbre tensorielle,

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS.

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS. A la fin de ce chapitre vous devez être capable de : connaître différents procédés pour établir une divisibilité : utilisation de la définition, utilisation d identités remarquables, disjonction des cas,

Plus en détail

Exercices 4. Nombres réels...

Exercices 4. Nombres réels... Exercices 4 Nombres réels La maîtrise des inégalités et de la notion de borne supérieure est un préalable incontournable à l étude de l analyse réelle. 4 Nombres réels..........................................................................

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES OFM FRANÇAISES MATHÉMATIQUES ENVOI NO. 3 CORRIGÉ 1 Exercices du groupe B Exercice 1. Soit n 1 un entier tel que le quotient de 2 n par n est une puissance

Plus en détail

Suites numériques 2. n=0

Suites numériques 2. n=0 Suites numériques 1 Somme des termes d une suite Dans les applications, il est souvent nécessaire de calculer la somme de quelques premiers termes d une suite (ou même de tous les termes, mais on étudiera

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Inégalités. c a + b 3 2,

Inégalités. c a + b 3 2, DOMAINE : Géométrie AUTEUR : Margaret BILU NIVEAU : Avancé STAGE : Montpellier 03 CONTENU : Eercices Inégalités - Quelques inégalités secondaires, mais utiles - Proposition. (Inégalité de Nesbitt) Soient

Plus en détail

Corrigé de l examen partiel du 19 novembre 2011

Corrigé de l examen partiel du 19 novembre 2011 Université Paris Diderot Langage Mathématique (LM1) Département Sciences Exactes 2011-2012 Corrigé de l examen partiel du 19 novembre 2011 Durée : 3 heures Exercice 1 Dans les expressions suivantes, les

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 2

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 2 Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Cette deuxième séance est entièrement consacrée aux applications du principe Diviser pour Régner. Nous regarderons

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements 3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?

Plus en détail

Mise en TRAIN. Programmes de calculs en 3ème. Vers les I. R.

Mise en TRAIN. Programmes de calculs en 3ème. Vers les I. R. Mise en TRAIN Programmes de calculs en 3ème Vers les I. R. Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Faire des essais

Plus en détail

Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements

Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements Exo7 Logique et raisonnements Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements Quelques motivations Il est important d avoir un langage rigoureux. La langue

Plus en détail

Équations et inéquations du 1 er degré

Équations et inéquations du 1 er degré Équations et inéquations du 1 er degré I. Équation 1/ Vocabulaire (rappels) Un équation se présente sous la forme d'une égalité constituée de nombres, de lettres et de symboles mathématiques. Par exemple

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Cours 3. La conditionnelle: instructions si et selon Les boucles Comment raisonner sur les boucles: les invariants de boucle

Cours 3. La conditionnelle: instructions si et selon Les boucles Comment raisonner sur les boucles: les invariants de boucle Cours 3 : Instructions qui changent l ordre d exécution séquentiel 1 Cours 3 Instructions qui changent l ordre d exécution séquentiel La conditionnelle: instructions si et selon Les boucles Comment raisonner

Plus en détail

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le Chapitre I - arithmé La base décimale Quand on représente un nombre entier, positif, on utilise généralement la base 10. Cela signifie que, de la droite vers la gauche, chaque nombre indiqué compte 10

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Coloriages et invariants

Coloriages et invariants DOMAINE : Combinatoire AUTEUR : Razvan BARBULESCU NIVEAU : Débutants STAGE : Montpellier 013 CONTENU : Exercices Coloriages et invariants - Coloriages - Exercice 1 Le plancher est pavé avec des dalles

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

I) Deux propriétés importantes Propriété 1 Si A est multiple de B et B est un multiple de n, alors A est un multiple de n.

I) Deux propriétés importantes Propriété 1 Si A est multiple de B et B est un multiple de n, alors A est un multiple de n. Extrait de cours de maths de 5e Chapitre 1 : Arithmétique Définition 1. Multiples et diviseurs Si, dans une division de D par d, le reste est nul, alors on dit que D est un multiple de d, que d est un

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Arbres binaires de recherche (ABR) Binary Search Trees (BST)

Arbres binaires de recherche (ABR) Binary Search Trees (BST) LSVIII-BIM Algorithmie, 2015 Arbres binaires de recherche (ABR) Binary Search Trees (BST) I. Arbres binaires 1. Structure 2. Parcours II. Arbres binaires de recherche 1. Définition 2. Opérations sur les

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

Extrait de cours maths 3e. Multiples et diviseurs

Extrait de cours maths 3e. Multiples et diviseurs Extrait de cours maths 3e I) Multiples et diviseurs Multiples et diviseurs Un multiple d'un nombre est un produit dont un des facteurs est ce nombre. Un diviseur du produit est un facteur de ce produit.

Plus en détail

Opérations Arithmétiques

Opérations Arithmétiques 1 Addition en Binaire 1.1 Principe Opérations Arithmétiques L addition de deux nombres binaires est réalisée de la même façon que l addition décimale. L addition est l opération qui consiste à effectuer

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

) est une suite croissante si et seulement si, pour tout entier n, u n + 1

) est une suite croissante si et seulement si, pour tout entier n, u n + 1 1> Généralités sur les suites numériques Définition Une suite numérique est une fonction définie sur 0 ou sur une partie de 0 Sens de variation d une suite La suite ( est une suite croissante si et seulement

Plus en détail

Compter à Babylone. L écriture des nombres

Compter à Babylone. L écriture des nombres Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens

Plus en détail

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS Jean Luc Bovet, Auvernier Notre merveilleuse manière d écrire les nombres, due, dit-on, aux Indiens via les Arabes, présente en

Plus en détail

Suites : Calcul et comportement asymptotique.

Suites : Calcul et comportement asymptotique. 4 Chapitre 3 Suites : Calcul et comportement asymptotique. 3. Méthodes de définition. Comment définir une suite (u n ) n N de réels? Par l expression de son terme général, Par une formule de récurrence

Plus en détail

Points fixes de fonctions à domaine fini

Points fixes de fonctions à domaine fini ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2013 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

Références à une cellule dans EXCEL

Références à une cellule dans EXCEL Références à une cellule dans EXCEL Il existe, dans une formule, trois façons de faire référence à des cellules. Références relatives Lancez le logiciel Excel et choisissez la notation des coordonnées

Plus en détail

Jouons binaire : je devine ce que tu penses!

Jouons binaire : je devine ce que tu penses! Jouons binaire : je devine ce que tu penses! Aziz El Kacimi Université de Valenciennes Cité des Géométries - Gare numérique de Jeumont Atelier mathématique Collège Pablo Neruda - Wattrelos le 21 mai 2012

Plus en détail

OPERATIONS SUR LE SYSTEME BINAIRE

OPERATIONS SUR LE SYSTEME BINAIRE OPERATIONS SUR LE SYSTEME BINAIRE 1) Nombres signés Nous n avons, jusqu à présent tenu compte, que des nombre positifs. Pourtant, la plupart des dispositifs numériques traitent également les nombres négatifs,

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

NOMBRES RELATIFS 1. 287 : naissance d Archimède : 287 ans avant la naissance de J.C. 3 : température de 3 en dessous de 0

NOMBRES RELATIFS 1. 287 : naissance d Archimède : 287 ans avant la naissance de J.C. 3 : température de 3 en dessous de 0 I. Qu est-ce qu un nombre relatif? 1) Rappel NOMBRES RELATIFS 1 Dans de nombreuses situations, on utilise des nombres «positifs» ou «négatifs».ce sont les nombres relatifs. Ils sont utiles dans les cas

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction TP1, prise en main de Pari/GP et arithmétique Le programme que nous allons utiliser pour les TP se nomme PARI/GP dont le point fort est la théorie des nombres (au sens large). Il est donc tout à fait adapter

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

Cours/TD n 3bis : les boucles

Cours/TD n 3bis : les boucles Cours/TD n 3bis : les boucles Découpons le problème Nous avons plusieurs utilisations des boucles C est précisément ce qui rend difficile leur création. Vu la difficulté, nous allons séparer les différentes

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

Leçon N 2C Fonctions de calcul

Leçon N 2C Fonctions de calcul Leçon N 2C Fonctions de calcul Cette deuxième leçon concerne les fonctions de calcul dans les tableurs. 1 Structure des formules de calcul Que vous utilisiez EXCEL ou que vous utilisiez CALC, la méthode

Plus en détail

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi :

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi : Numération Numération. 1 Les systèmes de numération 1.1 Le système décimal. 1.1.1 Les chiffres. Le système décimal est le système d écriture des nombres que nous utilisons habituellement dans la vie courante.

Plus en détail

RAPPELS ET COMPLÉMENTS CALCULATOIRES

RAPPELS ET COMPLÉMENTS CALCULATOIRES RAPPELS ET COMPLÉMENTS CALCULATOIRES ENSEMBLES DE NOMBRES ENSEMBLES,,,ET: On rappelle que : désigne l ensembleprivé de 0 idem pour, et, + désigne l ensemble des réels positifs ou nuls et l ensemble des

Plus en détail

Quadrature n 74 (2009) 10 22. Online Material

Quadrature n 74 (2009) 10 22. Online Material Quadrature n 74 (009) 10 Online Material E. Brugallé, Online Material Un peu de géométrie tropicale Solutions des exercices Erwan Brugallé Université Pierre et Marie Curie, Paris 6, 175 rue du Chevaleret,

Plus en détail

Chapitre III : lentilles minces

Chapitre III : lentilles minces Chapitre III : lentilles minces Les lentilles minces sont les systèmes optiques les plus utilisés, du fait de leur utilité pour la confection d instruments d optique tels que microscopes, télescopes ou

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Compilation séparée avec make

Compilation séparée avec make ENSTA ParisTech École nationale supérieure de techniques avancées Compilation séparée avec make Cours IN201 Systèmes d exploitation Marc Baudoin La compilation séparée est

Plus en détail

Cet article a pour but de répondre à ces deux questions.

Cet article a pour but de répondre à ces deux questions. Chercheuse : Parreau Anne. Professeurs : Mme Avinzac et Mme Lecureux du lycée Ozenne ainsi que M. Ronchini du lycée st Sernin. Elèves : Nogues Alexandre (en première à Ozenne) ainsi que Nouhen Hubert et

Plus en détail

Le jeu du Sèbi ou Craps

Le jeu du Sèbi ou Craps Le jeu du Sèbi ou Craps Professeur : Christian CYRILLE 7 mars 04 Le jeu du craps "Dieu ne joue pas aux dés! " (Lettre d Albert Einstein à Max Born à propos de la mécanique quantique). Etude du jet simultané

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 0 et l échéance N. Définition 5.1. Une option américaine est définie par une suite (h n ) n=0..n,

Plus en détail