Physique Statistique

Dimension: px
Commencer à balayer dès la page:

Download "Physique Statistique"

Transcription

1 Phyique Statitique Chapitre 1 : Etat Quantique Stationnaire d un Sytème de Particule 1 Etat tationnaire d un ytème à particule En mécanique quantique, chaque particule et caractériée par a fonction d onde ( r, t) et d énergie olution de l équation de Schrödinger : H( r,t) = i ( r,t) t (1) A l équilibre, quand le nombre de particule et l énergie E ne varient pa avec le temp, cette équation devient : H( r) = E( r) () Ca d une particule dan une boîte Dan ce ca, l équation () devient : & m +V(x, y, z) () = E) (3) ' On uppoe V = 0 dan la boîte, et V = ur le bord. z V(z) L équation (3) écrit donc : m x + y + & ( = E) (4) z ' V(x) O V(y) y Si la boîte et cubique de côté «L», la olution era : x E = & m L. n x + n ( y + n z ) avec n x, n y, n z entier >0 (5) Chaque fonction d onde décrit un état quantique caractérié par une énergie donnée. Pour une particule, la fonction d onde et ouvent appelée «orbitale» Pour un ytème à particule, il peut y avoir pluieur fonction d onde (état quantique) correpondant à une eule énergie. On dit que ce niveau et dégénéré. Le nombre d état ayant la même énergie et appelé : la multiplicité d état ou le nombre de dégénérecence. 1

2 En phyique tatitique, il et important de dénombrer le nombre d état, c et ce qui va permettre de déterminer le propriété thermodynamique du ytème phyique. Exemple imple de état quantique et de multiplicité 14 1 (50) (3) (18) 7 6 (10) () 10 8 Energie (ev) (8) 5 4 (4) (6) () (10) (6) 5 4 () (1) (6) () 0 () 0 Hydrogène Lithium Bore (6) (4) 511 : 333 (6) 431 (3) (3) 4 33 (6) 41 (3) 331 (3) 411 (3) 3 (6) 31 (1) (3) 311 (3) 1 (3) 11 (1) Particule dan une boîte cubique

3 3 Sytème modèle à deux état quantique Pour implifier l étude, on uppoe que le particule n ont que deux état poible. On dit que c et un ytème binaire. Par exemple une chaîne de petit aimant (pin) itué le long d une ligne éparée d une ditance a et numéroté de 1 à =10 Si aucun champ magnétique n et appliqué, le aimant poèdent chacun un champ magnétique m orienté de façon aléatoire ver le haut ou le ba. Par exemple, +m i le champ et ver le haut, et -m il et ver le ba. Autre exemple de ytème binaire : Un parking avec 10 place occupée ou vide. Un lancer de 10 pièce en regardant le réultat pile ou face. Quetion : Combien y a-t-il de façon de ranger ce petit aimant indépendant et dicernable? C et le nombre de configuration. Répone : Pour le premier aimant :+/- m Pour le deuxième aimant :+/- m.. Il y a donc configuration poible. Chaque façon repréente une configuration poible pour le ytème, c et à dire un état quantique poible. Si =, le état quantique eront : =4 Si =3, le état quantique eront : 3 =8 3

4 4 Moment magnétique total du ytème Soit M = m i, le moment magnétique total de aimant de moment magnétique m i. i=1 Le valeur poible de M eront : m, (-)m, (-4)m, (-6)m, -m Il y a donc +1 valeur poible pour état quantique. Dan le ca général >>1, alor >>+1. Il y a beaucoup plu d état quantique que de valeur de moment magnétique M. Certaine valeur de moment magnétique M ont donc dégénérée. Exemple : = +m 0 0 -m =3 dégénérecence +m 1 0 -m 1 +3m +m +m -m -m +m -m -3m dégénérecence +3m 1 +m 3 -m 3-3m 1 Ca général Dan le ca général, M=m, et M= - m ont le eul état ingulier. Il y a façon d avoir un eul aimant ver le ba et tou le autre ver le haut, et réciproquement. Dan ce ca, le champ magnétique era : M=(-1)m + (-m)=(-)m 4

5 C et ce que l on vérifie : = M=0 état =3 M=1 3 état 5 Repréentation ymbolique On peut retrouver le réultat précédent en faiant de multiplication ymbolique : Ca = On retrouve le 4 ca précédent (+). (+) =+++ 6 Enumération de état et leur multiplicité (dégénérecence) On appelle ce petit aimant à deux état de ytème de moment m. On appelle + le nombre de ytème On appelle - le nombre de ytème Donc : = = et le nombre total de ytème et l excè de pin Quand on invere l orientation d un pin, l excè varie de deux unité. Donc et toujour un entier pair. et une variable aléatoire qui varie de à +. On peut écrire : M = m i = + m m = ( + ). m i=1 M = m M = m avec poitif ou négatif m = m Le valeur de varient de à + (entier pair). Par commodité, comme on traite de grand nombre, on prendra entier trè grand et pair. On aura alor : + = + et = Exemple : =, alor =4 configuration poible =- une eule configuration =0 ou deux configuration =+ une eule configuration 5

6 Si on applique un champ magnétique externe au ytème on lui communique de l énergie dont la valeur et : E = M. B B et l induction magnétique appliquée E = mb Dan l exemple à deux pin, on trouve troi niveaux d énergie E S dépendant de troi valeur de (-, 0, +). E - et E + ne ont pa dégénéré E 0 et doublement dégénéré (multiplicité double) + + On peut écrire : Pour = état état 1 état Pour = Pour n importe quel : + On trouve ce développement par le développement du binôme : ( x + y) = x + x 1 y + ( 1 ) x y + ( 1 ). 3. ( x + y) = x t y t ( t)..t t=0 ( ) x 3 y y Si t = = avec t=0, = et avec t=, =- ( x + y) = + ( x + = '. ' & & + y 6

7 ( x + y) = + x + y. + = La loi binomiale pour le pin écrit : (+) = = Le coefficient du terme + donne le nombre de configuration ayant + pin ver le haut et - pin ver le ba d excè de pin. C et donc la multiplicité de cet état caractérié par le nombre. On note g(, ) = = + ' &. & +. ' C et le nombre de configuration poible (configuration) pour produire avec pin le moment magnétique total M=m. Le nombre total de configuration et : ( ) = g, Pour un ytème de particule ayant chacune état propre, le nombre d état poible (configuration poible) et. Si =10, 10 =104 =0, g(10, 0) = = 5 =±, g(10,±) = = 10 =±4, g(10,±4) = =10 =±6, g(10,±6) = = 45 =±8, g(10,±8) = =10 =±10, g(10,±10) = =1 + = 7

8 Excè de pin Quelle et la probabilité d avoir une configuration (un état) préentant le moment magnétique M=m : ( ) = g (, ) P m 7 Largeur de la fonction multiplicité d état g(, ) Par expérience, un ytème phyique en équilibre thermique (à température contante) conerve de propriété bien définie proche de valeur moyenne tationnaire, c et à dire à probabilité maximum. La fonction g(, ) doit être trè raide comme un pic, comme on le voit ci-deu avec le chéma pour =10. En général et trè grand, et on cherche donc une approximation analytique de g(, ). 8

9 7.1 Approximation de g, Comme et grand, g, logarithme épérien : ln g, Or nou avon vu que : ( ) pour grand ( ) et grand aui. On préfère donc travailler avec le ( ). donc : g(, ) = + &. ' ln g(, ) = ln( ) ln + ln g, ou = & ( ) = ln( ) ln + +. ' ' ln ' & & ( ) ln( ) Formule de Sterling : Pour grand, il exite l approximation : ( ) 1/ exp + 1 = étant grand, on peut négliger Donc 1 1 devant = ' & ( ) 1/ exp () En prenant le logarithme de deux membre, on obtient : ln( ) = 1 ln( ) + 1 ln ( ) + ln( ) Ou encore : ln( ) = 1 ln ( ) &ln ( ) ' Calcul de ln( g(, ) ) de la même façon : ln( ) = 1 ln ( ) ( ) = 1 ln + ln ln( ) = 1 ln ( ) ( ) &.ln ( ) ' (6) &.ln + '.ln & ( ) ' + (7) ( ) (8) 9

10 En remplaçant par dan (6), on obtient : ( ) 1 ln + ln + ( + + ).ln ln( ) = 1 ln ln ( ) = 1 ln & ' &.ln Si on fait l opération : (9)-(8)-(7), achant que : On obtient : ln g (, ) = 1 ln & &ln ( ) ' &ln( ) ' + + ' ln g(, ) = ln( ) ln( + ) ln( ) ( ) ' 1 ln ( ) + ( ) ' + ' ' (9) ( ) ' &ln + ( ) + + ' 1 ln g(, ) = 1 ln( ) 1 ln( ) & '.ln '.ln & + ln g(, ) = 1 ln 1 & ' '.ln + & + 1 '.ln & Or + = + donc + = 1 1+ & et ln + = ln + ln 1+ ' & or i on fait un développement limité : ln( 1+ ) = on obtient : ln + = ln + ( ) ' + 1 ' ln de même : ln = ln Donc : &' &. 'ln + ' &' + 1 ' &. 'ln ' ' & En regroupant le terme : ln( g(, ) ) = 1 ln 1 &' &. 'ln + ' &' + 1 ' &. 'ln ' ' & ln( g(, ) ) = 1 ln 1 &+ ( +1). ln + &+ + 1 ' ' ' 1 + & ( ) = 1 ln 1 ln g(, ) ( ) = 1 ln 1 ln g(, ) or = &+ ln + + ln + ' &ln ' ( )

11 Finalement : ( ) = 1 ln ln g(, ) &+ ln ' Si =0, ln g(, 0) ( ) = 1 ln g(, 0) = &+ ln ( )e. g(, ) = g, 0 g(,) que l on note aui g (), et appelée ditribution de Gau. g(,) g(,0) g(,0)/e -() 1/ 0 +() 1/ 7. ombre total de configuration poible Le nombre total de configuration et l intégrale de moin l infini à plu l infini du nombre de configuration. + g(, ) d = C et l aire hachurée ou la courbe ou comparon le calcul exact avec =50, à la valeur approchée obtenue avec la relation de grand nombre : g(, 0) = 11

12 Valeur exacte : g(, 0) =. = 50 =1, x5 Valeur approchée : g(, 0) = 50 =1, ,14x50 On voit que pour =50 la valeur approchée et quaiment identique à la valeur exacte. Largeur de la ditribution de Gau ( ) On calcule la largeur de la ditribution de Gau quand la hauteur vaut g, 0 ( ) ( ) = g, 0 Quand =, c et à dire =, alor g, e La largeur de la fonction de ditribution Gauienne era : = Il et intéreant de comparer la largeur à la variation de qui va de à + = = La largeur et d autant plu faible que et grand. e 8 Rappel de probabilité Pour continuer avec la phyique tatitique, nou avon beoin de certain outil du calcul de probabilité. Ca du lancer d une pièce de monnaie Soit η le nombre de lancer d une pièce de monnaie, il y aura η meure. Soit η F le nombre de meure donnant face. Soit η P le nombre de meure donnant pile. On aura donc : η F +η P = η La probabilité de trouver face era : P F = F La probabilité de trouver pile era : P P = P Donc : P P +P F =1 1

13 8.1 Valeur moyenne d enemble Au lieu d envoyer η pièce de monnaie en même temp, on peut jeter η pièce de monnaie en même temp. On peut donc dire que : Un ytème de η meure et équivalent à η ytème de une meure Exemple :Valeur moyenne de note d une clae de élève Soit la note de chaque élève, elle varie de 0 à 0. et le nombre d élève ayant obtenu la note. P = et la probabilité d avoir la note dan cette clae. La note moyenne et donc : = = P. = 0 =0. Théorème ergodique (ou d ergodicité) La valeur moyenne d enemble et uppoée égale à la valeur moyenne de la fonction f(t) qui prendra de valeur différente f(t) à de temp «t» différent au cour d une période «T». f ( t) f = 1 T T f ( t) dt En pratique cela ignifie qu un ytème qui peut atteindre un certain nombre d état, i on lui en laie le temp, paera par tou ce état à un moment ou à un autre. Evidemment i le nombre de particule et trè élevé, le chance que le ytème pae par certain état et trè faible. Par exemple dan une pièce où e trouve un trè grand nombre de molécule de gaz, d aprè le théorème d ergodicité, à un moment donné, toute le molécule pourraient e retrouver dan un coin de la pièce, laiant le rete de la pièce vide. Ceci et vrai, mai il faudrait attendre de temp atronomique pour que cela ait une chance de e produire Conéquence Soient f() et g() deux obervable dépendant de la variable aléatoire : i) f + g = P [ f ()+ g() ] f + g = P f ()+ P g() f + g = f + g 13

14 ii) Si C et une contante : Cf = P Cf () Cf = C P f () Cf = C f iii) Soient f() et g(t) deux obervable dépendant de et t, variable aléatoire indépendante : P t = P P t f ().g(t) = P t f ().g(t) t f ().g(t) = P P t f ().g(t) t f ().g(t) = P f () P t g(t) f.g = f.g t 8.3 Diperion ou variance Soit la valeur d une variable aléatoire. Soit a valeur moyenne. L écart abolu ou la fluctuation et donnée par : La valeur moyenne de écart = et : = = = 0 la valeur moyenne de écart étant nulle, on définit la variance ou l écart quadratique moyen de : () = ( ) = P () 0 ( ) On meure donc mieux avec la variance le fluctuation de la valeur de. () = ( ) = + ( ) = + ( ) () = ( ) 14

15 La dimenion de l écart quadratique moyen et celui du carré de 8.4 Déviation tandard ou écart type = () et appelée déviation tandard ou écart type Il a la dimenion de. Remarque à retenir : Dan le ca d un ytème de particule identique dépendant de la variable, on a : Diperion ou variance ou écart quadratique moyen : () La déviation tandard ou écart type = () L écart type fractionnel relatif et : = Valeur moyenne de la ditribution de Gau Revenon à la ditribution de Gau de la fonction multiplicité g () du ytème modèle à état précédent. g(, ) = g(, 0)exp 1/ g(, 0) = & Valeur moyenne g () g (0) = 0 = = = = 0 Ce qui correpond au ca général. 0 Diperion () = ( ) = ( 0) = 0 Calcul de cette diperion : La définition d une valeur moyenne et : = g (, ) f f ( ) = P ( ) P donc : = g, Dan le ca de la ditribution de Gau : ( ) 15

16 Pour grand : g(, 0)exp + = d On poe : = X = X = X d = dx ( ) + g, 0 Donc = exp X.X dx = g, 0 + ( ) ( ) 3/ + X Or, X exp (X )dx = 4 ( ) = Et g, 0 & exp (X )dx 1/ Donc = ( ) 3/ 4 = La variance (diperion) et donc : () = ( ) dan le ca de la Gauienne : = 0 donc () = = L écart type era alor : = () = L écart type fractionnel era : = =

17 10 Energie du ytème binaire (modèle) Soient pin à l équilibre thermique an champ magnétique externe. Chaque pin a l équiprobabilité de e trouver ou En moyenne : + = et = et = 0 Si on applique un champ magnétique B, l énergie era u = m B avec m comme moment magnétique d un aimant L énergie totale era : U = u i = B 1 i m i U = B( + m m) avec l excè de pin = + on obtient : U = B m En poant M = m on obtient : U = M B Chaque changement de pin fait varier l énergie de mb 17

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you.

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you. Erwan, d une mae de 65 kg, fait un aut de Bungee. Il tombe de 0 m avant que la corde du bungee commence à étirer. Quel era l étirement maximal de la corde i cette dernière agit comme un reort d une contante

Plus en détail

Progressons vers l internet de demain

Progressons vers l internet de demain Progreon ver l internet de demain COMPRENDRE LA NOTION DE DÉBIT La plupart de opérateur ADSL communiquent ur le débit de leur offre : "512 Kb/", "1 Méga", "2 Méga", "8 Méga". À quoi ce chiffre correpondent-il?

Plus en détail

Caractérisation de l interface Si/SiO 2 par mesure C(V)

Caractérisation de l interface Si/SiO 2 par mesure C(V) TP aractériation de l interface Si/SiO par meure (V) aractériation de l interface Si/SiO par meure (V) Introduction p I Effet de champ à l interface Si/SiO p Fonctionnement d une capacité MOS p Principe

Plus en détail

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création Doier : Getion d entreprie 42 La Getion de filiale dan une PME : Bonne Pratique et Piège à éviter Certaine PME ont tout d une grande. entreprie. A commencer par la néceité d avoir de filiale. Quel ont

Plus en détail

TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION

TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION P6 : ALIMNAION A DCOUPAG : HACHUR SRI CONVRISSUR SAIQU ABAISSUR D NSION INRODUCION Le réeau alternatif indutriel fournit l énergie électrique principalement ou de tenion inuoïdale de fréquence et d amplitude

Plus en détail

Le paiement de votre parking maintenant par SMS

Le paiement de votre parking maintenant par SMS Flexibilité et expanion L expanion de zone de tationnement payant ou la modification de tarif ou de temp autorié peut e faire immédiatement. Le adree et le tarif en vigueur dan le nouvelle zone doivent

Plus en détail

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007 BAREME ur 40 point Informatique - eion 2 - Mater de pychologie 2006/2007 Bae de donnée PRET de MATERIEL AUDIO VISUEL. Remarque : Le ujet comporte 7 page. Vérifier qu il et complet avant de commencer. Une

Plus en détail

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian 1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ

RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ LETTRE MENSUELLE DE CONSEILS DESTINÉS À MAXIMALISER LE FLUX DE REVENUS RETIRÉS DE VOTRE SOCIÉTÉ OPTIMALISATION DU MOIS Déterminer le taux du marché... Si votre ociété vou vere un intérêt, elle doit de

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Guide de configuration d'une classe

Guide de configuration d'une classe Guide de configuration d'une clae Viion ME Guide de configuration d'une clae Contenu 1. Introduction...2 2. Ajouter de cour...4 3. Ajouter de reource à une leçon...5 4. Meilleure pratique...7 4.1. Organier

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Dossier. Vtech, leader en France. Lexibook, leader en Europe

Dossier. Vtech, leader en France. Lexibook, leader en Europe Doier Par Yoan Langlai La tablette pour enf Si 6 million de tablette devraient e vendre cette année en France (préviion GfK), on etime à 1 million le nombre de vente de tablette pour enfant en 2013. Sur

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Trouver des sources de capital

Trouver des sources de capital Trouver de ource de capital SÉRIE PARTENAIRES EN AFFAIRES Emprunt garanti et non garanti Vente de part de capital Programme gouvernementaux Source moin courante SÉRIE PARTENAIRES EN AFFAIRES Quelque principe

Plus en détail

Ventilation à la demande

Ventilation à la demande PRÉSENTATION Ventilation à la demande Produit de pointe pour ventilation à la demande! www.wegon.com La ventilation à la demande améliore le confort et réduit le coût d exploitation Lorque la pièce et

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

8 Ensemble grand-canonique

8 Ensemble grand-canonique Physique Statistique I, 007-008 8 Ensemble grand-canonique 8.1 Calcul de la densité de probabilité On adopte la même approche par laquelle on a établi la densité de probabilité de l ensemble canonique,

Plus en détail

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM Cap Math CP 2 cycle Guide de l eneignant Nouveaux programme SOUS LA DIRECTION DE Roland CHARNAY Profeeur de mathématique en IUFM Marie-Paule DUSSUC Profeeur de mathématique en IUFM Dany MADIER Profeeur

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Manière heuristique d'introduire l'approximation de champ moyen : on néglige les termes de fluctuations

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Incertitudes expérimentales

Incertitudes expérimentales Incertitudes expérimentales F.-X. Bally et J.-M. Berroir Février 2013 Table des matières Introduction 4 1 Erreur et incertitude 4 1.1 Erreurs............................................. 4 1.1.1 Définition

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Prudence, Epargne et Risques de Soins de Santé Christophe Courbage

Prudence, Epargne et Risques de Soins de Santé Christophe Courbage Prudence, Epargne et Rique de Soin de Santé Chritophe Courbage ASSOCIATION DE GENÈVE Introduction Le compte d épargne anté (MSA), une nouvelle forme d intrument pour couvrir le dépene de anté en ca de

Plus en détail

Projet. Courbe de Taux. Daniel HERLEMONT 1

Projet. Courbe de Taux. Daniel HERLEMONT 1 Projet Courbe de Taux Daniel HERLEMONT Objectif Développer une bibliothèque en langage C de fonction relative à la "Courbe de Taux" Valeur Actuelle, Taux de Rendement Interne, Duration, Convexité, Recontitution

Plus en détail

Impact de l éolien sur le réseau de transport et la qualité de l énergie

Impact de l éolien sur le réseau de transport et la qualité de l énergie 1 Impact de l éolien ur le réeau de tranport et la qualité de l énergie B. Robyn 1,2, A. Davigny 1,2, C. Saudemont 1,2, A. Anel 1,2, V. Courtecuie 1,2 B. Françoi 1,3, S. Plumel 4, J. Deue 5 Centre National

Plus en détail

MESURE DE LA TEMPERATURE

MESURE DE LA TEMPERATURE 145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Cours de Physique Statistique. Éric Brunet, Jérôme Beugnon

Cours de Physique Statistique. Éric Brunet, Jérôme Beugnon Cours de Physique Statistique Éric Brunet, Jérôme Beugnon 7 octobre 2014 On sait en quoi consiste ce mouvement brownien. Quand on observe au microscope une particule inanimée quelconque au sein d un fluide

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Cadeaux d affaires, cadeaux d entreprises, objets publicitaires www.france-cadeaux.fr - services@france-cadeaux.fr

Cadeaux d affaires, cadeaux d entreprises, objets publicitaires www.france-cadeaux.fr - services@france-cadeaux.fr Siège France Cadeaux 84 rue de Courbiac 17100 Sainte 00 33 (0)5 46 74 66 00 RC.424 290 211 00012 Cadeaux d affaire, cadeaux d entreprie, objet publicitaire www.france-cadeaux.fr - ervice@france-cadeaux.fr

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité 1 2 4 6 Mon Univerité Numérique 7 Rue de Fac Droit de uager et identité numérique Gloaire Webographie 23 24 26 28 Édito

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

À propos d ITER. 1- Principe de la fusion thermonucléaire

À propos d ITER. 1- Principe de la fusion thermonucléaire À propos d ITER Le projet ITER est un projet international destiné à montrer la faisabilité scientifique et technique de la fusion thermonucléaire contrôlée. Le 8 juin 005, les pays engagés dans le projet

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

TD 9 Problème à deux corps

TD 9 Problème à deux corps PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Produire moins, manger mieux!

Produire moins, manger mieux! Raak doier d Alimentation : o Produire moin, manger mieux! Nou voulon une alimentation de qualité. Combien de foi n entendon-nou pa cette revendication, et à jute titre. Mai i tout le monde et d accord

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

H 1000. Le système de bridage. multifonctionnel

H 1000. Le système de bridage. multifonctionnel Le ytème de ridage mutifonctionne 2 Rapidité, préciion et fidéité de répétition Le ytème de ridage et une innovation interne de a maion Meuurger. Avec a vou avez non euement avantage de travaier vite et

Plus en détail

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Introduction aux algorithmes de bandit

Introduction aux algorithmes de bandit Mater MVA: Apprentiage par renforcement Lecture: 3 Introduction aux algorithme de bandit Profeeur: Rémi Muno http://reearcher.lille.inria.fr/ muno/mater-mva/ Référence bibliographique: Peter Auer, Nicolo

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Trilax. Données Faits. La spécificité de ce siège tient à la découverte qu il faut trois points d articulation

Trilax. Données Faits. La spécificité de ce siège tient à la découverte qu il faut trois points d articulation Donnée Fait La pécificité de ce iège tient à la découverte qu il faut troi point d articulation pour aurer au corp un outien ergonomique efficace dan toute le poition. vou relaxe et vou accompagne comme

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Calculs de probabilités avec la loi normale

Calculs de probabilités avec la loi normale Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

La simulation probabiliste avec Excel

La simulation probabiliste avec Excel La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier emmanuel.grenier@isab.fr Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Résonance Magnétique Nucléaire : RMN

Résonance Magnétique Nucléaire : RMN 21 Résonance Magnétique Nucléaire : RMN Salle de TP de Génie Analytique Ce document résume les principaux aspects de la RMN nécessaires à la réalisation des TP de Génie Analytique de 2ème année d IUT de

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE CP7 MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE 1 ) Relation d'équivalence entre la masse et l'énergie -énergie de liaison 2 ) Une unité d énergie mieux adaptée 3 ) application 4

Plus en détail

Sciences et technologies de l information et de la communication

Sciences et technologies de l information et de la communication Science et technologie de l information et de la communication 174 page Contexte général 176 page 5 appel à projet en 2013 ChIST-ERA Edition 2013 Call 2012 Contenu numérique et interaction - CONTINT Infratructure

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Introduction au pricing d option en finance

Introduction au pricing d option en finance Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail