Modes propres de vibration ; interprétation ondulatoire

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Modes propres de vibration ; interprétation ondulatoire"

Transcription

1 SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 1/5 MDES PRPRES DE IBRATI Ce qu'il faut reteir Modes propres de vibratio ; iterprétatio odulatoire 1. Productio d u so à l aide d u istrumet de musique U istrumet de musique pour pouvoir produire u so doit posséder deux foctios : «vibrer» et «émettre» Il doit être doc équipé d u système mécaique vibrat associé à u système assurat u couplage avec l air. Types d istrumets de musique: istrumets à corde ( guitare, piao, violo, claveci, harpe, ), à vet ( flûte à bec, clariette, hautbois saxophoe, flûte de Pa ), à percussio ( djembé, xylophoe, balafo, ) Le système vibrat est u esemble de cordes pour les istrumets à corde, ue ache ( lamelle fixée das le bec : clariette par exemple ) ou u biseau ( arête rigide séparat le bec du corps : flûte à bec ou orgue par exemple ) pour u istrumet à vet, ue lame que l o frappe pour les istrumets à percussio ( peau tedue sur u djembé ou lame métallique d u xylophoe par exemple ). Le système assurat le couplage avec l air est ue caisse faite d u matériau particulier, de forme adaptée efermat de l air et e cotact avec le système vibrat, appelée caisse de résoace : ce peut être la caisse d ue guitare ou d u violo, le tuyau d u istrumet à vet, la caisse d u balafo,. ibratio d ue corde tedue etre deux poits fixes.1 Excitatio siusoïdale: modes propres Ue corde, tedue etre deux poits fixes, excitée siusoïdalemet acquiert des états vibratoires stables appelés «modes propres de vibratio, uiquemet pour ue suite croissate de fréqueces {f } ( etier aturel o ul ) telle que : f = f 1 dit que les fréqueces des modes propres ou «fréqueces propres» sot «quatifiées» Le mode de fréquece la plus basse f 1 est appelé «mode fodametal» Les autres modes de vibratio sot appelés «harmoiques» : l harmoique correspodat à l etier ( ) est appelé harmoique de rag. Descriptio des modes propres e éclairage cotiu E éclairage cotiu, lorsqu ue corde de logueur L est excitée siusoïdalemet selo le mode propre de rag (fodametal ou harmoique ), o observe : «fuseaux» de logueurs L/. + 1 «œuds» de vibratios (), c est à dire des poits qui e vibret pas, les poits d attache de la corde état comptés comme des œuds. «vetres» de vibratio (), c est à dire des poits qui vibret avec ue amplitude maximale. La figure ci-après représete l aspect de la corde pour le mode fodametal et pour les trois premiers harmoiques. L Mode fodametal ( = 1) Harmoique de rag Harmoique de rag 3 Harmoique de rag ( avec = 4 ) L/ L/

2 SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 /5 MDES PRPRES DE IBRATI Descriptio des modes propres e éclairage stroboscopique U éclairage stroboscopique de la corde vibrat sur u mode propre doé, motre que tous les poits de la corde vibret à la même fréquece. btetio des modes propres d ue corde métallique tedue etre deux poits fixes applique ue force alterative siusoïdale à u élémet de corde métallique tedue etre deux poits fixes : e faisat circuler das la corde u courat alteratif siusoïdal de fréquece réglable ; et e plogeat l élémet de corde das u champ magétique créé par u aimat e U. La recherche des modes propres se fait e augmetat progressivemet la fréquece du GBF qui egedre le courat.. scillatios libres d ue corde picée ou frappée U so émis par ue corde picée ou frappée, tedue etre deux poits fixes, est périodique : sa fréquece est égale celle du mode fodametal de la corde: ce so complexe est ue superpositio de ses modes propres. Spectre fréquetiel d ue vibratio soore Le «spectre fréquetiel» d ue vibratio est le graphe qui représete l amplitude A des modes propres qui composet la vibratio, e foctio de la fréquece f de ces modes : il représete la compositio de la vibratio e ses modes propre. Le spectre fréquetiel permet de comparer les proportios relatives des différets modes propres qui composet ue vibratio. Le schéma ci-après représete les spectres fréquetiels de deux vibratios soores périodiques : la première o siusoïdale et la deuxième, siusoïdale (le spectre e cotiet alors qu u seul mode propre le mode fodametal ). perturbatio soore périodique o siusoïdale corde de guitare picée amplitude harmoiques t f =.f 1 fréquece f f 3 f 4 f 5 f 6 f 7 fréquece fodametale f 1 Spectre fréquetiel perturbatio soore siusoïdale A amplitude t fréquece f 1 u seul mode propre le mode fodametal Spectre fréquetiel 3. ibratio d ue coloe d air Les résultats obteus pour la corde tedue etre deux poits fixes sot trasposables à ue coloe d air efermée das u tuyau ouvert à ses deux extrémités. Ue coloe d air efermée das u tube ouvert à ses deux extrémités, présete, comme ue corde tedue etre deux poits fixes, des états vibratoires stables appelés modes propres de vibratios dot les fréqueces f sot quatifiées selo la relatio : f = f 1 où f 1 représete la fréquece du mode fodametal, ecore appelée fréquece fodametale. La fréquece fodametale déped de la logueur de la coloe d air: plus le tube est court, plus la fréquece fodametale est élevée et vice-versa. U so émis par ue coloe d air excitée de faço quelcoque, est périodique : sa fréquece est égale à celle de so mode fodametal: ce so est ue superpositio de ses modes propres.

3 SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 3/5 MDES PRPRES DE IBRATI btetio des modes propres d u tuyau peut mettre e évidece les modes propres d u tuyau e excitat siusoïdalemet la coloe d air à l aide d u haut-parleur relié à u GBF : les modes propres correspodet alors aux fréqueces «favorisées» par le tuyau c est à dire aux fréqueces qui doet des maxima d itesité soore, détectables à l oreille ou à l aide d u microphoe, placé au voisiage ou à l itérieur du tuyau et relié à l ue des voies d u système d acquisitio ( oscilloscope ou ordiateur ). 4. Iterprétatio odulatoire des modes propres de vibratio: l ode statioaire 4.1. Réflexio d ue ode progressive sur u obstacle fixe ode icidete uique Ue ode progressive recotrat u obstacle fixe, egedre ue ode réfléchie de même forme mais iversée par rapport à l ode icidete ; se propageat e ses iverse : La réflexio d ue ode progressive sur u obstacle fixe se fait avec chagemet de sige de l élogatio. 4.. L ode statioaire Défiitio Ue ode statioaire est ue ode qui résulte de la superpositio d ue ode progressive siusoïdale de fréquece f et de l ode réfléchie siusoïdale de même fréquece f et de même amplitude, sur u obstacle fixe. Structure de l ode statioaire Ue ode statioaire e se propage pas: les vibratios ot lieu sur place Ue ode statioaire fait apparaître ( cf figure ci-après ): des œuds de vibratios ( poits immobiles ), le poit de l obstacle où a lieu la réflexio état u œud ; des vetres de vibratios ( poits vibrat avec ue amplitude maximale) ; des fuseaux, de logueur / où est la logueur d ode commue des odes progressives icidete et réfléchie. Ue ode statioaire a même fréquece que les odes icidete et réfléchie dot elle est la superpositio. La distace : etre deux œuds ou deux vetres cosécutifs vaut /. etre u œud et u vetre cosécutif vaut /4. ode réfléchie L établissemet d ue ode statioaire par superpositio d ue ode icidete et d ue ode réfléchie sur u seul obstacle fixe, impose pas de coditio de quatificatio sur la fréquece / / /4 fuseau œuds, vetres ; fuseaux o propagatio d ue ode statioaire

4 SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 4/5 MDES PRPRES DE IBRATI 4.3. btetio d ue ode statioaire le log d ue corde tedue etre deux extrémités fixes; coditio de stabilité. Ue ode progressive siusoïdale de logueur d ode se propageat le log d ue corde à extrémités fixes de logueur L, doe aissace à ue ode statioaire à fuseaux stables, à coditio que la logueur d ode appartiee à ue suite discotiue de valeurs telles que : L =. avec etier aturel o ul dit qu il y a quatificatio des logueurs d ode des odes progressives siusoïdales doat aissace à des odes statioaires stables qui costituet les modes propres de vibratio de la corde. La relatio de quatificatio des logueurs d ode peut être retrouvée à partir des l existece de fuseaux stables le log d ue corde de logueur L ( cf figure ci-après ). de statioaire le log d ue corde de logueur L fixée à ses deux extrémités L. / fuseaux : harmoique de rag Ebauche d explicatio de l existece d ue coditio de quatificatio pour l obtetio d ue ode stable le log de la corde Ue ode progressive siusoïdale géérée par u excitateur de période T sur ue corde de logueur L tedue etre deux extrémités fixes, doe aissace à de multiples odes siusoïdales réfléchies u grad ombre de fois, de même période T imposée par l excitateur. Ces odes multiples se superposet e tout poit de la corde et, sas coditio particulière sur T, détruiset leurs effets: aisi sas aucue coditio sur T, il e peut y avoir d ode stable le log de la corde. Pour que les multiples odes réfléchies se superposet de faço efficace afi de former ue ode stable, il faudrait qu u élémet M de corde effectue u ombre etier de période T, pedat u temps T o mis par ue ode partat de M pour y reveir après ue réflexio à chaque extrémité de la corde. Cela impose ue coditio sur T, période de l excitateur: T o =.T avec T o = L / où est la célérité des odes le log de la corde tedue. e déduit, e multipliat par, la relatio T o =.T :.T o =..T =.. obtiet doc, e teat compte que.t o = L : L =.,, soit : L =./. retrouve aisi la coditio de quatificatio imposée à la logueur d ode pour l obtetio d ue ode statioaire stable Coséquece de la coditio de stabilité: suite des fréqueces propres La fréquece f de l harmoique de rag est liée à la logueur d ode par la relatio : f = r la coditio de quatificatio des logueurs d ode, L =., doe = L/ D où, e substituat par so expressio das l expressio de f, la suite des fréqueces propres de vibratio : f = avec etier aturel o ul (fréquece du mode fodametal ( = 1 ) : f L 1 = /L )

5 SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 5/5 MDES PRPRES DE IBRATI 5. Cas d ue coloe d air excitée par u haut parleur peut trasposer les résultats obteus pour la corde au cas d ue coloe d air efermée das u tuyau, excitée par u haut-parleur. Das ce cas, il se produit des réflexios multiples des odes progressives siusoïdales aux extrémités du tuyau. Il y a doc comme pour la corde ue coditio de quatificatio des modes propres qui déped des coditios aux limites du tuyau. peut citer, aisi, deux types de coditios aux limites pour u tuyau : les deux extrémités du tuyau sot ouvertes: il y a das ce cas u vetre de vibratio aux deux extrémités ou ecore u œud P de variatio de pressio aux deux extrémités. ue des extrémités du tuyau est ouverte, l autre fermée: il y a das ce cas u vetre de vibratio à l extrémité ouverte et u œud de vibratio à l extrémité fermée ( ou ecore, u œud de pressio P à l extrémité ouverte et u vetre de pressio P à l extrémité fermée ). peut aisi représeter, e termes de vibratio, les «fuseaux» obteus das les deux types de tuyaux avec les positios des œuds et des vetres pour les trois premiers modes. Cas d u tube ouvert à ses deux extrémités Cas d u tube fermé à l ue de ses deux extrémités doit savoir égalemet représeter «fuseaux», e terme de variatio de pressio pour les deux types de tuyau ( cf TP 6 ). Coditios de quatificatio des logueurs d ode pour les deux types de tuyaux A savoir retrouver e raisoat à partir des «fuseaux» pour u tube de logueur L. Pour le tuyau ouvert aux deux extrémités : L =. avec, etier aturel o ul Pour le tuyau fermé à l ue de ses extrémité : L = ( - 1 ). pour, etier aturel o ul ( vérifier 4 qu il e est bie aisi pour les trois premier modes e s appuyat sur les schémas de droite ci-avat ). Suite des fréqueces propres pour les deux types de tuyaux A savoir retrouver à partir de f = / et de la coditio de quatificatio des logueurs d ode. Pour u tuyau ouvert aux deux extrémités : f =./L, pour etier aturel o ul fréquece fodametale : f 1 = /L Pour u tuyau fermé à, l ue de ses extrémités : f = (- 1)./4L, pour etier aturel o ul : fréquece fodametale : f 1 = /4L

Chapitre 2 : Les ondes stationnaires

Chapitre 2 : Les ondes stationnaires Chapitre : es odes statioaires Termiale S Spécialité Chapitre : es odes statioaires Das ce chapitre, ous allos iterpréter les modes propres de vibratio observés lors de la vibratio d ue corde tedue etre

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

Fiche de synthèse ONDES

Fiche de synthèse ONDES Fiche de sythèse ONDES A) Sigaux temporels ) Valeur moyee et valeur efficace valeur moyee : v( t) v( t) dt, o vérifie la dimesio, c'est aussi la partie sigal cotiu du sigal. alt crete La partie variable

Plus en détail

Chapitre 3: Réfraction de la lumière

Chapitre 3: Réfraction de la lumière 2 e B et C 3 Réfractio de la lumière 16 Chapitre 3: Réfractio de la lumière 1. Expériece 1 : tour de magie avec ue pièce de moaie a) Dispositio Autour d'ue petite boîte coteat ue pièce de 1 de ombreux

Plus en détail

Son et modes propres de vibration

Son et modes propres de vibration TP DE PHYSQIUE N 6 SPECIALITE TS 1/6 SON ET MODES PROPRES DE VIBRATION Objectifs TP de physique N 6 Son et modes propres de vibration Connaître les deux conditions pour qu un instrument de musique produise

Plus en détail

Système d'éclairage et perturbations

Système d'éclairage et perturbations Lycée N.APPER 447 ORVAUL Essai de système Système d'éclairage et perturbatios Objectifs Etude du foctioemet des systèmes d'éclairage fluorescets à tube et "fluocompacte" : foctioemet, perturbatios du réseau.

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Physique Statistique

Physique Statistique Physique Statistique Chapitre 8 Photos et Phoos 1 Itroductio e photo est la particule élémetaire qui est le médiateur de l iteractio électromagétique. C est u boso. O peut mettre autat de photos que l

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Sommes de signaux : Décomposition de Fourier Spectre ondes stationnaires et résonance

Sommes de signaux : Décomposition de Fourier Spectre ondes stationnaires et résonance Sommes de sigaux : Décompositio de Fourier Spectre odes statioaires et résoace Das le cours précédet, o a étudié la propagatio des odes moochromatiques mais celles-ci e peuvet pas porter d iformatio ;

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

TP 5 : La musique - Correction

TP 5 : La musique - Correction TP 5 : La musique - Correctio Objectifs : Réaliser l'aalyse spectrale d'u so musical et l'exploiter pour e caractériser la hauteur et le timbre. I ) Les différets types de so a ) Le so pur : so d'u diapaso

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible.

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible. Uiversité de Geève Sectio de Mathématiques Algèbre I Corrigé 2 Série 7, ex 3 Toutes les affirmatios sot vraies sauf la derière E effet, pour que deux espaces soiet e somme directe, il faut que leur itersectio

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Nathalie Va de Wiele - Physique Sup PCSI - Lycée les Eucalyptus - Nice Série d exercices SERIE D EXERCICES N : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Propagatio rectilige. Exercice. Das le cas

Plus en détail

TP 5 : La musique - - Correction

TP 5 : La musique - - Correction TP 5 : La musique - - Correctio Objectifs : Réaliser l'aalyse spectrale d'u so musical et l'exploiter pour e caractériser la hauteur et le timbre. Le so pur : cas du diapaso La 3 440 Il existe deux maière

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Temps moyen de lecture par page (exercice compris) : 10 minutes

Temps moyen de lecture par page (exercice compris) : 10 minutes MOTS BINAIRES Mots biaires de logueur 2 Rappel : le logarithme e base b 3 Le choix de la logueur des mots biaires 4 Calculs avec les mots de logueur 5 Le poids d u mot biaire de logueur 6 La distace de

Plus en détail

B) CHAÎNES DE SOLIDES

B) CHAÎNES DE SOLIDES Chaîes de solides B) CHAÎNES DE SOLIDES Objectifs Cette théorie a pour but d'aalyser les comportemets statique et ciématique d'u mécaisme à partir d'u modèle défii par le schéma ciématique du mécaisme.

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables Chapitre III Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

TECHNIQUE: Distillation

TECHNIQUE: Distillation TECHNIQUE: Distillatio 1 Utilité La distillatio est u procédé permettat la séparatio de différetes substaces liquides à partir d u mélage. Les applicatios usuelles de la distillatio sot : l élimiatio d

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Document ressource. Les états de surface

Document ressource. Les états de surface Lycée Vaucaso Tours Documet ressource Les états de surface PTSI Objectifs : Coaître les élémets caractéristiques d u état de surface, savoir lire les spécificatios ormalisées associées et coaître les moyes

Plus en détail

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique Titre : Élémets fiis de joit mécaiques et élémets fi[...] Date : 28/10/2014 Pae : 1/10 Élémets fiis de joit mécaiques et élémets fiis de joit couplés hydromécaique Résumé : Cette documetatio porte sur

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Chapitre 1. Arithmétique. Partie 5 : PGCD

Chapitre 1. Arithmétique. Partie 5 : PGCD Chapitre 1 Arithmétique Partie 5 : PGCD Propriété/Défiitio : (PGCD) O se doe deux etiers relatifs a et b o uls. L esemble des diviseurs positifs commus à a et b admet u plus grad élémet que l o PGCD a

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

APPROXIMATION DES GAMMES MUSICALES

APPROXIMATION DES GAMMES MUSICALES Simo Rousseau APPROXIMATION DES GAMMES MUSICALES SOMMAIRE I. PRÉLIMINAIRES MUSICAUX...3 1. LES INTERVALLES...3. LA CONSONANCE...4 3. LES NOTES...5 II. LA GAMME DE PYTHAGORE...6 1. ALGORITHME DE CONSTRUCTION...6.

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

COURS TRAITEMENT DU SIGNAL

COURS TRAITEMENT DU SIGNAL COURS RAIEMEN DU SIGNAL Cours ère Aée : élécommuicatio EL Frédéric LAUNAY le //007 Départemet R& IU de Poitiers site de Chatellerault raitemet du sigal Le traitemet du sigal est deveu ue sciece icotourable

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

IUT Lannion Optique instrumentale

IUT Lannion Optique instrumentale IUT Laio Optique istrumetale Pla du cours Notios de base et défiitios Photométrie / Sources de lumière Les bases de l optique géométrique Gééralités sur les systèmes optiques Elémets à faces plaes Dioptres

Plus en détail

Sommaire. 2. Séries réelles ou complexes. Méthodes : L essentiel ; mise en œuvre

Sommaire. 2. Séries réelles ou complexes. Méthodes : L essentiel ; mise en œuvre 1. Espaces vectoriels ormés A. Normes et distaces............. 8 B. Étude locale des applicatios Cotiuité..... 19 C. Cotiuité des applicatios liéaires....... 25 D. Espaces vectoriels ormés de dimesio fiie...

Plus en détail

Cours 4 SUITES DE NOMBRES RÉELS

Cours 4 SUITES DE NOMBRES RÉELS Cours 4 SUITES DE NOMBRES RÉELS A/ GÉNÉRALITÉS 1. Défiir ue suite de ombres réels Ue suite u de ombres réels, est ue foctio défiie sur N qui, à chaque etier aturel, associe u ombre oté u. Ce ombre u s

Plus en détail

Caractérisation expérimentale de la réponse d'une corde vibrante sollicitée par un plectre

Caractérisation expérimentale de la réponse d'une corde vibrante sollicitée par un plectre Caractérisatio expérimetale de la répose d'ue corde vibrate sollicitée par u plectre Q. LECLERE a, J.-L. LE CARROU b, P.-A. ROIRON c a. LVA INSA Lyo 25 bis av. L. Capelle F-69621 Villeurbae, Frace, b.

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Physique - électricité : TC1

Physique - électricité : TC1 Miistère de l Eseigemet Supérieur, de la echerche Scietifique et de la Techologie Uiversité Virtuelle de Tuis électricité : TC Cocepteur du cours: Jilai LAMLOUM & Mogia EN AÏEK Attetio! Ce produit pédagogique

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Modèle de pointage et correction des dérives

Modèle de pointage et correction des dérives Ges de la Lue Observatoire astroomique de Plougastel Tél : 0 98 40 69 73 http://www.gesdelalue.org Modèle de poitage et correctio des dérives 1. Présetatio du problème Le poitage d u astre par u télescope

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

A) Forme algèbrique d un nombre complexe.

A) Forme algèbrique d un nombre complexe. A) Forme algèbrique d u ombre complexe. Théorème Il existe u esemble, oté,de ombres appelés ombres complexes, tel que : cotiet ; est mui d ue additio et d ue multiplicatio pour lesquelles les règles de

Plus en détail

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1.

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1. Cours 5 Idépedace 1 Das le cours précédet, ous avos vu que la variable Y était idépedate de la variable X si ses distributios coditioelles e fréquece sot égales ; das ce cas e effet, la mesure de X sur

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

C2: Dualité onde - corpuscule

C2: Dualité onde - corpuscule 1 re B et C C2 Dualité ode - corpuscule 16 C2: Dualité ode - corpuscule 1. Aspect corpusculaire de la lumière : l effet photoélectrique a) Expériece de Hertz (1887) Descriptio: Ue plaque de zic motée sur

Plus en détail

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES ) PUISSANCES D'EXPOSANTS REELS A ) La otatio a Si est u etier aturel, la otatio a a u ses pour tout réel a Das le cas où est u

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail