CH.3 PROBLÈME DE FLOTS

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "CH.3 PROBLÈME DE FLOTS"

Transcription

1 H.3 PROLÈME E FLOTS 3.1 Le réeaux de ranpor 3.2 Le flo maximum e la coupe minimum 3.3 L'algorihme de Ford e Fulkeron 3. Quelque applicaion Opi-comb ch Le réeaux de ranpor Réeau de ranpor : graphe oriené avec pour chaque arc une capacié. La capacié c(u, v) e un enier poiif ou nul. Il y a aui une ource e un pui. ucun arc n'arrive à la ource e aucun arc ne quie le pui. Un flo e une foncion enière poiive ou nulle f définie ur le arc aifaian : onraine de capacié : f(u, v) c(u, v) ; Symérie : f(u, v) = f(v, u) ; onervaion du flo : pour ou omme aure que e, la omme de flo ur le arc enran e la omme de flo ur le arc oran on égale ("Loi de Kirchhoff"). Exemple : circui élecrique ou hydraulique, réeaux de communicaion, modéliaion de ranpor Opi-comb ch 3 2

2 Réeau de ranpor avec le capacié /16 0/10 1/ 12/12 /9 7/7 1/20 8/13 /1 / Un flo ur le réeau de ranpor Opi-comb ch 3 3 Quand deux arc en en invere relien deux omme, on peu oujour annuler la foncion flo ur l'un de deux. Propriéé : la omme de flo ur le arc oran de la ource e la omme de flo ur le arc arrivan au pui on égale ; cee valeur e la valeur du flo f ; i on épare le omme en deux ou-enemble E conenan e F = E conenan, alor la omme de valeur du flo ur le arc de E ver F moin la omme de valeur du flo ur le arc de F ver E vau aui f. Une elle éparaion en deux ou enemble de omme e appelée une coupe e cee différence de omme de flo e appelée flo ne raveran la coupe. Opi-comb ch 3

3 La deuxième propriéé e donc que le flo ne raveran une coupe ne dépend pa de la coupe. émonraion de propriéé : Pour la deuxième, on par de E 0 = { }. Pui on ajoue le omme un à un juqu'à obenir E. La propriéé de conervaion du flo pour chaque omme ajoué perme de vérifier que le flo ne e invarian. La première propriéé en découle, avec E = { }, pui avec E = { }. Si E/F e une coupe du réeau, la capacié de la coupe e la omme de capacié de arc allan de E ver F. La propriéé de l'invariance du flo ne monre que f e inférieur à la capacié de n'impore quelle coupe. Opi-comb ch Le flo maximum e la coupe minimum Il exie oujour un flo poible qui e le flo nul. Problème : commen rouver un flo qui a la valeur maximum? elui de l'exemple e-il maximum? Recherche d'un chemin amélioran. éerminer le réeau réiduel : pour chaque arc (u, v), f(u, v) c(u, v), on peu augmener le flo de c(u, v) f(u, v), e on peu le diminuer de f(u, v), donc faire paer un flo f(u, v) ur l'arc (v, u). Si ce arc exie déjà avec une capacié c(v, u), celle-ci 'ajoue à f(v, u). Le graphe oriené avec ce capacié e le réeau réiduel. On cherche un chemin de à dan le réeau réiduel. Il correpond à une poibilié d'amélioraion du flo en modifian de la valeur du minimum de capacié réiduelle ur le chemin. Opi-comb ch 3 6

4 /16 0/10 1/ 12/12 /9 7/7 1/20 8/13 /1 / Le flo Le réeau réiduel correpondan Opi-comb ch Un chemin amélioran 3 1 /16 0/10 1/ 12/12 0/9 7/7 19/20 12/13 /1 / Le flo aprè amélioraion Opi-comb ch 3 8

5 Le nouveau réeau réiduel an ce réeau, il n'y a pa de chemin de à, donc pa de chemin amélioran. Opi-comb ch 3 9 Théorème (flo maximum e coupe minimum) Si f e un flo dan un réeau de ranpor, le roi condiion uivane on équivalene : 1. f e un flo maximum ; 2. Le réeau réiduel de f ne conien aucun chemin amélioran ; 3. Il exie une coupe E/F don la capacié vau f. Remarque : La condiion 3. implique que f e la valeur minimum de capacié de coupe du réeau, puiqu'on ai déjà que f e inférieur à la capacié de n'impore quelle coupe. 'où le nom du héorème. Opi-comb ch 3 10

6 émonraion : Si on rouve un chemin amélioran, on peu augmener f. e flo n'éai donc pa maximum S'il n'y a pa de chemin amélioran, oi E la compoane foremen connexe de dan le graphe réiduel. Le complémenaire F = E conien. Tou le arc enre E e F dan le graphe réiduel von de F ver E. onc pour ou arc a du réeau iniial de E ver F la valeur du flo e égale à la capacié e elle e nulle pour ou arc de F ver E. onc f e égal à la capacié de la coupe E/F Si un flo a comme valeur la capacié d'une coupe, il e néceairemen maximum, puique ou le flo on inférieur à la capacié de n'impore quelle coupe. e héorème juifie la recherche d'un chemin amélioran pour obenir un flo maximal. Opi-comb ch L'algorihme de Ford e Fulkeron On par d'un flo quelconque (évenuellemen nul) ; On fabrique le réeau réiduel ; On cherche un chemin amélioran ; On ière juqu'à ce qu'on ne rouve plu de el chemin. La complexié de l'algorihme dépend de l'implémenaion. La recherche d'un chemin amélioran peu êre faie en O(a) ; l'acualiaion du graphe réiduel aui ; ce qui donne donc O(a f max ). Lorque la valeur de f max e peie, cee complexié e bonne. La meilleure raégie pour la recherche d'un chemin amélioran e de faire une exploraion du graphe réiduel en largeur. L'algorihme prend alor le nom d'algorihme d'edmond-karp. Opi-comb ch 3 12

7 Suppoon que le réeau compore n omme e a arc. Une analye approfondie de différence enre le diver réeaux réiduel perme de monrer que le nombre d'iéraion dan l'algorihme d'edmond-karp e en O(n a). haque iéraion donne un chemin amélioran en O(a), d'où une complexié en O(n a 2 ). 'aure méhode (préflo) permeen de rouver le flo maximum en O(n 3 ). Variane e applicaion : Parfoi, il y a pluieur ource e pluieur pui. On peu dan ce ca rajouer une "uper-ource" e un "uper-pui" relié repecivemen aux ource e aux pui par de arc de capacié infinie. Opi-comb ch djoncion d'une uper-ource e d'un uper-pui an une variane, chaque arc a une capacié maximale e une capacié minimale. L'algorihme de Ford-Fulkeron foncionne à condiion de parir d'un flo réaliable (il n'en exie pa oujour...) Si la capacié d'un arc e un nombre réel poiif ou nul, eule la recherche de chemin amélioran en lareur aure la convergence en un emp fini. Le héorème de la coupe perme d'idenifier le arc auré don l'augmenaion de capacié permerai d'améliorer le flo maximum. e on le arc criique. Opi-comb ch 3 1

8 3. Quelque applicaion Lorque la capacié d'un arc e égale à 1, un flo de ver e un enemble de chemin de ver n'ayan aucun arc en commun. La valeur d'un flo maximum e alor le nombre de el chemin de ver. Suppoon que cee valeur oi k. ela ignifie donc que la uppreion de moin de k arc dan le réeau ne déconnece pa e. ee valeur peu êre calculée en O(a k). Un graphe e k-connexe par arc lorque, quel que oien k arc du graphe, leur uppreion ne déconnece aucun couple de omme. ee propriéé e uile pour meurer la olérance d'un réeau aux coupure de ligne. Lorque le omme e ne on pa la ource e le pui, on peu uilier l'auce précédene (uper-ource e uper-pui). Opi-comb ch 3 1 Le degré de connexié par arc d'un graphe e donc le minimum de valeur de flo allan de n'impore quel omme à n'impore quel aure. Il emble que la complexié oi donc O(n 2 a k). En fai, il uffi d'ordonner le omme arbirairemen : x 1, x 2,..., x n, e de faire ce calcul pour le paire de omme conécuif e pour (x n, x 1 ). omme on a moin de couple de omme, le minimum de valeur de flo pourrai augmener. Mai un couple (u, v) e un couple (x i, x j ). Si la uppreion de k arc déconnece u e v, elle déconnece néceairemen l'un de couple (x i, x i +1 ), (x i + 1, x i + 2 ),..., (x j 1, x j ). Le degré de connexié d'un graphe peu donc êre calculé en O(n a k). Opi-comb ch 3 16

9 Une aure applicaion du ca de capacié égale à 1 e la recherche d'un couplage maximum dan un graphe bipari. Graphe bipari : on conidère deux enemble de omme e on uppoe que le arêe relien de omme de l'un à de omme de l'aure. On peu voir le premier comme de peronne, le econd comme de âche e le arêe comme de capacié d'affecaion de peronne aux âche. E F E-il poible d'affecer oue le peronne à oue le âche? Sinon, quel e le nombre maximum d'affecaion pouvan êre réaliée? Un placemen mal commencé peu abouir à un blocage : -1, -2, - (forcé), -3, impoible pour E. Opi-comb ch 3 17 La recherche d'un couplage dan un graphe bipari peu êre effecuée au moyen d'un algorihme de flo. On oriene oue le arêe de peronne ver le âche, on leur donne la capacié 1, pui on ajoue une ource e un pui relié repecivemen aux peronne e aux âche par de arc de capacié 1. La complexié e donc O(n a), puique le flo vau au plu n. 1 E 2 3 Flo maximum de ver rouvé par Ford-Fulkeron. Toue le peronne e oue le âche on affecée. F 6 Opi-comb ch 3 18

10 Parfoi, un réeau évolue dan le emp : phae ranioire, modificaion de capacié avec le emp. Si le emp e dicre e que le parcour d'un arc prend une unié de emp, on peu repréener le réeau à chaque valeur du emp dicre en connecan le omme d'un niveau au uivan. ela perme de réoudre de problème logiique (éleage de roue en ca de bouchon prévu,...) Si on cherche à effecuer un plan de circulaion dan un graphe à n omme e a arc pendan un emp, on e ramène à un problème de flo dan un graphe ayan n ( + 1) omme e a arc. L'algorihme d'edmond-karp perme de réalier le plan de circulaion en un emp O(n a 2 ). Opi-comb ch 3 19

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION

TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION P6 : ALIMNAION A DCOUPAG : HACHUR SRI CONVRISSUR SAIQU ABAISSUR D NSION INRODUCION Le réeau alternatif indutriel fournit l énergie électrique principalement ou de tenion inuoïdale de fréquence et d amplitude

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Trouver des sources de capital

Trouver des sources de capital Trouver de ource de capital SÉRIE PARTENAIRES EN AFFAIRES Emprunt garanti et non garanti Vente de part de capital Programme gouvernementaux Source moin courante SÉRIE PARTENAIRES EN AFFAIRES Quelque principe

Plus en détail

Caractérisation de l interface Si/SiO 2 par mesure C(V)

Caractérisation de l interface Si/SiO 2 par mesure C(V) TP aractériation de l interface Si/SiO par meure (V) aractériation de l interface Si/SiO par meure (V) Introduction p I Effet de champ à l interface Si/SiO p Fonctionnement d une capacité MOS p Principe

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you.

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you. Erwan, d une mae de 65 kg, fait un aut de Bungee. Il tombe de 0 m avant que la corde du bungee commence à étirer. Quel era l étirement maximal de la corde i cette dernière agit comme un reort d une contante

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

Progressons vers l internet de demain

Progressons vers l internet de demain Progreon ver l internet de demain COMPRENDRE LA NOTION DE DÉBIT La plupart de opérateur ADSL communiquent ur le débit de leur offre : "512 Kb/", "1 Méga", "2 Méga", "8 Méga". À quoi ce chiffre correpondent-il?

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

Le compte épargne temps

Le compte épargne temps 2010 N 10-06- 05 Mi à jour le 15 juin 2010 L e D o i e r d e l a D o c 1. Définition Sommaire 2. Modification iue du décret n 2010-531 3. Principe du compte épargne temp Bénéficiaire potentiel Alimentation

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Projet. Courbe de Taux. Daniel HERLEMONT 1

Projet. Courbe de Taux. Daniel HERLEMONT 1 Projet Courbe de Taux Daniel HERLEMONT Objectif Développer une bibliothèque en langage C de fonction relative à la "Courbe de Taux" Valeur Actuelle, Taux de Rendement Interne, Duration, Convexité, Recontitution

Plus en détail

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création Doier : Getion d entreprie 42 La Getion de filiale dan une PME : Bonne Pratique et Piège à éviter Certaine PME ont tout d une grande. entreprie. A commencer par la néceité d avoir de filiale. Quel ont

Plus en détail

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM Cap Math CP 2 cycle Guide de l eneignant Nouveaux programme SOUS LA DIRECTION DE Roland CHARNAY Profeeur de mathématique en IUFM Marie-Paule DUSSUC Profeeur de mathématique en IUFM Dany MADIER Profeeur

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................

Plus en détail

Ned s Expat L assurance des Néerlandais en France

Ned s Expat L assurance des Néerlandais en France [ LA MOBILITÉ ] PARTICULIERS Ned s Expa L assurance des Néerlandais en France 2015 Découvrez en vidéo pourquoi les expariés en France choisissen APRIL Inernaional pour leur assurance sané : Suivez-nous

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE

SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE Le seul ballon hybride solaire-hermodynamique cerifié NF Elecricié Performance Ballon hermodynamique 223 lires inox 316L Plaque évaporarice

Plus en détail

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian 1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Ventilation à la demande

Ventilation à la demande PRÉSENTATION Ventilation à la demande Produit de pointe pour ventilation à la demande! www.wegon.com La ventilation à la demande améliore le confort et réduit le coût d exploitation Lorque la pièce et

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

Intégration de Net2 avec un système d alarme intrusion

Intégration de Net2 avec un système d alarme intrusion Ne2 AN35-F Inégraion de Ne2 avec un sysème d alarme inrusion Vue d'ensemble En uilisan l'inégraion d'alarme Ne2, Ne2 surveillera si l'alarme inrusion es armée ou désarmée. Si l'alarme es armée, Ne2 permera

Plus en détail

NUMERISATION ET TRANSMISSION DE L INFORMATION

NUMERISATION ET TRANSMISSION DE L INFORMATION , Chapire rminale S NUMERISATION ET TRANSMISSION DE L INFORMATION I TRANSMISSION DE L'INFORMATION ) Signal e informaion ) Chaîne de ransmission de l informaion La chaîne de ransmission d informaions es

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007 BAREME ur 40 point Informatique - eion 2 - Mater de pychologie 2006/2007 Bae de donnée PRET de MATERIEL AUDIO VISUEL. Remarque : Le ujet comporte 7 page. Vérifier qu il et complet avant de commencer. Une

Plus en détail

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A

TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A UIMBERTEAU UIMBERTEAU TRAVAUX PRATIQUES 5 ISTALLATIO ELECTRIQUE DE LA CAE D'ESCALIER DU BATIMET A ELECTROTECHIQUE Seconde B.E.P. méiers de l'elecroechnique ELECTROTECHIQUE HABITAT Ver.. UIMBERTEAU TRAVAUX

Plus en détail

RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ

RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ LETTRE MENSUELLE DE CONSEILS DESTINÉS À MAXIMALISER LE FLUX DE REVENUS RETIRÉS DE VOTRE SOCIÉTÉ OPTIMALISATION DU MOIS Déterminer le taux du marché... Si votre ociété vou vere un intérêt, elle doit de

Plus en détail

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD LA COUCHE PHYSIQUE 1 FONCTIONS GENERALES Cee couche es chargée de la conversion enre bis informaiques e signaux physiques Foncions principales de la couche physique : définiion des caracérisiques de la

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

Estimation des matrices de trafics

Estimation des matrices de trafics Cédric Foruny 1/5 Esimaion des marices de rafics Cedric FORTUNY Direceur(s) de hèse : Jean Marie GARCIA e Olivier BRUN Laboraoire d accueil : LAAS & QoSDesign 7, av du Colonel Roche 31077 TOULOUSE Cedex

Plus en détail

Le mécanisme du multiplicateur (dit "multiplicateur keynésien") revisité

Le mécanisme du multiplicateur (dit multiplicateur keynésien) revisité Le mécanisme du muliplicaeur (di "muliplicaeur kenésien") revisié Gabriel Galand (Ocobre 202) Résumé Le muliplicaeur kenésien remone à Kenes lui-même mais il es encore uilisé de nos jours, au moins par

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

Programmation, organisation et optimisation de son processus Achat (Ref : M64) Découvrez le programme

Programmation, organisation et optimisation de son processus Achat (Ref : M64) Découvrez le programme Programmaion, organisaion e opimisaion de son processus Acha (Ref : M64) OBJECTIFS LES PLUS DE LA FORMATION Appréhender la foncion achas e son environnemen Opimiser son processus achas Développer un acha

Plus en détail

Impact de l éolien sur le réseau de transport et la qualité de l énergie

Impact de l éolien sur le réseau de transport et la qualité de l énergie 1 Impact de l éolien ur le réeau de tranport et la qualité de l énergie B. Robyn 1,2, A. Davigny 1,2, C. Saudemont 1,2, A. Anel 1,2, V. Courtecuie 1,2 B. Françoi 1,3, S. Plumel 4, J. Deue 5 Centre National

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des

Plus en détail

OPTIMISATION À UNE VARIABLE

OPTIMISATION À UNE VARIABLE OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum

Plus en détail

MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie.

MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie. / VARIATION/ ACCOMP PLAY/PAUSE REW TUNE/MIDI 3- LESSON 1 2 3 MIDI Qu es-ce que MIDI? MIDI es l acronyme de Musical Insrumen Digial Inerface, une norme inernaionale pour l échange de données musicales enre

Plus en détail

unenfant Avoir en préservant ses droits

unenfant Avoir en préservant ses droits Avoir unenfant en préervant e droit Guide adreant aux travailleue et travailleur du ecteur public du réeau de la anté et de ervice ociaux Le comité de condition féminine de la La mie à jour de ce guide

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Guide de configuration d'une classe

Guide de configuration d'une classe Guide de configuration d'une clae Viion ME Guide de configuration d'une clae Contenu 1. Introduction...2 2. Ajouter de cour...4 3. Ajouter de reource à une leçon...5 4. Meilleure pratique...7 4.1. Organier

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

Cadeaux d affaires, cadeaux d entreprises, objets publicitaires www.france-cadeaux.fr - services@france-cadeaux.fr

Cadeaux d affaires, cadeaux d entreprises, objets publicitaires www.france-cadeaux.fr - services@france-cadeaux.fr Siège France Cadeaux 84 rue de Courbiac 17100 Sainte 00 33 (0)5 46 74 66 00 RC.424 290 211 00012 Cadeaux d affaire, cadeaux d entreprie, objet publicitaire www.france-cadeaux.fr - ervice@france-cadeaux.fr

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

Parcours Hydrologie-Hydrogéologie. Apport des méthodes d infiltrométrie à la compréhension de l hydrodynamique de la zone non-saturée des sols.

Parcours Hydrologie-Hydrogéologie. Apport des méthodes d infiltrométrie à la compréhension de l hydrodynamique de la zone non-saturée des sols. Univerité Pierre et Marie Curie, École de Mine de Pari & École Nationale du Génie Rural de Eaux et de Forêt Mater Science de l Univer, Environnement, Ecologie Parcour Hydrologie-Hydrogéologie Apport de

Plus en détail

La direction des solidarités Se loger à Moissy

La direction des solidarités Se loger à Moissy La direction de olidarité Se loger à Moiy La direction de olidarité La Source - Place du Souvenir - BP24-77550 Moiy-Cramayel cedex Tél. : 01 64 88 15 80 - Fax : 01 64 88 15 26 QU EST CE QUE LA GUP LA GESTION

Plus en détail

Thèse CIFRE. Développement de modèles statistiques pour l analyse et la prévision des données du secteur des services à la personne.

Thèse CIFRE. Développement de modèles statistiques pour l analyse et la prévision des données du secteur des services à la personne. Moèle aiique pour la préviion e onnée u eceur e ervice à la peronne Thèe CIFRE Développemen e moèle aiique pour l anale e la préviion e onnée u eceur e ervice à la peronne. Enreprie accueil : Jean-Charle

Plus en détail

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité 1 2 4 6 Mon Univerité Numérique 7 Rue de Fac Droit de uager et identité numérique Gloaire Webographie 23 24 26 28 Édito

Plus en détail

CANAUX DE TRANSMISSION BRUITES

CANAUX DE TRANSMISSION BRUITES Canaux de ransmissions bruiés Ocobre 03 CUX DE TRSISSIO RUITES CORRECTIO TRVUX DIRIGES. oyer Canaux de ransmissions bruiés Ocobre 03. RUIT DE FOD Calculer le niveau absolu de brui hermique obenu pour une

Plus en détail

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité 1 2 4 6 Mon Univerité Numérique 7 Rue de Fac Droit de uager et identité numérique Gloaire Webographie 23 24 26 28 Édito

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

MIPOLAM EL. gerflor.fr

MIPOLAM EL. gerflor.fr MIPOLAM EL gerflor.fr MIPOLAM EL Électronique Salle propre et térile Santé, Plateaux technique 2 Une gamme complète de produit pour tou locaux enible aux rique ESD L électricité tatique L électricité tatique

Plus en détail

Froid industriel : production et application (Ref : 3494) Procédés thermodynamiques, systèmes et applications OBJECTIFS LES PLUS DE LA FORMATION

Froid industriel : production et application (Ref : 3494) Procédés thermodynamiques, systèmes et applications OBJECTIFS LES PLUS DE LA FORMATION Froid indusriel : producion e applicaion (Ref : 3494) Procédés hermodynamiques, sysèmes e applicaions SUPPORT PÉDAGOGIQUE INCLUS. OBJECTIFS Appréhender les différens procédés hermodynamiques de producion

Plus en détail

Conception de convertisseurs DC/DC à base de MEMS

Conception de convertisseurs DC/DC à base de MEMS onception de convertieur D/D à bae de MEMS S. Ghandour To cite thi verion: S. Ghandour. onception de convertieur D/D à bae de MEMS. Micro and nanotechnologie/microelectronic. Univerité Joeph-Fourier -

Plus en détail

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie Copules e dépendances : applicaion praique à la déerminaion du besoin en fonds propres d un assureur non vie David Cadoux Insiu des Acuaires (IA) GE Insurance Soluions 07 rue Sain-Lazare, 75009 Paris FRANCE

Plus en détail

COMMUNE DE FELLETIN. P R O C E S V E R B A L D U C O N S E I L M U N I C I P A L Séance ordinaire du jeudi 8 septembre 2011

COMMUNE DE FELLETIN. P R O C E S V E R B A L D U C O N S E I L M U N I C I P A L Séance ordinaire du jeudi 8 septembre 2011 R E P U B L I Q U E F R A N Ç A I S E DEPARTEMENT DE LA CREUSE ARRONDISSEMENT D AUBUSSON COMMUNE DE FELLETIN P R O C E S V E R B A L D U C O N S E I L M U N I C I P A L Séance ordinaire du jeudi 8 eptembre

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2

CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2 CNAM UE MVA 210 Ph. Duran Algèbre et analyse tensorielle Cours 4: Calcul ierentiel 2 Jeui 26 octobre 2006 1 Formes iérentielles e egrés 1 Dès l'introuction es bases u calcul iérentiel, nous avons mis en

Plus en détail

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois) LES GRANDS THÈMES DE L ITB Les iérês simples e les iérês composés RAPPELS THÉORIQUES Les iérês simples : l'iérê «I» es focio de la durée «D» (jour, quizaie, mois, rimesre, semesre, aée) de l'opéraio (placeme

Plus en détail

Somm@ire. Édito. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Somm@ire. Édito. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité 1 2 4 6 Depui maintenant ept an, l Univerité Numérique Pari Île-de France vou accompagne dan la découverte de

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

Séquence 2. Pourcentages. Sommaire

Séquence 2. Pourcentages. Sommaire Séquence 2 Pourcenages Sommaire Pré-requis Évoluions e pourcenages Évoluions successives, évoluion réciproque Complémen sur calcularices e ableur Synhèse du cours Exercices d approfondissemen 1 1 Pré-requis

Plus en détail

Prudence, Epargne et Risques de Soins de Santé Christophe Courbage

Prudence, Epargne et Risques de Soins de Santé Christophe Courbage Prudence, Epargne et Rique de Soin de Santé Chritophe Courbage ASSOCIATION DE GENÈVE Introduction Le compte d épargne anté (MSA), une nouvelle forme d intrument pour couvrir le dépene de anté en ca de

Plus en détail

Produire moins, manger mieux!

Produire moins, manger mieux! Raak doier d Alimentation : o Produire moin, manger mieux! Nou voulon une alimentation de qualité. Combien de foi n entendon-nou pa cette revendication, et à jute titre. Mai i tout le monde et d accord

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE Ce aricle es disponible en ligne à l adresse : hp://www.cairn.info/aricle.php?id_revue=ecop&id_numpublie=ecop_149&id_article=ecop_149_0073 Risque associé au conra d assurance-vie pour la compagnie d assurance

Plus en détail

D'UN THÉORÈME NOUVEAU

D'UN THÉORÈME NOUVEAU DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent

Plus en détail

Eléments de Théorie des Graphes et Programmation Linéaire

Eléments de Théorie des Graphes et Programmation Linéaire INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d Electricité et de Mécanique Eléments de Théorie des Graphes et Programmation Linéaire Didier Maquin Professeur à l INPL Version

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau Ecole des HEC Universié de Lausanne FINANCE EMPIRIQUE Eric Jondeau FINANCE EMPIRIQUE La prévisibilié des rendemens Eric Jondeau L hypohèse d efficience des marchés Moivaion L idée de base de l hypohèse

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

Cahier technique n 114

Cahier technique n 114 Collecion Technique... Cahier echnique n 114 Les proecions différenielles en basse ension J. Schonek Building a ew Elecric World * Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés

Plus en détail

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB) Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un

Plus en détail

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité 1 2 4 6 Mon Univerité Numérique 7 Rue de Fac Droit de uager et identité numérique Gloaire Webographie 23 24 26 28 Édito

Plus en détail

3 POLITIQUE D'ÉPARGNE

3 POLITIQUE D'ÉPARGNE 3 POLITIQUE D'ÉPARGNE 3. L épargne exogène e l'inefficience dynamique 3. Le modèle de Ramsey 3.3 L épargne opimale dans le modèle AK L'épargne des sociéés dépend largemen des goûs des agens, de faceurs

Plus en détail

Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1)

Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1) 1 Que signifient AON et AOA? Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1) Sommaire 1. Concepts... 2 2. Méthode PCM appliquée

Plus en détail