Les Conditions aux limites

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Les Conditions aux limites"

Transcription

1 Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles, d appliquer les conditions aux limites aux interfaces entre les différents corps. Nous allons donc nous attarder ici sur ces conditions aux limites. 5.1 Induction magnétique - b oient deux milieux de propriétés électriques différentes séparés par une interface. Construisons un petit cylindre de section a et d épaisseur l à travers cette surface Figure 5.1: Géométrie pour les conditions-limites sur b, d et j. On rappelle que b = 0 et le théorème de Gauss 16

2 V b dv = b n d = 0 (5.1) où n est un vecteur unitaire normal à l interface. i le rayon du cylindre est suffisamment petit, on peut supposer que l induction magnétique est constante sur cette surface et donc b = b 1 dans le milieu 1 et b = b 2 dans le milieu 2. L intégrand devient alors ( b 1 n 1 + b 2 n 2 ) a + (contribution des bords) l = 0 (5.2) si l tend vers zéro, i.e. on se limite à l interface, il ne reste que le premier terme, soit ( b 1 n 1 + b 2 n 2 ) a = 0, mais les deux normales sont inversées donc b1 b 2 = 0 (5.3) Ce qui implique que la composante normale de l induction magnétique est continue de part et d autre de l interface. 5.2 Déplacement diélectrique - d Reprenons le même cylindre que dans le cas précédent. L équation de Maxwell correspondante est cette fois d = ρ. En intégrant de part et d autre du cylindre, on obtient d dv = d n d = ρ dv = ρ l a (5.4) V si ρ est constant. Remplacons ρ l par une densité surfacique de charge ρ s. V ( d 1 n 1 + d 2 n 2 ) a = ρ s a (5.5) ( d 1 d 2 ) n = ρ s (5.6) Ce qui implique que la composante normale du déplacement diélectrique est discontinue à une interface à cause de l accumulation d une densité de charge surfacique ρ s. 17

3 5.3 Densité de courant - j Toujours avec ce cher cylindre. i l épaisseur du cylindre tend vers zéro, le courant traversant l interface est donné par I = j 1 n a = j 2 n a (5.7) ( j 1 j 2 ) n = 0 (5.8) donc la composante normale de la densité de courant est continue. i on s intéresse au cas plus général du courant total, i.e. conduction + déplacement soit (σ + iɛω)e, alors on a (σ 1 + iɛ 1 ω) E 1 = (σ 2 + iɛ 2 ω) E 2 (5.9) n J = ( J 1 J 2 ) n 0 (5.10) car, selon (2.7), n j + ρ/ t = 0. Notez que si on est à basse fréquence, i.e. ρ/ t 0, on retrouve simplement la relation (5.8). 5.4 Champ électrique - e Nous allons ici prendre un contour, en sens horaire, autour d un rectangle de longueur h et de hauteur l. Figure 5.2: Géométrie pour les conditions-limites sur e et h. Rappelons l équation de Maxwell 18

4 e = b (5.11) t Intégrons le champ électrique autour du contour. Nous obtiendrons, via le théorème de tokes ( e) n d = e dl (5.12) b t n d = e 1 l e 2 l + (contributions des bouts) (5.13) b t n l h = ( e 1 e 2 ) l (5.14) Comme nous nous intéressons à l interface au sens strict, on peut prendre h = 0 et donc annuler le terme du côté gauche. Il ne reste plus que C ( e 1 e 2 ) l = 0 (5.15) l étant parallèle à l interface, on en conclut que la composante tangentielle du champ électrique est continue. Ceci peut aussi être exprimé sur la forme plus pratique à appliquer. 5.5 Champ magnétique - h n ( e 1 e 2 ) = 0 (5.16) Nous reprenons le même contour et le même raisonnement que dans le cas précédent. L équation de Maxwell correspondante est h = d t + j (5.17) Intégrons le champ magnétique autour du contour. Nous obtiendrons, via le théorème de tokes ( h) n d = h dl (5.18) ( d t + j) n d = h 1 l h 2 l + (contributions des bouts) (5.19) 19 C

5 ( d t + j) n l h = ( h 1 h 2 ) l (5.20) Ce qui revient à dire n ( h 1 h 2 ) = lim ( d h 0 t + j) n h (5.21) On a donc deux termes à analyser. Il semble évident que la dérivée temporelle du déplacement ne peut être infinie, car cela nécéssiterait une variation instantanée de d. La limite tendra bien vers 0 pour ce premier terme. Qu en est-il du courant de conduction? On peut imaginer la présence d une densité surfacique de courant telle que la condition sur h tangentiel devient lim ( j h) = j s (5.22) h 0 j n ( h 1 h 2 ) = j s (5.23) Mais si σ est limité (i.e. n est pas infini) de part et d autre (ce qui est toujours le cas en géophysique) et que le champ électrique e = j/σ est aussi limité, j ne peut tendre vers l infini et donc le second terme est également nul, donc n ( h 1 h 2 ) = 0 (5.24) Ceci implique que la composante tangentielle du champ magnétique est continue dans ce cas. Pour certains problèmes, on pourra supposer que σ est infini. Alors, on peut envisager que j soit infini sans que e ne le soit. Dans ce cas, on doit utiliser (5.23). 5.6 Exemple: Filon Vertical Enfin, on commence à faire de la géophysique! Nous allons aborder un cas très simple mais il vous donnera une bonne idée des raisons pour lesquelles la prospection EM fonctionne. oit un filon vertical de conductivité électrique σ 2 dans un encaissant de conductivité σ 1. Un champ électrique orienté parallèlement à la surface est incident à l interface I. De plus ɛ 1 = ɛ 2 = ɛ et µ 1 = µ 2 = µ. 20

6 σ σ σ Figure 5.3: Problème du filon pour l application des conditions aux limites. A l interface I, on a la discontinuité dans le déplacement normal donc d 2 d 1 = ρ s (5.25) e 2 e 1 = ρ s ɛ on a aussi la continuité de la composante normale de j (5.26) j 2 j 1 = σ 2 e 2 σ 1 e 1 = 0 (5.27) Combinant ces deux premiers résultats, on obtient e 2 = σ 1e 1 σ 2 (5.28) σ 1 e 1 σ 2 e 1 = ρ s ɛ (5.29) σ 1 σ 2 e 1 = ρ s (5.30) σ 2 ɛ Deux cas sont possibles: - σ 1 < σ 2 (interface I) : alors ρ s < 0. Accumulation de charges négatives - σ 1 > σ 2 (interface II) : alors ρ s > 0. Accumulation de charges positives La quantité de charges accumulées dépendra du contraste de conductivité entre le filon et son encaissant. i l on trace le champ électrique résultant, on remarque que les discontinuités facilitent largement la mise en évidence du filon. 21

7 σ 1 < σ 2 E σ 1 σ 2 σ 1 Figure 5.4: Bas: accumulation de charges aux bords d un filon conducteur. Haut: champ électrique perpendiculaire au filon que l on mesurerait en surface. Notez comme les discontinutés permettent de bien locaiser le filon. 5.7 L effet galvanique - Un corps dans un Champ électrique Nous pouvons étendre le problème du filon à un cas plus général, par exemple à un parallélépipède dans un champ électrique. Pour une cible plus conductrice que son encaissant, nous venons de voir que des charges de signe opposé s accumulaient aux deux extrémités de la cible. On peut en déduire qu il y a un courant (= un champ) secondaire de direction opposée au champ primaire à l intérieur de la cible: c est donc un champ de dépolarisation. Il s ajoute cependant au champ primaire à l extérieur de la cible, ce qui a pour effet de faciliter la découverte de celle-ci. Le champ secondaire produit par ce courant secondaire est équivalent à celui produit par un dipôle électrostatique orienté des charges négatives vers les charges positives. i l on s intéresse à la somme entre le champ électrique primaire e p et le champ de dépolarisation e s, on remarque qu à l extérieur de la cible les lignes de champ convergent vers celle-ci, et qu à 22

8 l intérieur, l opposition des champs provoque un resserrement des lignes de champ vers le centre. Le champ électrique total semble donc canalisé par le corps conducteur. Cet effet de canalisation du courant est connu sous le nom d effet galvanique. Ce champ total peut être assimilé à celui d un dipôle électrique ce qui permet de modéliser simplement ce phénomène. 23

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

4.1 Charges en mouvement - Courant et intensité électriques

4.1 Charges en mouvement - Courant et intensité électriques Chapitre 4 Distributions de courants En électrostatique, les charges restent immobiles. Leur déplacement est à l origine des courants électriques qui sont la source du champ magnétique que nous étudierons

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

Prospection EM - source locale

Prospection EM - source locale Chapitre 10 Prospection EM - source locale 10.1 Modèle générique de prospection EM On peut présenter les choses à partir d un modèle générique valable pour toutes les méthodes. Figure 10.1: Modèle générique

Plus en détail

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr Licence IOVIS 2011/2012 Optique géométrique Lucile Veissier lucile.veissier@spectro.jussieu.fr Table des matières 1 Systèmes centrés 2 1.1 Vergence................................ 2 1.2 Eléments cardinaux..........................

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

5.1 Équilibre électrostatique d un conducteur

5.1 Équilibre électrostatique d un conducteur 5 CONDUCTEURS À L ÉQUILIBRE 5.1 Équilibre électrostatique d un conducteur Dans un isolant, les charges restent à l endroit où elles ont été apportées (ou enlevées). Dans un conducteur, les charges sont

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

Exercices applications Rappels de cours Méthodologie

Exercices applications Rappels de cours Méthodologie Exercices applications Rappels de cours Méthodologie Amphi Beauchamp 2010-2011 QCM 1 Un électrocardiogramme enregistré en conditions standards fait apparaître un rythme régulier avec un espace de 12 mm

Plus en détail

Son et Lumière. L optique géométrique

Son et Lumière. L optique géométrique Son et Lumière Leçon N 3 L optique géométrique Introdution Nous allons au cours de cette leçon poser les bases de l optique géométrique en en rappelant les principes fondamentaux pour ensuite nous concentrer

Plus en détail

RAPPORT DE LABORATOIRE DE PHYSIQUE Focométrie

RAPPORT DE LABORATOIRE DE PHYSIQUE Focométrie RAPPORT DE LABORATOIRE DE PHYSIQUE Focométrie Benjamin Frere & Pierre-Xavier Marique 2ème candidature en sciences physiques, Université de Liège Année académique 2003-2004 But de l expérience Nous devions

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Étude statique du tire bouchon

Étude statique du tire bouchon Méthodologie MP1 Étude statique Tire-bouchon Étude statique du tire bouchon On s intéresse à l aspect statique du mécanisme représenté en projection orthogonale sur la figure 1. Le tire bouchon réel est

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Chapitre 10 : Condensateur et circuit RC I. Notions de base en électricité : a) Courant électrique

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

Chapitre III : lentilles minces

Chapitre III : lentilles minces Chapitre III : lentilles minces Les lentilles minces sont les systèmes optiques les plus utilisés, du fait de leur utilité pour la confection d instruments d optique tels que microscopes, télescopes ou

Plus en détail

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012 Cours d électricité Dipôles simples en régime alternatif Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année: 2011-2012 Plan du

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction La diode à jonction I Introduction La diode est le semi-conducteur de base. Son fonctionnement est assimilable à celui d un interrupteur qui ne laisse passer le courant que dans un seul sens. C est la

Plus en détail

Question O1. Réponse. Petit schéma : miroir

Question O1. Réponse. Petit schéma : miroir Question O1 Vous mesurez 180 cm, vous vous tenez debout face à un miroir plan dressé verticalement. Quelle doit être la hauteur minimale du miroir pour que vous puissiez vous y voir des pieds à la tête,

Plus en détail

Opt 3 : LENTILLES SPHERIQUES MINCES DANS LES

Opt 3 : LENTILLES SPHERIQUES MINCES DANS LES Opt 3 : LENTILLES SPHERIQUES MINCES DNS LES CONDITIONS D PPROXIMTION DE GUSS. Les lentilles sont des systèmes optiques destinés à former des images par transmission et non par réflexion (contrairement

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Transferts thermiques par conduction

Transferts thermiques par conduction Transferts thermiques par conduction Exercice 1 : Température de contact entre deux corps* On met en contact deux conducteurs thermiques cylindriques, calorifugés sur leurs surfaces latérales. On se place

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale

EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale EXAMEN #1 ÉLECTRICITÉ ET MAGNÉTISME 20% de la note finale Hiver 2009 Nom : Chaque question à choix multiples vaut 3 points 1. Dans quelle direction est le potentiel au centre du carré dans la figure suivante?

Plus en détail

Plan du cours : électricité 1

Plan du cours : électricité 1 Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)

Plus en détail

I. Les différentes lentilles

I. Les différentes lentilles es lentilles minces es lentilles minces entrent dans la constitution de presque tous les systèmes optiques et leur étude est donc particulièrement importante. I. es différentes lentilles Une lentille est

Plus en détail

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique PGA & SDUEE Année 008 09 Interaction milieux dilués rayonnement Travaux dirigés n. Résonance magnétique : approche classique Première interprétation classique d une expérience de résonance magnétique On

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant :

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant : MAGNETISME 1) Les différentes sources de champ magnétique La terre crée le champ magnétique terrestre Les aimants naturels : les magnétites Fe 3 O 4 L acier que l on aimante Les électroaimants et circuits

Plus en détail

obs.1 Lentilles activité

obs.1 Lentilles activité obs.1 Lentilles activité (Lentille mince convergente) 1) première partie : étude qualitative Dans cette manipulation, on va utiliser un banc d optique. On va positionner la lentille de distance focale

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Chapitre 6 : LES LENTILLES MINCES S 3 F

Chapitre 6 : LES LENTILLES MINCES S 3 F Chapitre 6 : LES LENTILLES MINCES S 3 F I) Généralité sur l optique géométrique : 1) Rappel sur les faisceaux lumineux : A partir d'une source de lumière, nous observons un faisceau lumineux qui peut être

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

Cours MF101 Contrôle de connaissances: Corrigé

Cours MF101 Contrôle de connaissances: Corrigé Cours MF101 Contrôle de connaissances: Corrigé Exercice I Nous allons déterminer par analyse dimensionnelle la relation entre la Trainée D et les autres paramètres. F D, g,, V, ρ, ν) = 0 1) où D représente

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle.

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle. TP force centrifuge Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : Étudier la force centrifuge dans le cas d un objet ponctuel en rotation uniforme autour d un axe fixe. 1 Présentation

Plus en détail

TD 3 : Problème géométrique dual et méthode des moindres carrés

TD 3 : Problème géométrique dual et méthode des moindres carrés Semestre, ENSIIE Optimisation mathématique 4 mars 04 TD 3 : Problème géométrique dual et méthode des moindres carrés lionel.rieg@ensiie.fr Exercice On considère le programme géométrique suivant : min x>0,y>0

Plus en détail

Théorème d Ampère et applications

Théorème d Ampère et applications 6 Théorème d Ampère et applications 1 Théorème d Ampère Equivalent du théorème de Gauss pour l électrostatique. Permet de calculer des champs simplement en utilisant la symétrie des courants. Mais il faut

Plus en détail

B - COURANT ELECTRIQUE

B - COURANT ELECTRIQUE B - COURANT ELECTRIQUE B - I - DEFINITION DE L'INTENSITE D'UN COURANT ELECTRIQUE La propriété des conducteurs solides d'avoir des électrons libres correspond à l'échelle des atomes à un déplacement permanent

Plus en détail

Suites numériques 2. n=0

Suites numériques 2. n=0 Suites numériques 1 Somme des termes d une suite Dans les applications, il est souvent nécessaire de calculer la somme de quelques premiers termes d une suite (ou même de tous les termes, mais on étudiera

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 Outils Mathématiques 4 Intégrales de surfaces résumé 1 Surfaces paramétrées éfinition 1.1 Une surface paramétrée dans l espace, est la donnée de trois fonctions de classes

Plus en détail

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011 Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 010-011 novembre 010 I Définition d une conique en terme d équation cartésienne On se place dans le repère orthonormé direct (0, i, j ).

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Démontrer le caractère injectif / surjectif / bijectif d une application

Démontrer le caractère injectif / surjectif / bijectif d une application Démontrer le caractère injectif / surjectif / bijectif d une application Il s agit donc de montrer une propriété commençant par un symbole. La démonstration débute donc par : Soit (x 1, x 2 ) E 2. La propriété

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

ETUDE DES LENTILLES MINCES

ETUDE DES LENTILLES MINCES ETUDE DES LENTILLES MINCES I ) Définitions Une lentille est un milieu transparent limité par deux surfaces dont l une au moins n est pas plane. Parmi les lentilles minces, on distingue deux catégories

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Le dessin technique. Le dessin technique doit être compris par tous. Pour cela, il doit y quelques règles de présentation.

Le dessin technique. Le dessin technique doit être compris par tous. Pour cela, il doit y quelques règles de présentation. 1/5 Le dessin technique ou dessin industriel est un élément essentiel de la communication technique. Il s agit d un ensemble de conventions de représentation des objets qui assurent que l objet produit

Plus en détail

Limitation du débit de pompage selon la charge en fonction de la position des crépines

Limitation du débit de pompage selon la charge en fonction de la position des crépines Limitation du débit de pompage selon la charge en fonction de la position des crépines Note technique NT EAU 21/6 Novembre 214 Dominique THIÉRY Synthèse Cette note présente la fonctionnalité de «Limitation

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Création (commentaires): 21 décembre 2010 21/12/10 : correction du modèle élasto-plastique (dia 11-2-4)

Création (commentaires): 21 décembre 2010 21/12/10 : correction du modèle élasto-plastique (dia 11-2-4) Création (commentaires): 21 décembre 2010 21/12/10 : correction du modèle élasto-plastique (dia 11-2-4) Suite à l analyse expérimentale qui a mis en évidence plusieurs comportements non linéaires de matériaux,

Plus en détail

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente Première S Chapitre mages formées par les systèmes optiques.. mage donnée par un miroir.. Lois de la réflexion Soit un rayon lumineux issu dun point lumineux S et qui rencontre en le miroir plan M. l donne,

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter.

Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter. Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter. Veuillez visionner le document sur la formation en ligne. Corniche : objet technique à dessiner. Plaçons

Plus en détail

Chapitre 2. Prospection sismique. 2.1 Sismique-réflexion

Chapitre 2. Prospection sismique. 2.1 Sismique-réflexion Chapitre 2 Prospection sismique La prospection sismique est basée sur la propagation des ondes élastiques dans le sous-sol. Nous avons indiqué dans la section précédente que l on s intéressait essentiellement

Plus en détail

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé.

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé. TP focométrie Ce TP est évalué à l'aide du compte-rendu pré-imprimé. Objectifs : déterminer la distance focale de divers lentilles minces par plusieurs méthodes. 1 Rappels 1.1 Lentilles... Une lentille

Plus en détail

Physique 30 Labo L intensité du champ magnétique. Contexte : Problème : Variables : Matériel : Marche à suivre :

Physique 30 Labo L intensité du champ magnétique. Contexte : Problème : Variables : Matériel : Marche à suivre : Physique 30 Labo L intensité du champ magnétique Contexte : La plupart des gens qui ont déjà joué avec un aimant permanent savent que plus on s en approche, plus la force magnétique est grande. Il est

Plus en détail

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF PHYSQ 126: Circuits RLC 1 CIRCUITS RLC À COURANT ALTERNATIF 1 Introduction. Le but de cette expérience est d introduire le concept de courant alternatif (en anglais, Alternating Current ou AC) et d étudier

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

TP spécialité N 3 La Lunette Astronomique 1 / 7

TP spécialité N 3 La Lunette Astronomique 1 / 7 TP spécialité N 3 La Lunette Astronomique / 7 I- Matériel disponible. - Un banc d optique avec accessoires : Une lanterne avec la lettre «F», deux supports pour lentille, un porte écran, un miroir plan,

Plus en détail

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Surface sphérique : Miroir, dioptre et lentille Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Définition : Les miroirs sphériques Un miroir sphérique est une

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

2 Le champ électrostatique E

2 Le champ électrostatique E Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier : Outil Physique et Géophysique 2 Le champ électrostatique E k Daniel.Brito@ujf-grenoble.fr E MAISON DES GÉOSCIENCES

Plus en détail

De la lentille au miroir.

De la lentille au miroir. De la lentille au miroir. De la lentille au miroir. Qu est ce qu un objectif, qu il soit réfracteur ou réflecteur? De la lentille au miroir. Qu est ce qu un objectif, qu il soit réfracteur ou réflecteur?

Plus en détail

Chapitre 4 Les lentilles minces

Chapitre 4 Les lentilles minces Chapitre 4 Les lentilles minces Sidi M. Khefif Département de Physique EPST Tlemcen 10 février 2013 1. Généralités 1.1. Description Définition : Une lentille est un milieu transparent limité par deux dioptres,

Plus en détail

Définition d une suite récurrente à l aide de la fonction ln

Définition d une suite récurrente à l aide de la fonction ln Définition d une suite récurrente à l aide de la fonction ln Thèmes. fonction ln, théorème des valeurs intermédiares, suite définie par récurrence : majoration, minoration, monotonie, convergence, eistence.

Plus en détail

Prospections géophysiques adaptées au socle

Prospections géophysiques adaptées au socle Prospections géophysiques adaptées au socle Viviane BORNE Sommaire 1 - La prospection électromagnétique VLF 2 - La tomographie électrique 3 - Les nouvelles prospections à mettre en oeuvre 2 Prospection

Plus en détail

B - LE CHAMP ELECTRIQUE

B - LE CHAMP ELECTRIQUE B - L CHAP LCTRIQU B - 1 - L VCTUR CHAP LCTRIQU L'orientation du vecteur champ électrique dépend de la nature (positive ou négative) de la charge qui le produit. L effet de ce champ (attraction ou répulsion)

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Utilisation du théorème de Gauss

Utilisation du théorème de Gauss Utilisation du théorème de Gauss Table des matières 1 Méthode générale 1 2 Plan infini uniformément chargé 2 2.1 Invariances et symétries................................... 2 2.2 Calcul du champ électrique.................................

Plus en détail

Inégalités. c a + b 3 2,

Inégalités. c a + b 3 2, DOMAINE : Géométrie AUTEUR : Margaret BILU NIVEAU : Avancé STAGE : Montpellier 03 CONTENU : Eercices Inégalités - Quelques inégalités secondaires, mais utiles - Proposition. (Inégalité de Nesbitt) Soient

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

Chapitre 3 : Dynamique du point matériel

Chapitre 3 : Dynamique du point matériel Cours de Mécanique du Point matériel Chapitre 3 : Dynamique SMPC1 Chapitre 3 : Dynamique du point matériel I Lois fondamentales de la dynamiques I.1)- Définitions Le Référentiel de Copernic: Le référentiel

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Cinquième cours Taux instantané constant Taux instantané constant Date de comparaison Taux instantané constant Date de comparaison Diagramme d entrées et sorties Taux instantané

Plus en détail