Rappels sur les suites.

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "Rappels sur les suites."

Transcription

1 UFR SFA, Licence 2 e année, MATH326 Rappels sur les suies. Dans oue la suie, K désigne R ou C. 1. Généraliés sur les suies. Définiion. Une suie à valeurs dans K es une applicaion u de N, privé évenuellemen d un nombre fini d élémens, dans K. Pour ou enier n, le nombre u(n) es noé u n ; la suie u se noe (u n ). On parle de suie réelle lorsque K = R, de suie complexe lorsque K = C. Lorsqu une suie es définie seulemen pour n p par exemple (1/n 2 ) es définie pour n 1 on peu écrire pour êre précis (u n ) n p. Une suie peu êre définie de différenes manières : 1. expliciemen en foncion de n : la suie de erme général u n = ln(n + 1) + e n ; 2. à l aide d une relaion de récurrence : par exemple u 0 = 0, n 0, u n+1 = 2 + u n. (1) Il fau dans ce cas s assurer que la suie es bien définie (ici u n 0 pour ou n). Les relaions de récurrence peuven faire inervenir plus de ermes de la suie que dans l exemple précéden : u 0 = 0, u 1 = 1 e, pour ou enier n, u n+2 = 2u n+1 + 3u n. Remarque. L ensemble des suies à valeurs dans K es un K espace vecoriel. Définiion. Une suie (u n ) à valeurs dans K es bornée s il exise un réel posiif K el que n N, u n K. Définiion. Une suie réelle (u n ) es majorée (respecivemen minorée) s il exise un réel M (respecivemen m) el que n N, u n M (respecivemen m u n ). Remarque. Une suie réelle (u n ) es bornée si e seulemen si elle es majorée e minorée. Exemple. La suie définie par la relaion (1) es minorée par 0 e donc minorée par 2 à parir de n = 1. Monrons par récurrence qu elle es majorée par 2. u 0 = 0 2 ; si u n 2, u n+1 = 2 + u n = 2. Par conséquen cee suie es bornée. La suie de erme général v n = ( 1) n n n es pas bornée puisque v n = n. Définiion. Une suie réelle (u n ) es croissane (respecivemen décroissane) si, pour ou enier n, u n+1 u n (respecivemen u n+1 u n ). Elle es sricemen croissane (respecivemen sricemen décroissane) si, pour ou enier n, u n+1 > u n (respecivemen u n+1 < u n ). 1 Ph. Briand, 2011/2012

2 Revenons à l exemple (1) e monrons que cee suie es croissane. On a, pour ou enier n 1, u n+1 u n = 2 + u n u n = u n u n un u n 1. Par conséquen, le signe de u n+1 u n es le même que celui de u n u n 1 ; ceci éan valable pour ou n 1, le signe de u n+1 u n es celui de u 1 u 0 = 2 > 0 : la suie es croissane. On monre facilemen que cee suie es sricemen croissane. 2. Suies e limies. Définiion. Soien (u n ) une suie à valeurs dans K e l K. La suie (u n ) converge vers l si pour ou ε > 0 il exise un enier p el que n N, n p = u n l < ε. On noe dans ce cas lim n + u n = l ou lim u n = l. (u n ) es convergene lorsqu il exise l K el que lim u n = l. Dans le cas conraire, la suie (u n ) es divergene. Exemple. La suie de erme général 1/n 2 converge vers 0. En effe, fixons ε > 0 ; choisissons un enier p el que p > 1/ε de sore que p 2 > 1/ε. Si n p, n 2 p 2 > 1/ε e u n = u n < ε. Remarque. 1. Si une suie es convergene alors la limie es unique. 2. Toue suie convergene es bornée. 3. lim u n = l lim(u n l) = 0 lim u n l = 0. Proposiion. Soien (u n ) e (v n ) deux suies convergenes de limies respecives l e l. Pour ou λ K, (u n + λv n ) converge vers l + λl, (u n v n ) converge vers ll e, si l 0, (u n /v n ) converge vers l/l. Remarque. 1. L ensemble des suies à valeurs dans K qui son convergenes es un sous-espace vecoriel des suies à valeurs dans K. 2. Si (u n ) converge vers 0 e si (v n ) es bornée alors (u n v n ) converge vers Une suie complexe (u n ) converge vers l si e seulemen si (Re(u n )) converge vers Re(l) e (Im(u n )) converge vers Im(l) Définiion. La suie réelle (u n ) end vers + (respecivemen ) on noe alors lim u n = + (respecivemen lim u n = ) si, pour ou A > 0, il exise p N el que, pour ou n p, u n > A (respecivemen u n < A). Exemple. Les suies n 2, ln n, e n enden vers +. La suie de erme général u n = ( 1) n es bornée ; elle ne end ni vers + ni vers. Pouran cee suie es divergene. 2

3 3. Exisence de limie pour les suies réelles. Dans ce paragraphe, oues les suies qui inerviennen son des suies réelles. Théorème. On suppose que, pour ou n p, u n v n w n. 1. Si les suies (u n ) e (w n ) son convergenes de même limie l, alors la suie (v n ) es convergene de limie l. 2. Si lim u n = +, alors lim v n = Si lim w n =, alors lim v n =. 4. Si lim u n = l e lim v n = l alors l l. Exemple. La suie de erme général u n = cos n/n converge vers 0. En effe, pour ou n 1, 1 cos n 1 donc 1/n u n 1/n. Plus élégan, 0 u n 1/n. u n = n + n cos n end vers + puisque u n n n = n(1 1/ n). Proposiion. Soi (u n ) une suie croissane. Si (u n ) es majorée alors elle es convergene ; si (u n ) n es pas majorée, lim u n = +. Soi (u n ) une suie décroissane. Si (u n ) es minorée alors elle es convergene ; si (u n ) n es pas minorée, lim u n =. Exemple. La suie définie par la relaion (1) es convergene puisque croissane e majorée par 2. Théorème (Suies adjacenes). Soien (u n ) une suie croissane e (v n ) une suie décroissane. Si lim(v n u n ) = 0 alors les suies (u n ) e (v n ) son convergenes vers la même limie. Exercice. Monrer que la suie de erme général u n = n! es convergene. On pourra considérer la suie v n = u n + 1/(n n!). Définiion (Suie de Cauchy). Une suie (u n ) n 0 es une suie de Cauchy si pour ou réel ε sricemen posiif, il exise un enier p el que n p, m p = u n u m < ε. Théorème (K es comple). Soi (u n ) n 0 une suie de K. (u n ) n 0 es convergene si e seulemen si (u n ) n 0 es une suie de Cauchy. 4. Suies récurrenes Suies arihméiques. (u n ) es arihméique de raison r si elle vérifie la relaion de récurrence : pour ou n N, u n+1 = u n + r. On a alors, u n = u 0 + nr e u n = u k + (n k)r. On peu calculer facilemen la somme des ermes d une suie arihméique puisque (k, n) N 2, u k u k+n = (n + 1)(u k + u k+n )/2 = (n + 1)(2u k + nr)/2. En pariculier, n = n(n + 1)/2. 3

4 4.2. Suies géomériques. (u n ) es géomérique de raison q si elle vérifie la relaion de récurrence : pour ou enier n, u n+1 = q u n. On a alors u n = q n u 0 e u n = q n k u k. L éude de la convergence se ramène à celle de la suie (q n ) : 1. q < 1 : lim q n = 0 ; 2. q > 1 : (q n ) n es pas bornée car lim q n = + ; 3. q = 1 : (q n ) es bornée mais (q n ) es divergene sauf si q = 1. On peu égalemen calculer la somme des ermes d une suie géomérique : si q 1, on a (k, n) N 2, u k u k+n = u k 1 q n+1 1 q ; en pariculier, pour ou z C el que z < 1, 1 + z z n = 1 zn+1 1 z 1, si n +. 1 z Exercice. Soi (u n ) une suie à ermes sricemen posiifs elle que lim(u n+1 /u n ) = a < 1. Monrer que lim u n = 0 puis que la suie de erme général S n = u u n es convergene Suies arihmo-géomériques. On éudie la suie définie par u 0 e u n+1 = au n + b. Si a = 1, c es une suie arihméique, si b = 0 c es une suie géomérique. Si a 1. Soi x la soluion de l équaion x = ax + b : x = b/(1 a). Posons v n = u n x. On a alors, pour ou n 1, v n+1 = av n : (v n ) es une suie géomérique. On en dédui que u n = x + a n (u 0 x). Calcul de la mensualié d un emprun. On emprune un capial de C euros au aux mensuel sur N mensualiés consanes. Noons m cee mensualié e d n la dee de l empruneur après n mensualiés. Bien évidemmen, d 0 = C e si on veu rembourser le prê en N mensualiés, on doi avoir d N = 0. D aure par, pour ou n, d n+1 = (1 + ) d n m. Le poin fixe es soluion de x = (1 + )x m soi x = m/. La suie x n = d n m/ es une suie géomérique de raison (1 + ). Par conséquen, Puisque d N = 0, on obien n 0, d n m ( = (1 + )n d 0 m ) ( = (1 + ) n C m ). m + (1 + )N ( C m ) = 0, soi m = C(1 + )N (1 + ) N 1. 4

5 4.4. D aures exemples. On cherche à éudier une suie réelle définie par u 0 e la relaion de récurrence u n+1 = f(u n ) pour n 0 où f es une foncion réelle. Proposiion. Si (u n ) converge vers l e si f es coninue au poin l, alors l = f(l). Si f es croissane, (u n ) es monoone : (u n ) es croissane si u 1 u 0 0, décroissane si u 1 u 0 0. Si f es décroissane, les suies (u 2n ) e (u 2n+1 ) son monoones de sens conraire. Exemple. u n+1 = 2 + u n, u 0 = 0. Nous avons vu que cee suie éai croissane, posiive e majorée par 2 : elle converge donc vers 0 l 2. Comme x 2 + x es coninue sur [0, 2], on a l = lim u n+1 = lim 2 + u n = 2 + l, soi l 2 = 2 + l. On a donc l = 2 ou l = 1. Comme l 0, l = 2. Proposiion. Soi f dérivable sur [a, b] avec f([a, b]) [a, b]. On suppose qu il exise un réel k el que 0 k < 1 e x [a, b], f (x) k. Alors f possède un unique poin fixe l dans [a, b] e la suie (u n ) définie par u 0 = α [a, b], u n+1 = f(u n ), pour ou n N, converge vers l. Exemple. u 0 = 0, u n+1 = 2 + u n. L inervalle [0, 2] es sable pour la foncion f définie par f(x) = 2 + x ; f es dérivable sur ce inervalle e, pour ou x [0, 2], f 1 (x) = x. Pour ou x [0, 2], 0 f (x) 1 2 < 1. La suie (u 2 n) converge vers l unique poin fixe de f sur [0, 2] qui es 2. 5

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Calcul Stochastique 2 Annie Millet

Calcul Stochastique 2 Annie Millet M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle Aricle «Les effes à long erme des fonds de pension» Pascal Belan, Philippe Michel e Berrand Wigniolle L'Acualié économique, vol 79, n 4, 003, p 457-480 Pour cier ce aricle, uiliser l'informaion suivane

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

3 POLITIQUE D'ÉPARGNE

3 POLITIQUE D'ÉPARGNE 3 POLITIQUE D'ÉPARGNE 3. L épargne exogène e l'inefficience dynamique 3. Le modèle de Ramsey 3.3 L épargne opimale dans le modèle AK L'épargne des sociéés dépend largemen des goûs des agens, de faceurs

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Relation entre la Volatilité Implicite et la Volatilité Réalisée.

Relation entre la Volatilité Implicite et la Volatilité Réalisée. Relaion enre la Volailié Implicie e la Volailié Réalisée. Le cas des séries avec la coinégraion fracionnaire. Rappor de Recherche Présené par : Mario Vázquez Velasco Direceur de Recherche : Benoî Perron

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

LE PARADOXE DES DEUX TRAINS

LE PARADOXE DES DEUX TRAINS LE PARADOXE DES DEUX TRAINS Énoné du paradoxe Déaillons ou d abord le problème dans les ermes où il es souen présené On dispose de deux oies de hemins de fer parallèles e infinimen longues Enre les deux

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)

n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois) LES GRANDS THÈMES DE L ITB Les iérês simples e les iérês composés RAPPELS THÉORIQUES Les iérês simples : l'iérê «I» es focio de la durée «D» (jour, quizaie, mois, rimesre, semesre, aée) de l'opéraio (placeme

Plus en détail

Non-résonance entre les deux premières valeurs propres d un problème quasi-linéaire

Non-résonance entre les deux premières valeurs propres d un problème quasi-linéaire Non-résonance enre les deux premières valeurs propres d un problème quasi-linéaire AREl Amrouss MMoussaoui Absrac We consider he quasilinear Dirichle boundary value problem (φ p (u )) = f(u)+h(x),u(a)=u(b)=0,

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Le mécanisme du multiplicateur (dit "multiplicateur keynésien") revisité

Le mécanisme du multiplicateur (dit multiplicateur keynésien) revisité Le mécanisme du muliplicaeur (di "muliplicaeur kenésien") revisié Gabriel Galand (Ocobre 202) Résumé Le muliplicaeur kenésien remone à Kenes lui-même mais il es encore uilisé de nos jours, au moins par

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

DE L'ÉVALUATION DU RISQUE DE CRÉDIT

DE L'ÉVALUATION DU RISQUE DE CRÉDIT DE L'ÉALUAION DU RISQUE DE CRÉDI François-Éric Racico * Déparemen des sciences adminisraives Universié du Québec, Ouaouais Raymond héore Déparemen Sraégie des Affaires Universié du Québec, Monréal RePAd

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

Estimation des matrices de trafics

Estimation des matrices de trafics Cédric Foruny 1/5 Esimaion des marices de rafics Cedric FORTUNY Direceur(s) de hèse : Jean Marie GARCIA e Olivier BRUN Laboraoire d accueil : LAAS & QoSDesign 7, av du Colonel Roche 31077 TOULOUSE Cedex

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

Pour 2014, le rythme de la reprise économique qui semble s annoncer,

Pour 2014, le rythme de la reprise économique qui semble s annoncer, En France, l invesissemen des enreprises reparira--il en 2014? Jean-François Eudeline Yaëlle Gorin Gabriel Sklénard Adrien Zakharchouk Déparemen de la conjoncure Pour 2014, le ryhme de la reprise économique

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau Ecole des HEC Universié de Lausanne FINANCE EMPIRIQUE Eric Jondeau FINANCE EMPIRIQUE La prévisibilié des rendemens Eric Jondeau L hypohèse d efficience des marchés Moivaion L idée de base de l hypohèse

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa No 996 3 Décembre La coordinaion inerne e exerne des poliiques économiques : une analyse dynamique Fabrice Capoën Pierre Villa CEPII, documen de ravail n 96-3 SOMMAIRE Résumé...5 Summary...7. La problémaique...9

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite DOCUMENT DE TRAVAIL 2003-12 Impac du vieillissemen démographique sur l impô prélevé sur les rerais des régimes privés de reraie Séphane Girard Direcion de l analyse e du suivi des finances publiques Ce

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Ned s Expat L assurance des Néerlandais en France

Ned s Expat L assurance des Néerlandais en France [ LA MOBILITÉ ] PARTICULIERS Ned s Expa L assurance des Néerlandais en France 2015 Découvrez en vidéo pourquoi les expariés en France choisissen APRIL Inernaional pour leur assurance sané : Suivez-nous

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE 009-01 EFFICIENCE INFORMATIONNELLE DES MARCHES DE L OR A PARIS ET A LONDRES, 1948-008 UNE VERIFICATION ECONOMETRIQUE DE LA FORME FAIBLE Thi Hong Van HOANG Efficience informaionnelle des marchés de l or

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

f n (x) = x n e x. T k

f n (x) = x n e x. T k EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

INTRODUCTION. 1 k 2. k=1

INTRODUCTION. 1 k 2. k=1 Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à

Plus en détail

Séminaire d Économie Publique

Séminaire d Économie Publique Séminaire d Économie Publique Les niveaux de dépenses d'infrasrucure son-ils opimaux dans les pays en développemen? Sonia Bassi, LAEP Discuan : Evans Salies, MATISSE & ADIS, U. Paris 11 Mardi 8 février

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Stabilisation des systèmes bilinéaires fractionnaires

Stabilisation des systèmes bilinéaires fractionnaires Sbilision des sysèmes bilinéires frcionnires Ibrhim N Doye,, Michel Zsdzinski, Nour-Eddine Rdhy, Mohmed Drouch Cenre de Recherche en Auomique de Nncy, UMR 739 Nncy-Universié, CNRS IUT de Longwy, 86 rue

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Pouvoir de marché et transmission asymétrique des prix sur les marchés de produits vivriers au Bénin

Pouvoir de marché et transmission asymétrique des prix sur les marchés de produits vivriers au Bénin C N R S U N I V E R S I T E D A U V E R G N E F A C U L T E D E S S C I E N C E S E C O N O M I Q U E S E T D E G E S T I O N CENTRE D ETUDES ET DE RECHERCHES SUR LE DEVELOPPEMENT INTER NATIONAL Pouvoir

Plus en détail

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB) Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES

CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES Thomas Jeanjean To cie his version: Thomas Jeanjean. CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES. 22ÈME

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Surface de Volatilité et Introduction au Risque de Crédit

Surface de Volatilité et Introduction au Risque de Crédit Modèles de Taux, Surface de Volailié e Inroducion au Risque de Crédi Alexis Fauh Universié Lille I Maser 2 Mahémaiques e Finance Spécialiés Mahémaiques du Risque & Finance Compuaionelle 214/215 spread

Plus en détail

EPARGNE RETRAITE ET REDISTRIBUTION *

EPARGNE RETRAITE ET REDISTRIBUTION * EPARGNE RETRAITE ET REDISTRIBUTION * Alexis Direr (1) Version février 2008 Docweb no 0804 Alexis Direr (1) : Universié de Grenoble e LEA (INRA, PSE). Adresse : LEA, 48 bd Jourdan 75014 Paris. Téléphone

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie.

MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie. / VARIATION/ ACCOMP PLAY/PAUSE REW TUNE/MIDI 3- LESSON 1 2 3 MIDI Qu es-ce que MIDI? MIDI es l acronyme de Musical Insrumen Digial Inerface, une norme inernaionale pour l échange de données musicales enre

Plus en détail

CHAPITRE 4 RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES?

CHAPITRE 4 RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES? CHAPITRE RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES? Les réponses de la poliique monéaire aux chocs d inflaion mondiaux on varié d un pays à l aure Le degré d exposiion

Plus en détail

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.

S euls les flux de fonds (dépenses et recettes) définis s ent l investissement. Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des

Plus en détail

CAHIER 13-2000 ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE

CAHIER 13-2000 ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE Jean-Michel BOSCO N'GOMA CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS

Plus en détail

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie Copules e dépendances : applicaion praique à la déerminaion du besoin en fonds propres d un assureur non vie David Cadoux Insiu des Acuaires (IA) GE Insurance Soluions 07 rue Sain-Lazare, 75009 Paris FRANCE

Plus en détail

Intégrales dépendant d un paramètre

Intégrales dépendant d un paramètre [hp://mp.cpgedupuydelome.fr] édié le 3 avril 5 Eocés Iégrales dépeda d u paramère Covergece domiée Exercice [ 9 ] [correcio] Calculer les limies des suies do les ermes gééraux so les suivas : a) u = π/4

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Fonctions holomorphes

Fonctions holomorphes Université Joseph Fourier, Grenoble Maths en Ligne Fonctions holomorphes Christine Laurent-Thiébaut Ceci est le second volet de l étude des fonctions d une variable complexe, faisant suite au chapitre

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

PARTIAL DIFFERENTIAL EQUATIONS. On global discontinuous solutions of Hamilton-Jacobi equations.

PARTIAL DIFFERENTIAL EQUATIONS. On global discontinuous solutions of Hamilton-Jacobi equations. EQUATIONS AUX DERIVEES PARTIELLES. Sur des soluions globales disconinues des équaions d Hamilon-Jacobi, par Gui-Qiang Chen e Bo Su Résumé. On éabli l unicié des soluions de viscosié semiconinues classiques

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

Mesure et Intégration (Notes de cours de L3)

Mesure et Intégration (Notes de cours de L3) Mesure et Intégration (Notes de cours de L3) Ahmed Zeriahi Version préliminaire-octobre 2011 Avertissement : Ceci est une version préliminaire des notes du cours que l auteur a dispensé en troisème année

Plus en détail

Chapitre 9. Contrôle des risques immobiliers et marchés financiers

Chapitre 9. Contrôle des risques immobiliers et marchés financiers Capire 9 Conrôle des risques immobiliers e marcés financiers Les indices de prix immobiliers ne son pas uniquemen des indicaeurs consruis dans un bu descripif, mais peuven servir de référence pour le conrôle

Plus en détail