Numérations : en base 10 décimale, dans d autres bases ; Opérations élémentaires : +,,,

Documents pareils
Représentation d un entier en base b

Représentation des Nombres

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Temps forts départementaux. Le calcul au cycle 2 Technique opératoire La soustraction

Chapitre 1 : Évolution COURS

Développement décimal d un réel

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Les nombres entiers. Durée suggérée: 3 semaines

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)

Chapitre 2. Eléments pour comprendre un énoncé

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS =

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : hivert

Programmation linéaire

Licence Sciences et Technologies Examen janvier 2010

Résolution d équations non linéaires

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Continuité et dérivabilité d une fonction

108y= 1 où x et y sont des entiers

La persistance des nombres

Probabilités sur un univers fini

Compter à Babylone. L écriture des nombres

Comparaison de fonctions Développements limités. Chapitre 10

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Logique. Plan du chapitre

Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels.

DOCM Solutions officielles = n 2 10.

THEME : CLES DE CONTROLE. Division euclidienne

Arithmétique binaire. Chapitre. 5.1 Notions Bit Mot

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Limites finies en un point

La protection sociale obligatoire du chef d entreprise indépendant

avec des nombres entiers

Le chiffre est le signe, le nombre est la valeur.

Technique opératoire de la division (1)

Chapitre 6. Fonction réelle d une variable réelle

Le produit semi-direct

Les élèves nouveaux arrivants non francophones en

LE WEBCLASSEUR ORIENTATION UN SERVICE EN LIGNE DISPONIBLE POUR TOUS LES ÉTABLISSEMENTS

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

V- Manipulations de nombres en binaire

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

La mobilité géographique des enseignants du second degré public

Primaire. analyse a priori. Lucie Passaplan et Sébastien Toninato 1

LES NOMBRES DECIMAUX. I. Les programmes

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Raisonnement par récurrence Suites numériques

Chapitre 2 Le problème de l unicité des solutions

Cours d arithmétique Première partie

Représentation géométrique d un nombre complexe

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

STAGE IREM 0- Premiers pas en Python

SÉJOURS LINGUISTIQUES

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

La fonction exponentielle

Probabilités conditionnelles Loi binomiale

Structures algébriques

Taux d évolution moyen.

a) b)

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Qu est-ce qu une probabilité?

Glossaire des nombres

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Eteindre. les. lumières MATH EN JEAN Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Les diplômes. Session 2008

Synthèse «Le Plus Grand Produit»

1 Première section: La construction générale

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

OCTOBRE L M M J V S D CALENDRIER SCOLAIRE

Quelques algorithmes simples dont l analyse n est pas si simple

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Initiation à la programmation en Python

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

FONDATION L ÉCHIQUIER DE LA RÉUSSITE. Fondation sous l égide de la Fondation de France

Correction du baccalauréat ES/L Métropole 20 juin 2014

Conversion d un entier. Méthode par soustraction

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Chapitre VI - Méthodes de factorisation

Logiciel de Base. I. Représentation des nombres

Algèbre binaire et Circuits logiques ( )

Cours de mathématiques

Angles orientés et trigonométrie

Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application

Fonctions homographiques

ENQUETE SUR LA SITUATION DES GRANDES VILLES ET AGGLOMERATIONS EN MATIERE D ASSURANCES DOMMAGES

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Chapitre 2. Matrices

Cours Fonctions de deux variables

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Transcription:

Numérations : en base 10 décimale, dans d autres bases ; Opérations élémentaires : +,,, Denis Vekemans 1 Principes de numération dans l ensemble des entiers naturels Dans la base décimale, celle que nous utilisons habituellement, l écriture du nombre 2 050 dégage que le nombre en question est somme de 2 milliers et de 5 dizaines. Elle induit également que 2 050 = 2 1 000 + 5 10 = 2 10 3 + 0 10 2 + 5 10 1 + 0 10 0. On peut voir, à travers cette écriture le rapport privilégié au nombre 10 duquel la base décimale tire son nom. Si l entier naturel n non nul est tel que 10 k n < 10 k+1 pour un certain entier nturel k, alors n s écrit avec k + 1 chiffres en base décimale. On peut aussi écrire un nombre entier naturel n en n importe quelle base b où b est un entier naturel supérieur ou égal à 2 : n = a 0 b 0 + a 1 b 1 + a 2 b 2 +... + a k b k, où les entiers naturels a 0, a 1, a 2,..., a k sont strictement inférieurs à b (ce sont les chiffres permettant d écrire le nombre n dans la base b). Si l entier naturel n non nul est tel que b k n < b k+1 pour un certain entier nturel k, alors n s écrit avec k + 1 chiffres en base b. On rappelle : b 0 = 1 ; b 1 = b. Cette écriture peut aussi être abrégée comme suit : n = a k... a 2 a 1 a (b) 0. Familièrement, la base 2 s appelle la base binaire, la base 60 s appelle la base sexagésimale. Exercice 1 Écrire 120 en base 7. Écrire 421 en base 5. Écrire 100 en base 2. Solution 1 1. (a) Première démarche. Les puissances successives de 7 sont 7 0 = 1, 7 1 = 7, 7 2 = 49, 7 3 = 343,... Dans 120, la plus grande puissance de 7 qui entre est 49 et elle rentre deux fois ; on donc 120 = 2 7 2 + 22. Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; 62 228 Calais cedex ; France 1

On continue, dans 22, la plus grande puissance de 7 qui entre est 7 et elle rentre trois fois ; on a donc 120 = 2 7 2 + 3 7 + 1 = 231 (7). (b) Deuxième démarche. La division euclidienne de 120 par 7 donne 120 = 17 7 + 1. Mais 17 n étant pas un chiffre de la base 7, on continue et la division euclidienne de 17 par 7 donne : 17 = 2 7 + 3. Cette fois, 2 est un chiffre de la base 7, donc on écrit 120 = 17 7 + 1 = (2 7 + 3) 7 + 1 = 2 7 2 + 3 7 + 1 = 231 (7) Autre disposition de cette deuxième démarche : 120 1 120 = 17 7 + 1 17 3 17 = 2 7 + 3 2 On lit le nombre en base 7 en remontant les chiffres : 231 (7). 2. (a) Première démarche. Les puissances successives de 5 sont 5 0 = 1, 5 1 = 5, 5 2 = 25, 5 3 = 125, 5 4 = 625,... Dans 421, la plus grande puissance de 5 qui entre est 125 et elle rentre trois fois ; on donc 421 = 3 5 3 + 46. On continue, dans 46, la plus grande puissance de 5 qui entre est 25 et elle rentre une fois ; on a donc 421 = 3 5 3 + 1 5 2 + 21. On continue, dans 21, la plus grande puissance de 5 qui entre est 5 et elle rentre quatre fois ; on a donc 421 = 3 5 3 + 1 5 2 + 4 5 + 1 = 3141 (5). (b) Deuxième démarche. La division euclidienne de 421 par 5 donne 421 = 84 5 + 1. Mais 84 n étant pas un chiffre de la base 5, on continue et la division euclidienne de 84 par 5 donne : 84 = 16 5 + 4. Mais 16 n étant toujours pas un chiffre de la base 5, on continue et la division euclidienne de 16 par 5 donne : 16 = 3 5 + 1. Cette fois, 3 est un chiffre de la base 5, donc on écrit 421 = 84 5 + 1 = (16 5 + 4) 5 + 1 = ((3 5 + 1) 5 + 4) 5 + 1 = 3 5 3 + 1 5 2 + 4 5 + 1 = 3141 (5) 2

Autre disposition de cette deuxième démarche : 421 1 421 = 84 5 + 1 84 4 84 = 16 5 + 4 16 1 16 = 3 5 + 1 3 On lit le nombre en base 5 en remontant les chiffres : 3141 (5). 3. 100 0 100 = 50 2 + 0 50 0 50 = 25 2 + 0 25 1 25 = 12 2 + 1 12 0 12 = 6 2 + 0 6 0 6 = 3 2 + 0 3 1 3 = 1 2 + 1 1 On lit le nombre en base 5 en remontant les chiffres : 1100100 (2). NB : Pour convertir l écriture d un nombre n de la base décimale en la base b : 1. On obtient a 0, qui est le dernier chiffre du nombre n, comme reste dans la division eulidienne de n par b, cette division fournissant le quotient q 0. 2. On obtient a i (tant que le quotient q i 1 est plus grand que b au sens large, en incrémentant i de 1 à chaque fois) comme reste de la division euclidienne de q i 1 par b, cette division fournissant le quotient q i. 3. On obtient a k, qui est le premier chiffre du nombre n, égal à q k 1. Puis, n = a k... a 1 a (10) 0. Exercice 2 Transcrire le nombre 12345 (6) dans notre système décimal. Solution 2 1. Première démarche. Par lecture directe : 12345 (6) = 1 6 4 + 2 6 3 + 3 6 2 + 4 6 + 5 = 1 296 + 432 + 108 + 24 + 5 = 1 865. 2. Deuxième démarche. En utilisant les divisions euclidiennes : n 5 n = m 6 + 5 m 4 m = l 6 + 4 l 3 l = k 6 + 3 k 2 k = 1 6 + 2 1 3

En partant d en bas, on remonte dans le tableau et 1 865 5 1 865 = 310 6 + 5 310 4 310 = 51 6 + 4 51 3 51 = 8 6 + 3 8 2 8 = 1 6 + 2 1 Conclusion : 12345 (6) = 1 865. Exercice 3 2. Transcrire le nombre 123 (4) en base 2. Ensuite, transcrire le nombre 33210323123 (4) en base Solution 3 123 (4) = 1 4 2 + 2 4 + 3 1 = 1 2 4 + 2 2 2 + 3 1 = 1 2 4 + (1 2 + 0) 2 2 + (1 2 + 1) 1 = 1 2 4 + 1 2 3 + 0 2 2 + 1 2 + 1 = 11011 (2) Il nous a suffit de coder chacun des chiffres en base 4 sur deux chiffres en base 2 (0 en base 4 est réécrit 00 en base 2, 1 est réécrit 01, 2 est réécrit 10 et 3 est réécrit 11). Appliquant ce même principe, on obtient directement : 33210323123 (4) = 1111100100111011011011 (2). Analyse de productions d élèves [Lille (1999)] Sujet Solution Volet didactique [Lille (1999)] Sujet Solution Volet didactique [sujet d examen 2013-2014] Sujet Solution 2 Les techniques opératoires 2.1 L addition 1. 678 + 987 = XXX 4

En base 10, 1 1 1 6 7 8 + 9 8 7 1 6 6 5 2. 1234 (5) + 4321 (5) = XXX (5) En base 5, 1 1 1 1 1 2 3 4 + 4 3 2 1 1 1 1 1 0 3. 101010 (2) + 1110101 (2) = XXX (2) En base 2, 1 1 1 0 1 0 1 0 + 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 4. (20)(20)(20) (60) + (20)(30)(40) (60) = XXX (60) En base 60, 1 (20) (20) (20) + (20) (30) (40) (40) (51) (0) Exercice 4 [Lyon (2004)] Toto additionne deux nombres entiers avec la méthode habituelle, et trouve 499 sans faire d erreur. Combien de retenues a-t-il effectuées? Solution 4 Le chiffre 9 des unités du résultat a-t-il pu être obtenu en posant une retenue? Si oui, la somme des chiffres des unités des deux nombres additionnés était supérieure ou égale à 19 (au moins 10 pour la retenue, qui est additionnée au chiffre-nombre 9 des unités du résultat). Cependant, la somme des chiffres des unités vaut au plus 9 + 9 = 18. Il est donc impossible que le chiffre 9 des unités du résultat ait été obtenu en posant une retenue! Le chiffre 9 des dizaines du résultat a-t-il pu être obtenu en posant une retenue? Si oui, la somme des chiffres des unités des deux nombres additionnés était supérieure ou égale à 19 (au moins 10 pour la retenue, qui est additionnée au chiffre-nombre 9 des unités du résultat et sachant qu aucune retenue ne provient du calcul du chiffre des unités du résultat). Cependant, la somme des chiffres des unités vaut au plus 9 + 9 = 18. Il est donc impossible que le chiffre 9 des unités du résultat ait été obtenu en posant une retenue! 5

L obtention d une somme de deux nombres entiers égale à 499 est donc réalisée sans retenue! 2.2 La soustraction Pour la pose de la soustraction de x y, on rencontre généralement deux processus par échanges dans a, on procède chiffre par chiffre en commençant par le rang le plus à droite (les unités, puis les dizaines, puis les centaines,..., et quand pour un certain rang le chiffre de x est plus grand ou égal à celui de y, il n y a pas problème et le chiffre obtenu est la différence des deux chiffres ; le chiffre de x est strictement plus petit que celui de y, on emprunte 1 au rang de gauche qu on transforme en 10 du rang actuel (aspect décimal de la numération) : par exemple, on convertit une dizaine en dix unités, une centaine en dix dizaines,... Remarque. Un inconvénient de cette méthode est qu elle est à réitérer lorsqu on est amené à emprunté à 0, comme dans 104 27 : au rang des unités, 4 7 ne fournit pas un chiffre, on emprunte donc une dizaine, mais 104 ne comporte pas de dizaine, on doit donc emprunter une centaine au rang des centaines et transformer d abord la centaine en dix dizaines, puis une des dizaines en dix unités. par compensation dans a, on procède chiffre par chiffre en commençant par le rang le plus à droite (les unités, puis les dizaines, puis les centaines,..., et quand pour un certain rang le chiffre de x est plus grand ou égal à celui de y, il n y a pas problème et le chiffre obtenu est la différence des deux chiffres ; le chiffre de x est strictement plus petit que celui de y, on rajoute 10 du rang actuel qu on compense en retirant une dizaine supplémentaire au rang de gauche (aspect décimal de la numération ; mais aussi l aspect du sens écart de la soustraction : si on rajoute une même quantité à deux termes, l écart entre ces deux termes ne change pas) : par exemple, si on a besoin de dix unités, on compense en soustrayant une dizaine supplémentaire, ou si on a besoin de dix dizaines, on compense en soustrayant une centaine supplémentaire,... Remarque. Un inconvénient de cette méthode est que le sens écart de la soustraction qu elle met en jeu n est pas évidente pour un élève, l algorithme est plus difficile à mémoriser car il n est pas forcément toujours bien compris. Méthode par compensation 1. 987 789 = XXX En base 10, 9 18 17 7 8 9 1 1 1 9 8 2. 4321 (5) 1234 (5) = XXX (5) 6

En base 5, 4 3 12 11 1 2 3 4 1 1 3 0 3 2 3. 10100010 (2) 1110101 (2) = XXX (2) En base 2, 1 10 11 10 10 10 1 10 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 4. (40)(40)(40) (60) (30)(40)(50) (60) = XXX (60) En base 60, (40) (1)(40) (1)(40) (30) (40) (50) 1 1 (9) (59) (50) Analyse de productions d élèves [Aix-Marseille, Corse, Montpellier, La Martinique (2001)] Sujet Solution Analyse de productions d élèves [D après Créteil, Paris, Versailles (2004)] Sujet Solution 2.3 La multiplication Pour clarifier l algorithme, les retenues additives ne sont plus notées. 1. 57 892 = XXX 7

2. 33 (5) 34 (5) = XXX (5) En base 10, 8 9 2 5 7 6 2 4 4 + 4 4 6 0 5 0 8 4 4 Table de 892 1 892 = 892 2 892 = 1 784 3 892 = 2 676 4 892 = 3 568 5 892 = 4 460 6 892 = 5 352 7 892 = 6 244 8 892 = 7 136 9 892 = 8 028 En base 5, 3. 10100010 (2) 1110101 (2) = XXX (2) 3 4 3 3 2 1 2 + 2 1 2 2 3 3 2 Table de 34 1 34 = 34 2 34 = 123 3 34 = 212 4 34 = 301 En base 2, 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 0 + 1 0 1 0 0 0 1 0 + 1 0 1 0 0 0 1 0 + 1 0 1 0 0 0 1 0 + 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 Table de 10100010 1 10100010 = 10100010 Exercice 5 [Créteil, Paris, Versailles (1999)] On considère le nombre A = 92865317 814975. 1. Déterminer le nombre de chiffres de A. 2. Démontrer que le chiffre des dizaines est 7 et que le chiffre des unités est 5. 3. Les calculatrices courantes ne donnent pas directement tous les chiffres du nombre A. Sans utiliser la technique opératoire de la multiplication, c est-à-dire sans poser l opération 92 865 317 814 975, décrire un procédé qui utilise une calculatrice affichant dix chiffres et qui permette de déterminer tous les chiffres du nombre A. Solution 5 8

1. 9 10 7 < 92 865 317 < 10 8 et 8 105 < 814 975 < 9 105, d où 72 10 12 < A < 9 10 13, ou encore 7 10 13 < A < 9 10 13 et le nombre A possède 14 chiffres. 2. 92 865 317 = a 100 + 10 + 7 (où a est le nombre de centaines de 92 865 317), et 814 975 = b 100 + 70 + 5 (où b est le nombre de centaines de 814 975), donc A = (a 100 + 10 + 7) (b 100 + 70 + 5) = a b 10 000 + a 7 1 000 + a 5 100 +b 1 000 + 7 100 + 5 10 +7 b 100 + 7 7 10 + 7 5 (en développant) = c 100 + 50 + 490 + 35 (où c est un entier qu on ne cherche pas à calculer) = d 100 + 75 (où d est un entier qu on ne cherche pas à calculer) et A a 5 pour chiffre des unités et 7 pour chiffre des dizaines. 3. 92 865 317 814 975 = (9 286 10 000 + 5 317) 814 975 = 7 567 857 850 10 000 + 4 333 222 075 (7 567 857 850 et 4 333 222 075 sont des résultats donnés par la calculette) = 75 678 578 500 000 + 4 333 222 075 = 75 682 911 722 075 (en posant l addition) Volet didactique [Guadeloupe, Guyane (2004)] Sujet Solution 2.4 La division euclidienne Pour clarifier l algorithme, les compensations soustractives ne sont plus notées. 1. 987 37 = XXX 9

Table de 37 1 37 = 37 En base 10, 9 8 7 7 4 2 4 7 2 2 2 2 5 3 7 2 6 2 37 = 74 3 37 = 111 4 37 = 148 5 37 = 185 6 37 = 222 7 37 = 259 8 37 = 296 9 37 = 333 2. 4321 (5) 12 (5) = XXX (5) En base 5, 3. 110111 (2) 101 (2) = XXX (2) 4 3 2 1 4 1 2 2 1 2 1 0 1 4 1 1 0 1 2 3 1 3 Table de 12 1 12 = 12 2 12 = 24 3 12 = 41 4 37 = 103 En base 2, 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 Table de 101 1 101 = 101 1 0 1 0 10

2.5 Technique de la multiplication à la russe et égyptienne A la russe : 88 82 176 41 352 20 704 10 1 408 5 2 816 2 5 632 1 Somme : 7 216 Egyptienne : 1 88 2 176 4 352 8 704 16 1 408 32 2 816 64 5 632 Somme : 82 Somme : 7 216 Questions 1. Par ces deux techniques, calculer 56 83. 2. Expliquer que ces techniques sont valables. 3. Combien de lignes la multiplication 4 567 3 456 nécessite-t-elle (il n est pas obligatoire d effectuer le calcul pour répondre à la question)? 3 Les critères de divisibilité dans la base décimale Théorème 3.1 Un entier naturel n est divisible par 2 si son chiffre des unités est divisible par 2 (i.e. est 0, 2, 4, 6 ou 8), et réciproquement. Théorème 3.2 Un entier naturel n est divisible par 4 si le nombre constitué du chiffre des dizaines et du chiffre des unités de n est divisible par 4 (i.e. est 00, 04, 08,... ou 96), et réciproquement. 11

Théorème 3.3 Un entier naturel n est divisible par 8 si le nombre constitué du chiffre des centaines, du chiffre des dizaines et du chiffre des unités de n est divisible par 8 (i.e. est 000, 008, 016,... ou 992), et réciproquement. Théorème 3.4 Un entier naturel n est divisible par 5 si son chiffre des unités est divisible par 5 (i.e. est 0 ou 5), et réciproquement. Théorème 3.5 Un entier naturel n est divisible par 25 si le nombre constitué du chiffre des dizaines et du chiffre des unités de n est divisible par 25 (i.e. est 00, 25, 50 ou 75), et réciproquement. Théorème 3.6 Un entier naturel n est divisible par 10 si son chiffre des unités est 0, et réciproquement. Théorème 3.7 Un entier naturel n est divisible par 100 si son chiffre des dizaines et son chiffre des unités sont 0, et réciproquement. Théorème 3.8 Un entier naturel n est divisible par 3 si la somme de ses chiffres est divisible par 3, et réciproquement. Théorème 3.9 Un entier naturel n est divisible par 9 si la somme de ses chiffres est divisible par 9, et réciproquement. Théorème 3.10 Un entier naturel n est divisible par 11 si l écart entre la somme de ses chiffres de rang pair et la somme de ses chiffres de rang impair est divisible par 11, et réciproquement. Les démonstrations des théorèmes 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 sont du même type. Il n est ainsi démontré que le théorème 3.2. Soit n = a k a k 1... a 2 a 1 a (10) 0. On a n = a k a k 1... a (10) 2 100 + a 1 a (10) 0. Si n est divisible par 4, alors, comme 100 est divisible par 4, n a k a k 1... a (10) 2 100 est aussi divisible par 4. Et, a 1 a (10) 0, qui est le nombre constitué du chiffre des dizaines et du chiffre des unités de n, est divisible par 4. Réciproquement, si le nombre constitué du chiffre des dizaines et du chiffre des unités de n est divisible par 4, alors, comme 100 est divisible par 4, a k a k 1... a (10) 2 100 + a 1 a (10) 0 est aussi divisible par 4. Et, n est divisible par 4. Les démonstrations des théorèmes 3.8, 3.9, 3.10 sont du même type. Il n est ainsi démontré que le théorème 3.9. Soit n = a k a k 1... a 2 a 1 a (10) 0. On a n = 10 k a k + 10 k 1 a k 1 +... + 10 a 1 + a 0. 12

Puis n = ((10 k 1) + 1) a k + ((10 k 1 1) + 1) a k 1 +... + ((10 1) + 1) a 1 + a 0. Ensuite, Et, enfin, n = (10 k 1) a k + (10 k 1 1) a k 1 +... + (10 1) a 1 + [a k + a k 1 +... + a 1 + a 0 ]. n = 9 11 }.{{.. 11 (10) } a k + 9 11... 11 (10) }{{} a k 1 +... + 9 1 (10) }{{} a 1 + [a k + a k 1 +... + a 1 + a 0 ]. k chiffres k 1 chiffres 1 chiffre Si n est divisible par 9, alors, comme 9 est divisible par 9, n 9 11 }.{{.. 11 (10) } a k + 9 11... 11 (10) }{{} a k 1 +... + 9 1 (10) }{{} a 1 k chiffres k 1 chiffres 1 chiffre est aussi divisible par 9. Et, a k + a k 1 +... + a 1 + a 0, qui est la somme des chiffres de n, est divisible par 9. Réciproquement, si la somme des chiffres de n, a k + a k 1 +... + a 1 + a 0, est divisible par 9, alors, comme 9 est divisible par 9, 9 11 }.{{.. 11 (10) } a k + 9 11... 11 (10) }{{} a k 1 +... + 9 1 (10) }{{} a 1 + [a k + a k 1 +... + a 1 + a 0 ] k chiffres k 1 chiffres 1 chiffre est aussi divisible par 9. Et, n est divisible par 9. Exercice 6 1. Combien le nombre 72, 4116 10 28 possède-t-il de chiffres? 2. Vrai ou faux (justification requise) : "97 26 s écrit avec au moins 55 chiffres". 3. Combien y a-t-il de nombres (entiers naturels) à 2 chiffres? à 3 chiffres? à 4 chiffres? 4. Parmi les nombres entiers naturels à 3 chiffres (a) combien y en a-t-il qui ont 3 chiffres identiques? (b) combien y en a-t-il qui ont 3 chiffres deux à deux distincts? (c) combien y en a-t-il qui ont 2 chiffres différents, l un étant répété deux fois? Solution 6 1. 10 29 < 7 10 29 72, 4116 10 28 7 10 29 < 10 30 possède 30 chiffres. 2. 97 26 < 100 26 = 10 52 s écrit avec moins de 53 chiffres. Il est donc faux que "97 26 s écrit avec au moins 55 chiffres". 3. (a) Nombre d entiers naturels à 2 chiffres on a 9 choix pour le chiffre des dizaines, 13

et 10 choix pour le chiffre des unités. Cela fait 9 10 = 90 nombres à 2 chiffres. (b) Nombre d entiers naturels à 3 chiffres on a 9 choix pour le chiffre des centaines, 10 choix pour le chiffre des dizaines, et 10 choix pour le chiffre des unités. Cela fait 9 10 10 = 900 nombres à 3 chiffres. (c) Nombre d entiers naturels à 4 chiffres on a 9 choix pour le chiffre des milliers, 10 choix pour le chiffre des centaines, 10 choix pour le chiffre des dizaines, et 10 choix pour le chiffre des unités. Cela fait 9 10 10 10 = 9 000 nombres à 4 chiffres. 4. (a) on a 9 choix pour le chiffre des centaines, ensuite, on n a plus qu 1 choix pour le chiffre des dizaines (le même que le chiffre des centaines), et on n a plus qu 1 choix pour le chiffre des unités (le même que le chiffre des centaines). Cela fait 9 1 1 = 9 nombres à 3 chiffres identiques. (b) on a 9 choix pour le chiffre des centaines, ensuite, on a 9 choix pour le chiffre des dizaines (un chiffre différent du chiffre des centaines), enfin, on a 8 choix pour le chiffre des unités (un chiffre à la fois différent du chiffre des centaines et de celui des dizaines). Cela fait 9 9 8 = 648 nombres à 3 chiffres deux à deux distincts. (c) Ceux qui ont 2 chiffres différents, l un étant répété deux fois sont simplement les nombres à 3 chiffres qui n ont ni 3 chiffres identiques, ni 3 chiffres deux à deux distincts. Ceci donne 900 9 648 = 243 nombres à 3 chiffres qui ont 2 chiffres différents, l un étant répété deux fois. Exercice 7 [Guadeloupe (2004)] 1. On considère un nombre qui s écrit en base 10 : 5 5 5 5 5. Quelle valeur donner à pour que la somme des chiffres de ce nombre soit un multiple de 7? 2. Un nombre s écrit en base 10 sous forme : E97F. (a) Donner tous les couples de valeurs possibles pour E et F sachant que la somme des chiffres de ce nombre est égale à 29. (b) On ajoute les deux conditions suivantes : 14

Le produit des chiffres de ce nombre est égal à 2268. 7 divise le nombre EF. Quelles sont alors les valeurs respectives de E et F? Solution 7 1. On considère un nombre qui s écrit en base 10 5 5 5 5 5. Si la somme des chiffres 6 + 25 de ce nombre est un multiple de 7. De plus, est un chiffre en base 10, donc 0 9 et 25 6 + 25 79. Le tableau suivant résume les essais successifs... à partir des multiples de 7 compris au sens large entre 25 et 79. 6 + 25 28 1 2 35 1 + 2 3 42 2 + 5 6 49 4 56 5 + 1 6 63 6 + 1 3 70 7 + 1 2 77 8 + 2 3 étant un chiffre en base 10 et donc un entier, il s ensuit que la seule valeur possible pour est 4 et le nombre cherché est 45 454 545 454. 2. Un nombre s écrit en base 10 sous forme : E97F. (a) Donner tous les couples de valeurs possibles pour E et F sachant que la somme des chiffres de ce nombre est égale à 29. E + 9 + 7 + F = 29, donc E + F = 13. Cependant, E et F sont des chiffres et donc tels que 0 E 9 et 0 F 9. 15

Le tableau suivant résume les essais successifs... pour chacune des valeurs possibles de E. E F = 13 E 0 13 Impossible car il faut F 9 1 12 Impossible car il faut F 9 2 11 Impossible car il faut F 9 3 10 Impossible car il faut F 9 4 9 Possible, auquel cas E97F = 4979 5 8 Possible, auquel cas E97F = 5978 6 7 Possible, auquel cas E97F = 6977 7 6 Possible, auquel cas E97F = 7976 8 5 Possible, auquel cas E97F = 8975 9 4 Possible, auquel cas E97F = 9974 (b) i. On ajoute la condition "le produit des chiffres de ce nombre est égal à 2 268". Si le produit des chiffres vaut 2 268, on obtient 2 268 = E F 9 7 ou encore 2268 63 = 36 = E F. Il reste donc deux couples de valeurs possibles pour E et F : E = 4 et F = 9 (auquel cas E97F = 4979) ; et E = 9 et F = 4 (auquel cas E97F = 9974). ii. On ajoute la condition "7 divise le nombre EF". Comme 7 divise le nombre EF. Or 7 ne divise que 49 parmi 49 et 94. Il ne reste donc plus qu un couple de valeurs possibles pour E et F : E = 4 et F = 9 (auquel cas E97F = 4979). Exercice 8 Démontrer le principe de la preuve par 9 dans une multiplication. Solution 8 Lemme : le reste dans la division euclidienne de a par 9 est égal au reste dans la division euclidienne de la somme des chiffres de a par 9. Démonstration du lemme pour un nombre n à k + 1 chiffres : n = a k a k 1... a 2 a 1 a (10) 0. On a n = 10 k a k + 10 k 1 a k 1 +... + 10 a 1 + a 0 = ((10 k 1) + 1) a k + ((10 k 1 1) + 1) a k 1 +... + ((10 1) + 1) a 1 + a 0 = (10 k 1) a k + (10 k 1 1) a k 1 +... + (10 1) a 1 + [a k + a k 1 +... + a 1 + a 0 ] = 9 11 }.{{.. 11 (10) } a k + 9 11... 11 (10) }{{} a k 1 +... + 9 1 (10) }{{} a 1 k chiffres k 1 chiffres 1 chiffre +[a k + a k 1 +... + a 1 + a 0 ]. 16

Soient q et r respectivement les quotients et restes dans la division euclidienne de a k +a k 1 +...+a 1 +a 0 par 9 : Ainsi a k + a k 1 +... + a 1 + a 0 = 9 q + r 0 r 8 n = 9 11 }.{{.. 11 (10) } a k + 11... 11 (10) }{{} a k 1 +... + 1 (10) }{{} a 1 + q + r k chiffres k 1 chiffres 1 chiffre 0 r 8 r est donc aussi le reste dans la division euclidienne de n par 9. Application directe du lemme Quel est le reste dans la division euclidienne par 9 de 8 857 643 019 248? C est le même que celui dans la division euclidienne de 8+8+5+7+6+4+3+0+1+9+2+4+8 = 65 par 9, qui est le même que celui dans la division euclidienne de 6 + 5 = 11 par 9, qui est le même que celui dans la division euclidienne de 1 + 1 = 2 par 9. C est donc 2. et La preuve par 9 dans le calcul du produit de a par b Mettons qu un calcul (posé, par exemple) fournisse un résultat égal à c pour ce produit. Pour vérifier le résultat, 1. on calcule le reste α dans la division euclidienne de a par 9 (c est facile à faire via le lemme), 2. on calcule le reste β dans la division euclidienne de b par 9, 3. on calcule le reste γ dans la division euclidienne de c par 9, 4. et enfin, on calcule le reste γ dans la division euclidienne de α β par 9, 1. si γ γ, alors on peut affirmer que le calcul de c est faux, 2. et si γ = γ, alors on ne peut affirmer que le calcul de c est correct, mais on peut l espérer. Démonstration On a 1. a = 9 q a + α avec 0 α < 9 et q a le quotient dans la division euclidienne de a par 9, 2. b = 9 q b + β avec 0 β < 9 et q b le quotient dans la division euclidienne de b par 9, 3. c = 9 q c + γ avec 0 γ < 9 et q c le quotient dans la division euclidienne de c par 9, 4. α β = 9 q αβ + γ avec 0 γ < 9 et q αβ le quotient dans la division euclidienne de α β par 9. De c = a b, on obtient 9 q c + γ = (9 q a + α) (9 q b + β) = 9 (9 q a q b + q a β + q b α) + α β = 9 (9 q a q b + q a β + q b α) + 9 q αβ + γ = 9 (9 q a q b + q a β + q b α + q αβ ) + γ 17..

Puis, par unicité des quotient et reste dans la division euclidienne, q c = 9 q a q b + q a β + q b α + q αβ γ = γ Exercice 9 [Aix Marseille, Corse, Montpellier, Nice (1999)] Un nombre à trois chiffres a 4 pour chiffre des centaines. Ce nombre est 26 fois plus grand que le nombre à deux chiffres obtenu en enlevant le chiffre des centaines. Trouver ce nombre. Solution 9 On note 4ab le nombre à trois chiffres. Le nombre obtenu en enlevant le chiffre des centaines est ab On a 4ab = 400 + ab = 26 ab. De 400 + ab = 26 ab, on obtient 400 = 25 ab, puis ab = 16. Le nombre à trois chiffres cherché est donc 416. Exercice 10 [Nancy, Metz, Reims, Strasbourg (2001)] Le village de Centville compte 100 habitants. Le plus âgé est né en 1900 et le plus jeune en 1999. Tous les habitants sont nés à une date différente et tous le premier janvier. Pierre habite Centville. En cette année 2001, la somme des chiffres de son année de naissance est égale à son âge. On se propose de déterminer l année de naissance de Pierre de deux manières différentes. 1. Résoudre ce problème en utilisant des outils algébriques. 2. (a) Démontrer que l âge de Pierre est inférieur ou égal à 28 ans. (b) Sachant que l âge de Pierre est inférieur ou égal à 28 ans, décrire une procédure qu un élève de fin de cycle 3 pourrait mettre en oeuvre pour résoudre ce problème. Solution 10 1. On note 19ab la date de naissance de Pierre. La somme des chiffres de la date de naissance de Pierre est 10 + a + b. On déduit que l âge de Pierre est alors 2 001 1 000 900 10 a b = 101 10 a b. Et on obtient l équation 10 + a + b = 101 10 a b ou encore 11 a + 2 b = 91. On résout cette équation en visitant toutes les valeurs de b possibles... Si b = 0, on obtient 91 = 11 a, qui n admet pas de solution car 91 n est pas multilpe de 11 ; si b = 1, on obtient 89 = 11 a, qui n admet pas de solution car 89 n est pas multilpe de 11 ; si b = 2, on obtient 87 = 11 a, qui n admet pas de solution car 87 n est pas multilpe de 11 ; si b = 3, on obtient 85 = 11 a, qui n admet pas de solution car 85 n est pas multilpe de 11 ; si b = 4, on obtient 83 = 11 a, qui n admet pas de solution car 83 n est pas multilpe de 11 ; 18

si b = 5, on obtient 81 = 11 a, qui n admet pas de solution car 81 n est pas multilpe de 11 ; si b = 6, on obtient 79 = 11 a, qui n admet pas de solution car 79 n est pas multilpe de 11 ; si b = 7, on obtient 77 = 11 a, puis a = 7 ; si b = 8, on obtient 75 = 11 a, qui n admet pas de solution car 75 n est pas multilpe de 11 ; si b = 9, on obtient 73 = 11 a, qui n admet pas de solution car 73 n est pas multilpe de 11. Pierre est donc né en 1977. Son âge en 2001 est 24 ans, et on a bien 24 = 1 + 9 + 7 + 7. 2. (a) Je rappelle que 19ab est la date de naissance de Pierre et que la somme des chiffres de la date de naissance de Pierre est 10 + a + b. Chacun des a et b est un chiffre dans la base décimale et est donc compris entre 0 (inclus) et 9 (inclus). Il s ensuit que l âge de Pierre (qui est aussi la somme des chiffres de l année de naissance de Pierre) est compris entre 10 (inclus) et 28 (inclus). (b) L élève de fin de cycle 3 va procéder, par exemple, par essais successifs en utilisant un tableau 19

pour la mise en forme... Âge (en années) Date de naissance Somme des chiffres de la date de naissance 2 1999 28 3 1998 27 4 1997 26 5 1996 25 6 1995 24 7 1994 23 8 1993 22 9 1992 21 10 1991 20 11 1990 19 12 1989 27 13 1988 26 14 1987 25 15 1986 24 16 1985 23 17 1984 22 18 1983 21 19 1982 20 20 1981 19 21 1980 18 22 1979 26 23 1978 25 24 1977 24 25 1976 23 26 1975 22 27 1974 21 28 1973 20 Une seule année est telle que les première et troisième colonnes coïncident : 1977. Exercice 11 [Toulouse (1998)] Déterminer tous les nombres à trois chiffres abc (10) non multiples de 10 qui vérifient les conditions suivantes : le chiffre des dizaines est quadruple de celui des unités ; en retranchant 297 à ce nombre, on obtient le nombre écrit à l envers. Solution 11 Je note N = abc le nombre à trois chiffres. 20

Le chiffre des dizaines est quadruple de celui des unités, donc soit b = 0 et c = 0 (mais ceci est impossible, car, comme N n est pas multiple de 10, c 0), soit b = 4 et c = 1, soit b = 8 et c = 2. De abc cba = 297, donc (100 a + 10 b + c) (100 c + 10 b + a) = 297, puis 99 (a c) = 297, et enfin a c = 3. De retour sur les cas qu il reste à considérer, si b = 4 et c = 1, alors a = 4, qui fournit la solution 441, et si b = 8 et c = 2, alors a = 5, qui fournit la solution 582. Exercice 12 [Bordeaux, Caen, Clermont, Nantes, Orléans-Tours, Poitiers, Rennes (2001)] Un nombre de trois chiffres est tel que : la différence entre ce nombre et le nombre retourné est 297 ; la somme des trois chiffres est 11 ; la somme du triple du chiffre des centaines et du double du chiffre des dizaines est 22. Trouver ce nombre. (Indication : si, par exemple, le nombre était 231, le nombre retourné serait 132.) Solution 12 On note N = abc le nombre à 3 chiffres cherché. De abc cba = 297, donc (100 a + 10 b + c) (100 c + 10 b + a) = 297, puis 99 (a c) = 297, et enfin a c = 3. On sait aussi que a + b + c = 11 et 3 a + 2 b = 22. On visite toutes les valeurs de c possibles... c a = c + 3 b = 22 3 a 2 a + b + c 0 3 6, 5 9, 5 1 4 5 10 2 5 3, 5 10, 5 3 6 2 11 4 7 0, 5 11, 5 5 8 1 12 6 9 2, 5 12, 5 7 10 4 13 8 11 5, 5 13, 5 9 12 7 14 Comme a + b + c = 11, l unique nombre N possible est 623. Exercice 13 Soit n = abab (10). Montrer que n est divisible par 101. 21

Solution 13 n = abab = a 1 000 + b 100 + a 10 + b = a 1 010 + b 101 = 101 (10 a + b). On déduit de cette écriture que n est divisible par 101. Exercice 14 Soit n = abcabc (10). Montrer que n est divisible par 7, 11 et 13. Solution 14 n = abcabc = a 100 000 + b 10 000 + c 1 000 + a 100 + b 10 + c = a 100 100 + b 10 010 + c 1 001 = 1 001 (100 a + 10 b + c) = 7 11 13 (100 a + 10 b + c). On déduit de cette écriture que n est divisible par 7, 11 et 13. Exercice 15 Soient a, b et c trois chiffres distincts en base 10 et non nuls. Quels sont tous les nombres distincts de trois chiffres que l on peut composer avec les chiffres a, b et c? Montrer que la somme de ces nombres est divisible par a + b + c. Solution 15 On peut former les six nombres abc, acb, bac, bca, cab et cba. La somme S de ces six nombres est S = abc + acb + bac + bca + cab + cba = (100 a + 10 b + c) + (100 a + 10 c + b) + (100 b + 10 a + c) + (100 b + 10 c + a) + (100 = 222 a + 222 b + 222 c = 222 (a + b + c) On déduit de cette écriture que S est divisible par a + b + c. Exercice 16 [Dijon (2001)] Les nombres 2 882 et 19 591 sont des palindromes (cela signifie qu en les lisant de gauche à droite ou de droite à gauche, on a le même nombre). Trouvez tous les palindromes ayant 4 chiffres qui sont divisibles par 9. 22

Solution 16 Les nombres que l on cherche sont de la forme n = abba. Le critère de divisibilité par 9 donne alors, comme abba est divisible par 9 que a+b+b+a = 2 a+2 b = 2 (a + b) est divisible par 9, ou encore que a + b l est, d après le théorème de Gauss car 2 et 9 sont premiers entre eux. Cependant, a + b est compris entre 0 et 18 (car a et b sont des chiffres), on déduit donc que a + b vaut 0, 9 ou 18. 1. Si a + b = 0, alors a = b = 0, mais n = 0 ne possède pas 4 chiffres et n est donc pas solution du problème. 2. Si a + b = 9, alors on visite chacune des valeurs de a (à l exception de 0 car sinon n ne possèderait pas 4 chiffres et ne serait donc pas solution du problème) a b n = abba 1 8 1 881 2 7 2 772 3 6 3 663 4 5 4 554 5 4 5 445 6 3 6 336 7 2 7 227 8 1 8 118 9 0 9 009 3. Si a + b = 18, alors a = b = 9, et 9 999 est solution du problème. Les solutions sont donc : 1 881, 2 772, 3 663, 4 554, 5 445, 6 336, 7 227, 8 118, 9 009 et 9 999. Exercice 17 par 90. Soient les chiffres a et b en base 10. Trouver a et b pour que 37a28b (10) soit divisible Solution 17 Si 37a28b est divisible par 90, comme 90 est divisible par 9, 37a28b est divisible par 10 (propriété de transitivité). De même, si 37a28b est divisible par 90, comme 90 est divisible par 10, 37a28b est divisible par 9 (propriété de transitivité). Maintenant, comme 37a28b est divisible par 10, alors b = 0, d après le critère de divisibilité par 10. Et comme 37a28b est divisible par 9, alors la somme de ses chiffres 3 + 7 + a + 2 + 8 + 0 = a + 20 l est aussi, d après le critère de divisibilité par 9. Cependant, a est un chiffre, donc 20 a + 20 29, ce qui implique que a + 20 = 27 (car 27 est le seul multiple de 9 compris entre 20 (inclus) et 29 (inclus)), puis a = 7. 23

L unique solution est donc 377 280. Exercice 18 225. Donner tous les chiffres a et b possibles en base 10 pour que a6b5 (10) soit divisible par Solution 18 Si a6b5 est divisible par 225, comme 225 est divisible par 25, a6b5 est divisible par 25 (propriété de transitivité). De même, si a6b5 est divisible par 225, comme 225 est divisible par 9, a6b5 est divisible par 9 (propriété de transitivité). Maintenant, comme a6b5 est divisible par 25, alors b = 2 ou b = 7, d après le critère de divisibilité par 25. Et comme a6b5 est divisible par 9, alors la somme de ses chiffres a + 6 + b + 5 = a + b + 11 l est aussi, d après le critère de divisibilité par 9. Cependant, a et b sont des chiffres, donc 11 a + b + 11 29, ce qui implique que a + b + 11 = 18 ou a + b + 11 = 27 (car 18 et 27 sont les seuls multiples de 9 compris entre 11 (inclus) et 29 (inclus)). Il ne reste qu à faire la synthèse... Si b = 2 et que a + 2 + 11 = 18, alors a = 5 et 5 625 est bien divisible par 225. Si b = 2 et que a + 2 + 11 = 27, alors a = 14 qui n est pas un chiffre et qui n apporte donc pas de nouvelle solution. Si b = 7 et que a + 7 + 11 = 18, alors a = 0 et 675 est bien divisible par 225, cependant, il est convenu que le premier chiffre d un nombre est non nul et cette solution est évincée. Si b = 7 et que a + 7 + 11 = 27, alors a = 9 et 9 675 est bien divisible par 225. En conclusion, les deux nombres solutions sont : 5 625 et 9 675. Exercice 19 [Créteil, Paris, Versailles (2004)] Un nombre N a pour écriture décimale 72a83b (10). N est divisible par 6 et 45. 1. Quel est le chiffre b? 2. Déterminer N. Solution 19 N = 72a83b 1. N est divisible par 45 et 45 est divisible par 5, donc, par transitivité, N est divisible par 5, puis, par le critère de divisibilité par 5, on obtient b = 0 ou b = 5. N est divisible par 6 et 6 est divisible par 2, donc, par transitivité, N est divisible par 2, puis, par le critère de divisibilité par 2, on obtient b = 0, b = 2, b = 4, b = 6 ou b = 8. En synthèse, on obtient b = 0. 2. N est divisible par 45 et 45 est divisible par 9, donc, par transitivité, N est divisible par 9, puis, par le critère de divisibilité par 9, on obtient que la somme des chiffres de N est divisible par 9, ce 24

qui signifie que 7 + 2 + a + 8 + 3 + 0 = 20 + a est divisible par 9. Or, a étant un chiffre en base décimale, on déduit que 20 20+a 29. Et, comme le seul multiple de 9 compris entre 20 (inclus) et 29 (inclus) est 27, on obtient 20 + a = 27, puis a = 7. Par suite, N = 727 830 (on vérifie aisément que 727 830 est divisible par 6 et par 45). Exercice 20 aussi par 3. Soient les chiffres a et b en base 10. Montrer que si a801b (10) est divisible par 11, il l est Solution 20 Si a801b est divisible par 11, alors, d après le critère de divisibilité par 11, (a + 0 + b) (8 + 1) = a + b 9 est divisible par 11. Cependant, a et b sont des chiffres, donc 9 a + b 9 9, ce qui implique que a + b 9 = 0 car 0 est le seul multiple de 11 compris entre 9 (inclus) et 9 (inclus). Le nombre a801b est-il divisible par 3? Ceci équivaut, d après le critère de divisibilité par 3, à ce que a + 8 + 0 + 1 + b = a + b + 9 soit divisible par 3. Cependant, on a montré que a + b = 9, donc a + b + 9 = 18 et est bien divisible par 3, puis a801b est divisible par 3. Exercice 21 [Aix-Marseille, Corse, Montpellier, Nice (2000)] Déterminer a = mcdu (10) tel que a > 7000, que a soit divisible par 45, que a soit impair et que son chiffre des milliers soit double de celui des centaines. Solution 21 Si a = mcdu et si a est supérieur à 7 000, je déduis que m = 7, m = 8 ou m = 9. L énoncé dit aussi que m = 2 c, donc que m = 8 (car m est pair), puis que c = 4. Le nombre s écrit donc a = 84du. Quels sont les multiples de 45 compris entre 8 400 (inclus) et 8 499 (inclus)? La division euclidienne de 8 400 par 45 fournit le quotient 186 et le reste 30. Le premier multiple de 45 plus grand que 8 400 (inclus) est donc 187 45 = 8 415, le suivant est 188 45 = 8 460 et le sursuivant est plus grand que 8 499 (inclus). Parmi 8 415 et 8 460, seul 8 415 est impair! Le nombre cherché est donc 8 415. Exercice 22 [Aix-Marseille, Corse, Montpellier, Nice, La Martinique (2001)] 1. Voici deux propositions concernant des nombres donnés en écriture décimale. Dire pour chacune d elles si elle est vraie ou fausse et justifier. Si l écriture d un nombre entier se termine par 2, alors l écriture du carré de ce nombre se termine par 4. Si l écriture d un nombre entier se termine par 4, alors l écriture du carré de ce nombre se termine par 16. 2. Soit n = a5 (10) où a est un chiffre en base 10. Montrer que n 2 < 9 999. Montrer que l écriture de n 2 se termine par 25 et que son nombre de centaines est a (a + 1). Solution 22 25

1. (a) Si l écriture d un nombre entier se termine par 2, alors l écriture du carré de ce nombre se termine par 4. Vrai! Démonstration. Soit a un nombre qui se termine par un 2. Celui-ci s écrit donc a = D 10 + 2 où D est le nombre de dizaines de a. Son carré est, par conséquent, a 2 = (D 10+2) 2 = D 2 100+D 40+4 = 10 (D 2 10+D 4)+4. Puis, le carré de a se termine par un 4. (b) Si l écriture d un nombre entier se termine par 4, alors l écriture du carré de ce nombre se termine par 16. Faux! Contre-exemple. 14 2 = 196 ne termine pas par 16, mais par 96. 2. n = a5. (a) n 99, donc n 2 99 2 = 9 801 < 9 999. (b) Montrer que l écriture de n 2 se termine par 25 et que son nombre de centaines est a (a + 1). n = a5 = a 10+5, donc n 2 = (a 10+5) 2 = a 2 100+a 100+25 = (a 2 +a) 100+2 10+5. n 2 a donc 5 pour chiffre des unités, 2 pour chiffre des dizaines, a 2 + a = a (a + 1) pour nombre des centaines. Exercice 23 [Limoges (2001)] 1. Trouver tout entier naturel à un chiffre, égal au chiffre des unités de son carré. 2. Soit A un entier naturel à deux chiffres tel que A et A 2 aient à la fois même chiffre des unités et même chiffre des dizaines. (a) Quels sont les chiffres des unités possibles pour A? (b) Donner, en explicitant la démarche suivie, toutes les valeurs possibles pour A. 3. Donner, sans justification, un entier naturel B a trois chiffres tel que B et B 2 aient à la fois même chiffre des unités, même chiffre des dizaines et même chiffre des centaines. Solution 23 1. On visite tous les nombres à 1 chiffre. 26

Nombre Carré du nombre Chiffre des unités du carré du nombre 0 0 0 1 1 1 2 4 4 3 9 9 4 16 6 5 25 5 6 36 6 7 49 9 8 64 4 9 81 1 Les nombres qui sont égaux au chiffre des unités de leurs carrés sont 0, 1, 5 et 6. 2. (a) On a A = ab = 10 a + b, donc A 2 = (10 a + b) 2 = a 2 100 + (2 a b) 10 + b 2, et le chiffre des unités de A 2 est le même que celui de b 2 (i.e. celui du carré de son chiffre des unités). Enfin, d après le question 1., le chiffre des unités de A (i.e. b) est 0, 1, 5 ou 6. (b) Donner, en explicitant la démarche suivie, toutes les valeurs possibles pour A. Disjonction des cas selon les valeurs de b : Si b = 0, alors A = a0 = 10 a et A 2 = (10 a) 2 = a 2 100 et le chiffre des dizaines, a, de A 2 est 0. Ensuite, A = 0, mais la solution A = 0 est écartée selon l argument que ce nombre ne possède pas deux chiffres. Si b = 1, alors A = a1 = 10 a + 1 et A 2 = (10 a + 1) 2 = a 2 100 + 2 a 10 + 1 et le chiffre des dizaines, a, de A 2 est celui de 2 a. On visite toutes les éventualités pour a. a 2 a Chiffre des unités de 2 a 0 0 0 1 2 2 2 4 4 3 6 6 4 8 8 5 10 0 6 12 2 7 14 4 8 16 6 9 18 8 Ensuite, A = 1, mais la solution A = 1 est écartée selon l argument que ce nombre ne possède pas deux chiffres. 27

Si b = 5, alors A = a5 = 10 a + 5 et A 2 = (10 a + 5) 2 = a 2 100 + a 100 + 2 10 + 5 et le chiffre des dizaines de A 2, a, est 2. Enfin, A = 25 est solution. Si b = 6, alors A = a6 = 10 a + 6 et A 2 = (10 a + 6) 2 = a 2 100 + a 120 + 3 10 + 6 = (a 2 + a) 100 + (2 a + 3) 10 + 6 et le chiffre des dizaines de A 2, a, est celui de 2 a + 3. On visite toutes les éventualités pour a. a 2 a + 3 Chiffre des unités de 2 a + 3 0 3 3 1 5 5 2 7 7 3 9 9 4 11 1 5 13 3 6 15 5 7 17 7 8 19 9 9 21 1 Enfin, A = 76 est solution. Au final les deux solutions sont A = 25 et A = 76. 3. Pour cette question, aucune justification n est requise! On pourrait se contenter de donner l une des deux solutions parmi B = 625 et B = 376. Cependant, voici quelques pistes pour une éventuelle démonstration : (a) B se termine forcément par 00, par 01, par 25 ou par 76 (on pourrait montrer que les seuls deux derniers chiffres d un nombre permettent de déterminer les deux derniers chiffres de son carré par des manipulations algébriques). 28

(b) Un tableau présente ensuite toutes les éventualités pour B B B 2 Trois derniers chiffres de B 2 0 0 000 100 10 000 000 200 40 000 000 300 90 000 000 400 160 000 000 500 250 000 000 600 360 000 000 700 490 000 000 800 640 000 000 900 810 000 000 1 1 001 100 10 000 000 200 40 000 000 300 90 000 000 400 160 000 000 500 250 000 000 600 360 000 000 700 490 000 000 800 640 000 000 900 810 000 000 B B 2 Trois derniers chiffres de B 2 25 625 625 125 15 625 625 225 50 625 625 325 105 625 625 425 180 625 625 525 275 625 625 625 390 625 625 725 525 625 625 825 680 625 625 925 855 625 625 76 5 776 776 176 30 976 976 276 76 176 176 376 141 376 376 476 226 576 576 576 331 776 776 676 456 976 976 776 602 176 176 876 767 376 376 976 952 576 576 Au final B = 0 est refusé car ne comporte pas trois chiffres, B = 1 est refusé car ne comporte pas trois chiffres, B = 625 et B = 376 sont solutions. Exercice 24 [Créteil, Paris, Versailles (2000)] Soit A un entier naturel. 1. Trouver une condition nécessaire sur le dernier chiffre de A pour que A soit le carré d un nombre entier naturel. Cette condition est-elle suffisante? 2. Trouver une condition nécessaire sur le dernier chiffre de A pour que A soit le produit de deux nombres entiers naturels consécutifs. Cette condition est-elle suffisante? Solution 24 Lemme. Si a est le chiffre des unités de A et si b est le chiffre des unités de B, alors, le chiffre des unités de A B est celui de a b. 29

Démonstration Soit A = A 10 + a où A est le nombre de dizaines de A et soit B = B 10 + b où B est le nombre de dizaines de B. Alors, A B = (A 10+a) (B 10+b) = (A B 10+A+B) 10+a b, et le chiffre des unités de A B est celui de a b. 1. Trouver une condition nécessaire sur le dernier chiffre de A pour que A soit le carré d un nombre entier naturel α (i.e. un carré parfait). A = α 2. D après le lemme, il suffit de voir les éventualités sur le chiffre des unités de A. Dernier chiffre de α Dernier chiffre de A 0 0 1 1 2 4 3 9 4 6 5 5 6 6 7 9 8 4 9 1 On peut donc énoncer la propriété suivante : "si A est un carré parfait, il faut que son chiffre des unités soit 0, 1, 4, 5, 6 ou 9". Cette condition "le chiffre des unités est 0, 1, 4, 5, 6 ou 9" est nécessaire comme le montre l utilisation du "il faut". Cette condition est-elle suffisante? Autrement dit : est-il vrai que "si le chiffre des unités de A est 0, 1, 4, 5, 6 ou 9, alors A est un carré parfait"? Non! 10 a 0 pour chiffre des unités, mais 10 n est pas un carré parfait (3 2 = 9 (trop petit) et 4 2 = 16 (trop grand)). 2. Trouver une condition nécessaire sur le dernier chiffre de A pour que A soit le produit de deux nombres entiers naturels consécutifs α et α + 1. A = α (α + 1). D après le lemme, il suffit de voir les éventualités sur le chiffre des unités de A. 30

Dernier chiffre de α Dernier chiffre de A 0 0 1 2 2 6 3 2 4 0 5 0 6 2 7 6 8 2 9 0 On peut donc énoncer la propriété suivante : "si A est produit de deux entiers naturels consécutifs, il faut que son chiffre des unités soit 0, 2 ou 6". Cette condition "le chiffre des unités est 0, 2 ou 6" est nécessaire comme le montre l utilisation du "il faut". Cette condition est-elle suffisante? Autrement dit : est-il vrai que "si le chiffre des unités de A est 0, 2 ou 6, alors A est produit de deux entiers naturels consécutifs"? Non! 10 a 0 pour chiffre des unités, mais 10 n est pas produit de deux entiers naturels consécutifs (2 3 = 6 (trop petit) et 3 4 = 12 (trop grand)). Exercice 25 [Montpellier (1998)] En écriture sexagésimale, (2)(19)(51) (60) = 2 3 600 + 19 60 + 51. 1. Écrire en base 10 le nombre (3)(0)(17)(48) (60). 2. Écrire en base 60 le nombre 54 325 432. 3. n = (ab (10) )(ba (10) ) (60). (a) Quelle condition sur a et b? (b) n est multiple de 5. Que cela apporte-t-il de plus sur a et b? (c) n = b21a (10). Que cela apporte-t-il de plus sur a et b? Solution 25 1. (3)(0)(17)(48) (60) = 3 60 3 + 17 60 + 48 = 3 216 000 + 17 60 + 48 = 649 068. 31

2. En utilisant les divisions euclidiennes : 54 325 432 52 54 325 432 = 905 423 60 + 52 905 423 23 905 423 = 15 090 60 + 23 15 090 30 15 090 = 251 60 + 30 251 11 251 = 4 60 + 11 4 Ainsi, 54 325 432 = (4)(11)(30)(23)(52) (60). 3. n = (ab (10) )(ba (10) (60) ). (a) Quelle condition sur a et b? ab (10) doit être un chiffre en base 60, on déduit en particulier que 1 a 5 (le cas a = 0 est retiré car un premier chiffre est, par convention, non nul). ba (10) doit être un chiffre en base 60, on déduit en particulier que 1 b 5 (le cas b = 0 est retiré car un premier chiffre est, par convention, non nul). On a également n = (ab (10) )(ba (10) ) (60) = ab (10) 60 + ab (10) = (a 10 + b) 60 + (b 10 + a) = 601 a + 70 b. (b) n est multiple de 5. Que cela apporte-t-il de plus sur a et b? Sachant que 5 est diviseur de n et que 5 est diviseur de 70 b (en effet, 5 étant diviseur de 70, il l est aussi de 70 b), on déduit donc que 5 est diviseur de 601 a. Comme d après la question précédente, 1 a 5, on regarde parmi 601 = 1 601, 1 202 = 2 601, 1 803 = 3 601, 2 404 = 4 601, et 3 005 = 5 601 (comme d après la question précédente, 1 a 5) et seul 3 005 est divisible par 5, et donc a = 5, puis n = (5b (10) )(b5 (10) ) 3 005 + 70 b. (c) n = b21a (10). Que cela apporte-t-il de plus sur a et b? D après la question précédente, a = 5, et on déduit que n = b215 (10). n = 3 005 + 70 b = b 1 000 + 215, puis 2 790 = 930 b, puis b = 3. En conclusion n = 3 215 = (53 (10) )(35 (10) ) (60). (b5) = Exercice 26 Tous les nombres sont donnés dans le système décimal (en base 10). 32

On considère un nombre à quatre chiffres que l on note a1b1 (i.e. a est le chiffre des milliers, 1 est celui des centaines, b est celui des dizaines et 1 est celui des unités). On lui soustrait un nombre à trois chiffres que l on note a0b (i.e. a est le chiffre des centaines, 0 est celui des dizaines et b est celui des unités). Le résultat est appelé x. On suppose de plus que le chiffre a est strictement plus grand que 1 et que le chiffre b est strictement plus grand que le chiffre a. On abrège cette relation en écrivant : b > a > 1. Question 0 Quelle est la plus petite valeur que peut prendre a?, la plus petite que peut prendre b?, la plus grande que peut prendre b?, la plus grande que peut prendre a?, la plus petite que peut prendre a + b?, la plus grande que peut prendre a + b? On recherche l ensemble de tous les chiffres a et b tels que x soit divisible par 11. On rappelle la règle suivante : "Un nombre est divisible par 11 si l écart entre la somme des chiffres de rangs pairs et la somme des chiffres de rangs impairs est divisible par 11, et réciproquement, si un nombre est divisible par 11, l écart entre la somme des chiffres de rangs pairs et la somme des chiffres de rangs impairs est divisible par 11". Question 1 Quel est le chiffre des unités de x, en fonction de b? Expliquer... Question 2 Quel est le chiffre des dizaines de x, en fonction de b? Expliquer... Question 3 Quel est le chiffre des centaines de x, en fonction de a? Expliquer... Question 4 Quel est le chiffre des milliers de x, en fonction de a? Expliquer... Question 5 Montrer que si a + b = 12, alors x est divisible par 11. Question 6 Montrer que si x est divisible par 11, alors a + b = 12. Question 7 Quels sont tous les a et b tels que x est divisible par 11? Solution 26 Il s agit du calcul de x = a1b1 a0b sous la condition b > a > 1. Question 0 La plus petite valeur que peut prendre a est 2. Par conséquent, la plus petite valeur que peut prendre b est 3. La plus grande valeur que peut prendre b est 9. Par conséquent, la plus grande valeur que peut prendre a est 8. De tout cela, il découle que la plus petite valeur que peut prendre a + b est 2 + 3 = 5 et la plus grande valeur que peut prendre a + b est 8 + 9 = 17. Je commence par poser l opération en colonne pour obtenir chacun des chiffres de x. a 11 b 11 a 0 b 1 1 a 1 11 a b 1 11 b Cette pose du calcul est une justification pour répondre aux question 1, 2, 3 et 4. Question 1 Quel est le chiffre des unités de x, en fonction de b? 11 b. 33

Question 2 Quel est le chiffre des dizaines de x, en fonction de b? b 1. Question 3 Quel est le chiffre des centaines de x, en fonction de a? 11 a. Question 4 Quel est le chiffre des milliers de x, en fonction de a? a 1. Questions 5 et 6 Montrer que si a + b = 12, alors x est divisible par 11. Montrer que si x est divisible par 11, alors a + b = 12. x est divisible par 11, équivaut à dire que la différence entre la somme des chiffres de rang pair de x et la somme des chiffres de rang impair de x est divisible par 11 (et cette différence vaut (11 b + 11 a) (b 1 + a 1) = 24 2 a 2 b = 24 2 (a + b) au signe près). On déduit que si a + b = 12, alors, 24 2 (a + b) = 0 est divisible par 11 et x est divisible par 11. On déduit également que si x est divisible par 11, alors 24 2 (a + b) est divisible par 11. Or, d après la question 0, 3 a+b 17, donc on obtient 10 24 2 (a+b) 18, puis 24 2 (a+b) vaut 0 ou 11 (car 0 et 11 sont les seuls multiples de 11 compris entre 10 (inclus) et 18 (inclus)). Cependant, la quantité 24 2 (a + b) est trivialement paire et ne peut valoir 11. Il s ensuit que 24 2 (a + b) = 0, puis que a + b = 12. Question 7 Quels sont tous les a et b tels que x est divisible par 11? Synthèse. a = 3 et b = 9, a = 4 et b = 8, et a = 5 et b = 7, sont les trois couples solutions (ne pas oublier que a < b). Exercice 27 [Orléans-Tours (1998)] Soit n = abc (6) (103 = 251 (6) ). 1. Que vaut 132 (6)? Est-il multiple de 6? Est-il multiple de 2? 2. 324 (6), 222 (6), 550 (6) sont-ils multiples de 6? Sont-ils multiples de 2? 3. Énoncer et montrer les critères de divisibilité par 6 et par 2 à partir de l écriture du nombre abc (6) en base 6. 4. Montrer que 325 (6), 212 (6), 555 (6) sont multiples de 5. Énoncer et montrer le critère de divisibilité par 5 à partir de l écriture du nombre abc (6) en base 6. Solution 27 1. Il suffit d utiliser la base 10, dans laquelle on sait reconnaître les multiples de 2 et de 6. 132 (6) = 1 36 + 3 6 + 2 = 56 qui est multiple de 2, mais qui n est pas multiple de 6. 2. (a) 324 (6) = 3 36 + 2 6 + 4 = 124 qui est multiple de 2, mais qui n est pas multiple de 6. (b) 222 (6) = 2 36 + 2 6 + 2 = 86 qui est multiple de 2, mais qui n est pas multiple de 6. (c) 550 (6) = 5 36 + 5 6 + 0 = 210 qui est multiple de 2 et de 6. 3. (a) Si abc (6) est divisible par 6, alors c = 0. Et, réciproquement. 34

Si abc (6) est divisible par 6, alors a 36+b 6+c = 6 (a 6+b)+c est divisible par 6. Par suite, abc (6) et 6 (a 6 + b) étant divisibles par 6, il vient que c = abc (6) 6 (a 6 + b) est divisible par 6 (d après la propriété de soustraction des multiples). Cependant, c est un entier naturel tel que 0 c 5 (c est un chiffre en base 6) divisible par 6, c est donc nul (i.e. c = 0). Réciproquement, si c = 0, alors ab0 (6) = a 36 + b 6 = 6 (a 6 + b) est divisible par 6. (b) Si abc (6) est divisible par 2, alors c est pair. Et, réciproquement. Si abc (6) est divisible par 2, alors a 36+b 6+c = 6 (a 6+b)+c est divisible par 2. Par suite, abc (6) et 6 (a 6 + b) étant divisibles par 2, il vient que c = abc (6) 6 (a 6 + b) est divisible par 2 (d après la propriété de soustraction des multiples). Cependant, c est un entier naturel tel que 0 c 5 (c est un chiffre en base 6) divisible par 2, c est donc pair (i.e. c = 0, c = 2 ou c = 4). Réciproquement, si c est divisible par 2 (i.e. c est pair), alors abc (6) = a 36 + b 6 + c = 6 (a 6 + b) + c est divisible par 2 (d après la propriété d addition des multiples). 4. (a) 325 (6) = 3 36 + 2 6 + 5 = 125 qui est multiple de 5. (b) 212 (6) = 2 36 + 1 6 + 2 = 80 qui est multiple de 5. (c) 555 (6) = 5 36 + 5 6 + 5 = 215 qui est multiple de 5. Si abc (6) est divisible par 5, alors a + b + c est divisible par 5. Et, réciproquement. On a : abc (6) = a 36 + b 6 + c = a (35 + 1) + b (5 + 1) + c = 5 (7 a + b) + (a + b + c). Si abc (6) est divisible par 5, alors 5 (7 a + b) + (a + b + c) est divisible par 5. Par suite, abc (6) et 5 (7 a + b) étant divisibles par 5, il vient que a + b + c = abc (6) 5 (7 a + b) est divisible par 5 (d après la propriété de soustraction des multiples). Réciproquement, si a + b + c est divisible par 5, comme 5 (7 a + b) est divisible par 5, il vient que abc (6) = 5 (7 a + b) + (a + b + c) est divisible par 5 (d après la propriété d addition des multiples). Exercice 28 Soient a, b, et c des chiffres en base 10. Montrer que si ab (10) et bc (10) sont des nombres divisibles par 7, alors ca (10) l est aussi. Solution 28 ab est multiple de 7. Ainsi, on peut trouver un entier naturel k tel que a 10 + b = 7 k. bc est multiple de 7. Ainsi, on peut trouver un entier naturel l tel que b 10 + c = 7 l. Il faut montrer que ca (10) est multiple de 7, c est-à-dire trouver un entier naturel m tel que c 10+a = 7 m. 35

Exercice 29 c 10 + a = (7 l b 10) 10 + a = (7 l (7 k a 10) 10) 10 + a = 70 l 700 k + 1 001 a = 7 (10 l + 100 k + 143 a). }{{} =m On considère un nombre à quatre chiffres que l on note abcd (10) (i.e. a est le chiffre des milliers, b celui des centaines, c celui des dizaines et d celui des unités). On appelle retourné du nombre abcd (10) le nombre dcba (10) (i.e. le retourné est obtenu en intervertissant le chiffre des milliers avec celui des unités et celui des centaines avec celui des dizaines -par exemple, le nombre 921 est le retourné du nombre 1290, et réciproquement, le nombre 1290 est le retourné du nombre 921-). Question 1 Quels sont les retournés des nombres 4205, 10 et 444? On considère dorénavant un nombre à quatre chiffres que l on note abcd (10) vérifiant les conditions restrictives : a est soit 5, soit 6, soit 7, soit 8 ou soit 9 ; b aussi est soit 5, soit 6, soit 7, soit 8 ou soit 9 (b peut être différent de a) ; c est soit 0, soit 1, soit 2, soit 3 ou soit 4 ; d aussi est soit 0, soit 1, soit 2, soit 3 ou soit 4 (d peut être différent de c). Question 2 Combien existe-t-il de tels nombres? On décide de classer ces nombres du plus petit au plus grand. Question 3 Quel sera le premier de ces nombres?, le dernier?, le deux cent dixième? On définit maintenant l algorithme suivant : "Je prends un nombre abcd vérifiant les conditions restrictives, je lui enlève son retourné. Le résultat ainsi obtenu est appelé résultat intermédiaire. Puis, au résultat intermédiaire, j ajoute le retourné du résultat intermédiaire. J écris le résultat final" Question 4 Appliquer l algorithme aux nombres qui, parmi 7209, 1495, 5924, 9904, 4692 et 7637, vérifient les conditions restrictives. Question 5 Énoncer de façon claire et concise une propriété relative à cet algorithme. Question 6 Démontrer cette propriété. Faire une démonstration exhaustive de cette propriété, consiste à vérifier la propriété pour chacun des nombres vérifiant les conditions restrictives. Question 7 Sachant que je mets 15 secondes pour vérifier la propriété pour un nombre, quel temps (en heures, minutes, secondes) mettrai-je pour effectuer une démonstration exhaustive de cette propriété? Question 8 Si je commence la démonstration exhaustive à 14 heures 54 minutes et 48 secondes, à quelle heure précisément aurai-je achevé cette tâche? Solution 29 Mise en bouche... Dans un couvent, à la tombée de la nuit, quatre jeunes nonnes s enfuient car elles n arrivaient pas à trouver le sommeil... En chemin, elles rencontrent le grand sage de la 36

forêt qu elles s empressent de saluer. Elles lui font part de leur problème d insomnie. Le sage, qui est un peu matheux, un peu anglais essaye de modéliser le problème en écrivant "SLEEP" (dormir) puis "NIGHT" (la nuit) en codant les lettres avec des chiffres comme suit : S L E E P N I G H T 0 1 2 3 4 5 6 7 8 9 Il demande alors à l une des nonnes de choisir deux lettres du mot "NIGHT". Elle choisit le H, puis le T. Il demande alors à une autre nonne de choisir deux lettres du mot "SLEEP". Elle choisit le deuxième E, puis le L. Il code alors H par 8, T par 9, E par 3 et L par 1 (voir tableau). Il effectue alors le calcul suivant : 8 9 3 1 1 3 9 8 il enlève le nombre écrit à l envers 7 5 3 3 7 5 3 3 + 3 3 5 7 1 0 8 9 0 il ajoute le résultat écrit à l envers 1 0 8 9 0 4 il multiplie le nouveau résultat par 4 4 3 5 6 0 Il indique alors aux nonnes qu il a trouvé la solution et décode "43560". Les quatre nonnes repartirent comblées. Question 1 Le retourné de 4 205 est 5 024. Le retourné de 10 est 100. Le retourné de 444 est 4 440. Question 2 Un arbre permet de dénombrer aisément... 5 possibilités pour le premier chiffre, puis 5 possibilités pour le deuxième chiffre, puis 5 possibilités pour le troisième chiffre, et enfin 5 possibilités pour le quatrième chiffre, soit un total de 5 5 5 5 = 5 4 = 625 possibilités pour le nombre. Question 3 Le premier est 5 500 et le dernier est 9 944. Sur l arbre des possibles, on cherche le deux cent dixième. Du 1 er au 125ème, les nombres commencent par 5 ; Du 126ème au 250ème, les nombres commencent par 6 ; Du 251ème au 375ème, les nombres commencent par 7 ; Du 376ème au 500ème, les nombres commencent par 8 ; Du 501ème au 625ème, les nombres commencent par 9. Comme on cherche le 210ème, il commence par 6. Du 126ème au 150ème, les nombres commencent par 65 ; Du 151ème au 175ème, les nombres commencent par 66 ; Du 176ème au 200ème, les nombres commencent par 67 ; 37

Du 201ème au 225ème, les nombres commencent par 68 ; Du 226ème au 250ème, les nombres commencent par 69. Comme on cherche le 210ème, il commence par 68. Du 201ème au 205ème, les nombres commencent par 680 ; Du 206ème au 210ème, les nombres commencent par 681 ; Du 211ème au 215ème, les nombres commencent par 682 ; Du 216ème au 220ème, les nombres commencent par 683 ; Du 221ème au 225ème, les nombres commencent par 684. Comme on cherche le 210ème, il commence par 681. Le 206ème est 6 810 ; le 207ème est 6 811 ; le 208ème est 6 812 ; le 209ème est 6 813 ; et le 210ème est 6 814. Question 4 7 209 ne vérifie pas les conditions restrictives, car le deuxième chiffre doit être choisi parmi 5, 6, 7, 8 et 9. 1 495 ne vérifie pas les conditions restrictives, car le premier chiffre doit être choisi parmi 5, 6, 7, 8 et 9. 5 924 vérifie les conditions restrictives. On lui applique l algorithme. 5 9 12 14 4 2 9 5 1 1 1 6 2 9 1 1 1 6 2 9 + 9 2 6 1 1 0 8 9 0 9 904 vérifie les conditions restrictives. On lui applique l algorithme. 9 9 10 14 4 0 9 9 1 1 5 8 0 5 1 1 5 8 0 5 + 5 0 8 5 1 0 8 9 0 4 692 ne vérifie pas les conditions restrictives, car le premier chiffre doit être choisi parmi 5, 6, 7, 8 et 9. 7 637 ne vérifie pas les conditions restrictives, car le quatrième chiffre doit être choisi parmi 0, 1, 2, 3 et 4. Question 5 L algorithme appliqué à un nombre vérifiant les conditions restrictives fournit le résultat 10 890. Question 6 Démonstration de cette propriété. a b 1c 1d d c b a 1 1 a d b c 1 10 + c b 1 10 + d a 38

1 1 a d b c 1 10 + c b 1 10 + d a + 10 + d a 10 + c b 1 b c 1 a d 1 0 8 9 0 Question 7 625 nombres vérifient les conditions restrictives. Ceci compte donc 625 15 s = 9 375 s. 9 375 = 156 60 + 15, donc 9 375 s = 156 min 15 s. 156 = 2 60 + 36, donc 9 375 s = 156 min 15 s = 2 h 36 min 15 s. Et, la tâche dure 2 heures 36 minutes 15 secondes. Question 8 En commençant la démonstration exhaustive à 14 heures 54 minutes et 48 secondes, la tâche sera achevée à 17 heures 31 minutes 03 secondes. 14 h 54 min 48 s + 2 h 36 min 15 s = 16 h 90 min 63 s = 16 h 91 min 03 s car1 min = 60 s = 17 h 31 min 03 s car1 h = 60 min Exercice 30 [Amiens (2002)] Soit N = mcdu un nombre entier naturel écrit en base dix pour lequel m > c > d > u > 0. Question 1 Quel est le plus petit entier N possible? Question 2 Quel est le plus grand entier N possible? Question 3 Dresser la liste des nombres N pour lesquels le chiffre des milliers est 6. On appelle N le nombre entier obtenu à partir de N en permutant le chiffre des unités avec celui des unités de mille et le chiffre des dizaines avec celui des centaines. On appelle D le nombre obtenu en faisant la différence N N. Question 4 Exprimer D en fonction de m, c, d et u. Question 5 Montrer que D est multiple de 9. Question 6 Quelle est la valeur maximale pour D? Pour quelle(s) valeur(s) de N, D est-il maximum? Question 7 Quelle est la valeur minimale pour D? Pour quelle(s) valeur(s) de N, D est-il minimum? Solution 30 Question 1 N = mcdu est un nombre entier naturel pour lequel m > c > d > u > 0. Le plus petit u possible est 1, le plus petit d possible est donc 2, le plus petit c possible est donc 3 et le plus petit m possible est donc 4. Ceci fait que le plus petit N possible est 4 321. Question 2 N = mcdu est un nombre entier naturel pour lequel m > c > d > u > 0. Le plus grand m possible est 9, le plus grand c possible est donc 8, le plus grand d possible est donc 7 et le plus grand u possible est donc 6. Ceci fait que le plus grand N possible est 9 876. Question 3 39

Tous ceux qui commencent par 65... : 6 543, 6 542, 6 541, 6 532, 6 531 et 6 521. Tous ceux qui commencent par 64... : 6 432, 6 431 et 6 421. Tous ceux qui commencent par 63... : 6 321. Et, il n en existe pas d autres... Question 4 N = mcdu = m 1000 + c 100 + d 10 + u et N = udcm = u 1000 + d 100 + c 10 + m. Par différence, il vient que D = N N = (m 1000 + c 100 + d 10 + u) (u 1000 + d 100 + c 10 + m) = m 999 + c 90 d 90 u 999 = (m u) 999 + (c d) 90. Question 5 D = (m u) 999 + (c d) 90 = 9 ((m u) 111 + (c d) 10). Et donc D est multiple de 9. Question 6 Trouver la valeur maximale de D, est équivalent à trouver m, c, d et u tels que m u soit maximal et c d soit maximal également... D est donc maximal lorsque m = 9 et u = 1 et lorsque c = 8 et d = 2, c est-à-dire pour N = 9 821 ; on obtient alors D = 8 532. Question 7 Trouver la valeur minimale de D, est équivalent à trouver m, c, d et u tels que m u soit minimal et c d soit minimal également... Le minimum de m u est 3 et le minimum de c d est 1 et ce minimum est atteint lorsque u, d, c et m sont des entiers consécutifs. D est donc maximal lorsque N = 4 321, N = 5 432, N = 6 543, N = 7 654, N = 8 765 ou N = 9 876 ; on obtient alors D = 3 087. 40