Moments des variables aléatoires réelles



Documents pareils
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Programmes des classes préparatoires aux Grandes Ecoles

Simulation de variables aléatoires

Espérance conditionnelle

Travaux dirigés d introduction aux Probabilités

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390

Intégration et probabilités TD1 Espaces mesurés Corrigé

Suites numériques 4. 1 Autres recettes pour calculer les limites

Variables Aléatoires. Chapitre 2

Texte Agrégation limitée par diffusion interne

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

3. Conditionnement P (B)

4 Distributions particulières de probabilités

Développement décimal d un réel

Limites finies en un point

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Loi d une variable discrète

Probabilités et statistique. Benjamin JOURDAIN

Image d un intervalle par une fonction continue

MA6.06 : Mesure et Probabilités

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M

4. Martingales à temps discret

Continuité en un point

3. Caractéristiques et fonctions d une v.a.

Loi binomiale Lois normales

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Probabilités sur un univers fini

Licence MASS (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Sur certaines séries entières particulières

La fonction exponentielle

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Amphi 3: Espaces complets - Applications linéaires continues

Chapitre 2 Le problème de l unicité des solutions

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Suites numériques 3. 1 Convergence et limite d une suite

ENS de Lyon TD septembre 2012 Introduction aux probabilités. A partie finie de N

Probabilités sur un univers fini

1 TD1 : rappels sur les ensembles et notion de probabilité

EXERCICE 4 (7 points ) (Commun à tous les candidats)

TSTI 2D CH X : Exemples de lois à densité 1

Théorème du point fixe - Théorème de l inversion locale

I. Polynômes de Tchebychev

La mesure de Lebesgue sur la droite réelle

Intégration et probabilités TD1 Espaces mesurés

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

Calcul fonctionnel holomorphe dans les algèbres de Banach

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

CCP PSI Mathématiques 1 : un corrigé

Coefficients binomiaux

M2 IAD UE MODE Notes de cours (3)

Cours de probabilité et statistique

Théorie de la Mesure et Intégration

Commun à tous les candidats

Chapitre 2. Eléments pour comprendre un énoncé

Théorie de la Mesure et Intégration

Capes Première épreuve

Fonctions de plusieurs variables

Modèles et Méthodes de Réservation

Correction de l examen de la première session

Probabilités III Introduction à l évaluation d options

Le modèle de Black et Scholes

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Estimation et tests statistiques, TD 5. Solutions

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

Probabilités Loi binomiale Exercices corrigés

Leçon 01 Exercices d'entraînement

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Probabilités. C. Charignon. I Cours 3

EI - EXERCICES DE PROBABILITES CORRIGES

Statistiques Descriptives à une dimension

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

Introduction au Calcul des Probabilités

Rappels sur les suites - Algorithme

Continuité et dérivabilité d une fonction

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Université Paris-Dauphine DUMI2E 1ère année, Applications

Calcul élémentaire des probabilités

Quelques tests de primalité

Université Paris 8 Introduction aux probabilités Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Correction du Baccalauréat S Amérique du Nord mai 2007

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

PROBABILITES ET STATISTIQUE I&II

P1 : Corrigés des exercices

Mesures gaussiennes et espaces de Fock

Calcul différentiel sur R n Première partie

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

Chapitre 7 : Intégration sur un intervalle quelconque

3 Approximation de solutions d équations

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Transcription:

Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................ 46 6.1.2 appels et compléments sur les séries de nombres réels.................... 47 6.1.3 Propriétés............................................. 49 6.1.4 Inégalité de Markov....................................... 51 6.2 Variance et écart-type.......................................... 52 6.2.1 Définition et propriétés..................................... 52 6.2.2 Inégalité de Tchebitcheff..................................... 53 6.3 Calculs pour les lois usuelles....................................... 53 Objectifs: Comprendre la notion d espérance et de variance d une variable aléatoire réelle. Savoir les calculer pour des variables discrètes et à densité. Mots-clés: espérance, variance. Outils: linéarité de l espérance: E(aX + by ) aex + bey. positivité de l espérance: si X Y alors EX EY. formule de calcul de E(f(X)) quand X est une v.a.discrète ou à densité (théorème de transfert). non-linéarité de la variance: en général var(x + Y ) varx + vary et var(ax + b) a 2 varx. Inégalités de Markov et de Tchebitcheff.

6.1 Espérance des variables aléatoires réelles 6.1.1 Définition et calcul L espérance d une variable aléatoire réelle est ce qu on nomme en langage courant sa moyenne: Définition 6.1 Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω. 1. Si X est discrète, on dit qu elle est intégrable (ou qu elle admet une espérance) si et seulement si x Ω(X) x P(X x) < +. Dans ce cas, son espérance EX est définie par E(X) xp(x x). x Ω(X) 2. Si X a pour densité f, on dit qu elle est intégrable si et seulement si x f(x)dx < +. Dans ce cas, son espérance EX est définie par E(X) xf(x)dx. emarque: 1. Si X est une variable aléatoire réelle qui ne prend qu un nombre fini de valeurs, son espérance, définie par une somme finie de réels, a toujours un sens. Par contre, si X est une variable aléatoire réelle qui prend un nombre dénombrable de valeurs, l espérance est naturellement définie par une série, dont il faut étudier la convergence. Pour la condition d existence de l espérance, x Ω(X) x P(X x) est une série à termes positifs. Quand elle converge (c est-à-dire quand sa somme est finie), cela implique la convergence de la série x Ω(X) xp(x x) (en effet, cette dernière série est alors absolument convergente), et cette somme x Ω(X) xp(x x) est appelée espérance de X. 2. Si X est une variable aléatoire de densité f, x f(x)dx est une intégrale, éventuellement impropre. Comme dans le cas des séries, si cette intégrale converge, cela implique l absolue convergence de l intégrale xf(x)dx, et on appelle espérance de X la valeur EX xf(x)dx. 3. L espérance de X est une moyenne pondéreée des valeurs prises par X, le poids d une valeur étant la probabilité que X prenne cette valeur. On le voit bien sur des variables aléatoires ne prenant qu un nombre fini de valeur, on peut étendre cette intuition au cas d une variable aléatoire qui prend un nombre dénombrable de valeurs, et au cas d une variable aléatoire à densité. Exemple: Considérons une variable aléatoire X de loi uniforme sur {0,... n}. C est une variable aléatoire discrète, qui ne prend qu un nombre fini de valeurs, donc elle admet une espérance: n n 1 EX kp(x k) k. n + 1 1 n n(n + 1) k n + 1 2(n + 1) n 2. emarquons qu on pouvait s attendre à une telle valeur. Exercice: La roulette française comporte 37 numéros, de 0 à 36, équiprobables. Le 0 est vert, la moitié des numéros restant sont rouges, les autres noirs. 1. Je mise 1 euro sur rouge. Si un numéro rouge sort, je récupère mon euro et je gagne un euro supplémentaire, sinon je perds mon euro. On note X mon gain (différence entre ce que je possède avant de jouer et ce que je possède après le jeu). Donner la loi de X et calculer son espérance. 2. Je mise 1 euro sur mon numéro fétiche, le 25. S il sort, je gagne 36 fois ma mise. Soit Y mon gain dans ce cas. Donner la loi de Y et calculer son espérance. Exemple: On considère une variable aléatoire X qui suit la loi de Poisson de paramètre λ > 0, c est-à-dire que k1 X(Ω) N et k N P(X k) e λλk k!. 46

Comme la variable aléatoire ne prend que des valeurs positives, on regarde kp(x k) ke λλk k! e λ k1 On a donc montré à la fois que X est intégrable et que EX λ. λ λk 1 (k 1)! λe λ l0 λ l l! λe λ e λ λ. Exercice: Soit α > 0 et C α > 0. Soit X une variable aléatoire à valeurs dans N telle que k N, P(X k) C α k α. 1. A quelle condition sur α peut-on trouver C α > 0 telle que la probabilité soit bien définie? 2. A quelle condition sur α la variable aléatoire X est-elle intégrable? Exercice: Soit X une variable aléatoire de loi uniforme sur le segment [a, b]. Calculer son espérance. Exemple: Soit X une variable aléatoire de loi exponentielle de paramètre λ. Montrer qu elle est intégrable et calculer son espérance. La densité de la loi exponentielle de paramètre λ > 0 est x f(x) λexp( λx)1 x>0. Pour que X admette une espérance, il faut que x f(x)dx < + λ x exp( λx)1 x>0 dx < + Soit M > 0. Calculons, en intégrant par parties, M 0 + 0 λx exp( λx)dx < +. M λxexp( λx)dx [ xexp( λx] + 0 + exp( λx)dx M exp( λm) + 1 (1 exp( λm). 0 λ Cette quantité a une limite quand M tend vers +, donc l intégrale est convergente et X admet une espérance. Cette espérance vaut EX M lim λx exp( λx)dx lim M exp( λm) + 1 M + 0 M + λ (1 exp( λm) 1 λ. Exercice: Lois de Cauchy. Soit α et β > 0. La densité de la loi lorentzienne de paramètres α et β est f(x) 1 βπ 1. 1 + (x α)2 β 2 Montrer que la loi de Cauchy de paramètres α 0 et β 1 n est pas intégrable. 6.1.2 appels et compléments sur les séries de nombres réels Soit (u n ) n N une suite de nombre réels. On pose, pour tout n N, S n n u k. On dit que la série de terme général (u n ) n N converge si et seulement si la suite (S n ) n N converge et on appelle S sa somme, définie par S lim n + S n. Dans le cas contraire, on dit que la série est divergente. 47

Proposition 6.2 Soit (u n ) n N une suite de nombre réels positifs ou nuls, et soit ϕ une bijection de N dans N. Alors les séries de terme général (u n ) n N et (u ϕ(n) ) n N sont de même nature. Dans le cas où elles convergent, elles ont même somme. Autrement dit, pour une série à termes positifs, on peut changer l ordre de sommation sans changer la nature de la série, ni la somme de la série si elle converge. Ce n est pas le cas pour une série de terme géréral quelconque. Exercice: Démonstration: Soit ϕ : N N une bijection de N dans N. Comme (u n ) n N est une suite de nombre réels positifs ou nuls, les suites S n n u k et T n sont croissantes et tendent (en croissant) respectivement vers S et T (ces deux valeurs pouvant éventuellement être infinies). On va montrer que S T. Posons, pour n N, M n max{ϕ(k) : 0 k n}. emarquons alors que, pour tout n N, T n S Mn S, et donc en passant à la limite, T S. De même, posons, pour n N, N n max{ϕ 1 (k) : 0 k n} et remarquons alors que, pour tout n N, n S n u ϕ(ϕ 1 (k) T Nn T, et donc en passant à la limite, S T. 1. Soit (u n ) n N et (v n ) n N des suites réelles telles que: (a) (u n ) n N est croissante et (v n ) n N est décroissante, (b) pour tout n, u n v n. Montrer que les suites (u n ) n N et (v n ) n N convergent vers une même limite réelle. 2. On considère la série de terme général u n ( 1)n n. En considérant les suites de sommes partielles (S 2k) k N et (S 2k+1 ) k N, montrer que cette série converge et que sa somme est strictement positive. 3. On somme maintenant dans l ordre n u 1 + u 3 + u 2 + u 5 + u 7 + u 4 +... (deux termes impairs, un terme pair). Montrer que les sommes partielles de rang un multiple de 3 sont négatives. u ϕ(k) 4. Peut-on sommer cette série dansn importe quel ordre sans changer la somme? Proposition 6.3 Soit (u n ) n N une suite de nombre réels quelconque. On suppose qu il existe une bijection ϕ de N dans N telle que la série de terme général ( u ϕ(n) ) n N converge (autrement dit telle que la série de terme général (u ϕ(n) ) n N soit absolument convergente). Alors pour toute bijection ψ : N N, les éries de terme général (u ψ(n) ) n N et ont toutes la même somme. Démonstration: admis (voir cours sur les séries numériques). Ces propriétés justifient le fait qu on puisse changer l ordre de sommation dans les preuves des propriétés qui suivent. 48

6.1.3 Propriétés Proposition 6.4 1. L espérance est linéaire: si a et b sont deux nombres réels et si X et Y sont deux variables aléatoires réelles définies sur le même espace de probabilité Ω et admettant une espérance, alors ax + by admet une espérance et: E(aX + by ) aex + bey. Cas particulier: si a est une constante réelle, E(a) a. 2. L espérance est une application positive: si X est positive (ce qui signifie que ω Ω, X(ω) 0 et qui est noté X 0), et qu elle admet un moment, alors EX 0: X 0 EX 0. Cas particulier: si X Y (ce qui signifie ω Ω, X(ω) Y (ω)) alors EX EY. On va faire la preuve dans le cas de variables aléatoires discrètes. Démonstration: 1. Montrons que si a et X est une variable aléatoire discrète admettant une espérance, alors ax admet une espérance et E(aX) aex. Notons Z ax. Si a 0 alors Z 0 et la propriété est claire. Supposons maintenant que a 0. Alors l application ϕ : X(Ω) x Z(Ω) ax est une bijection, donc Z est encore une variable aléatoire discrète. Maintenant, z P(Z z) ax P(Z ax) a x P(aX ax) a x P(X x), car a 0. Donc Z admet une espérance et le même calcul sans les valeurs absolues montre que E(aX) aex. Montrons que si X et Y sont des variables aléatoires discrètes définie sur le même espace de probabilité et admettant une espérance, alors X + Y admet une espérance et E(X + Y ) EX + EY. Posons Z X + Y. Montrons que Z est encore discrète: comme X(Ω) et Y (Ω) sont finis ou dénombrables, leur produit X(Ω) Y (Ω) est encore dénombrable. Maintenant, considérons ϕ : X(Ω) Y (Ω) (x, y) x + y. Alors Z(Ω) ϕ(x(ω) Y (Ω)) est aussi fini ou dénombrable. Donc Z est une variable aléatoire discrète. Maintenant soit z Z(Ω): regardons toutes les façons dont on peut l obtenir comme somme d une valeur x X(Ω) et d une valeur y Y (Ω): par la formule des probabilités totales z P(Z z) z P {X x, Y y} z (x,y):,y Y (Ω),x+yz (x,y):,y Y(Ω),x+yz (x,y):,y Y (Ω),x+yz (x,y):,y Y (Ω),x+yz (x,y):,y Y (Ω),x+yz P(X x, Y y) z P(X x, Y y) x + y P(X x, Y y) ( x + y )P(X x, Y y). 49

On découpe la somme en deux morceaux: z P(Z z) egardons le premier morceau: (x,y):,y Y (Ω),x+yz + (x,y):,y Y (Ω),x+yz (x,y):,y Y (Ω),x+yz x x P(X x), x P(X x, Y z x) x P(X x, Z z) P(X x, Z z) x P(X x, Y y) x P(X x, Y y) y P(X x, Y y). par la formule des probabilités totales (on utilise le système complet ({Z z}) ). Pour le second morceau, on obtient de même (x,y):,y Y (Ω),x+yz y P(X x, Y y) y Y (Ω) y P(Y y). Comme X et Y admettent une espérance, on en déduit que Z aussi. Pour la valeur de l espérance, on reprend exactement les mêmes calculs sans les valeurs absolues. 2. C est une simple conséquence de la définition de l espérance. On va aussi donner les formules pour calculer l espérance d une fonction d une variable aléatoire: Théorème 6.5 (Théorème de transfert) Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω, et soit ϕ une application de dans. Alors ϕ(x) : Ω est une variable aléatoire réelle. 1. Si X est discrète, alors ϕ(x) est intégrable si et seulement si x Ω(X) ϕ(x) P(X x) < +. Dans ce cas, E(ϕ(X)) x Ω(X) ϕ(x)p(x x) x Ω(X) ϕ(x)p X (x). 2. Si X est a pour densité f, alors ϕ(x) est intégrable si et seulement si ϕ(x) f(x)dx < +. Dans ce cas, E(ϕ(X)) ϕ(x)f(x)dx. Démonstration: Faisons la preuve dans le cas discret. Soit X une variable aléatoire discrète, ϕ une application de dans. Notons Z ϕ(x). Alors ϕ : X(Ω) Z(Ω) est une surjection, donc Z est 50

encore une variable al ;eatoire discrète. De plus z P(Z z) z P(ϕ(X) z) z P z x ϕ 1 ({z}) x ϕ 1 ({z}) x ϕ 1 ({z}) ϕ(x) P(X x). {X x} P(X x) ϕ(x) P(X x) Pour la dernière égalité, on utilise la fait que comme ϕ : X(Ω) Z(Ω) est surjective, alors les (ϕ 1 (}z})) forment une partition de X(Ω). On en déduit la condition d intégrabilité de Z, et le même calcul sans les valeurs absolues donne la formule pour l espérance. Exemple: Pour ϕ : x x 2 : 1. Si X est discrète, alors X 2 est intégrable si et seulement si x Ω(X) x2 P(X x) < +. Dans ce cas, E(X 2 ) x Ω(X) x 2 P(X x). 2. Si X est a pour densité f, alors X 2 est intégrable si et seulement si x2 f(x)dx < +. Dans ce cas, E(X 2 ) x 2 f(x)dx. Attention! emarquer dans ces deux formules que c est sur le x que porte le carré et pas sur la probabilité ou sur la densité. Exercice: Vérifier que E(1 A ) P(A). Exercice: Soit X une variable aléatoire de loi uniforme sur {0,...,n}. Calculer E(X 2 ). Exercice: Soit X une variable aléatoire de loi uniforme sur [a, b]. Calculer E(X 2 ). 6.1.4 Inégalité de Markov Proposition 6.6 Soit X une variable aléatoire réelle telle que E( X ) < +. Alors Démonstration: A > 0, P( X A) E( X ) A. E( X ) E( X (1 X A + 1 X >A )) E( X 1 X A ) + E( X 1 X >A ) E(A.1 X A ) AE(1 X A ) AP( X A). 51

Exercice: Soit X une variable aléatoire réelle telle que E X 0. Montrer que P(X 0) 1. Démonstration: Soit n N. Par l inégalité de Markov, P( X 1/n) ne X 0. emarquons alors que ]0, + [ n N [1/n, + [, et donc, par limite monotone, ( ) P(X 0) P( X > 0) P X (]0, + [) P X [1/n, + [ n N lim P X ([1/n, + [) lim P( X 1/n) 0. n + n + C est assez naturel: une variable aléatoire positive de moyenne 0 ne peut qu être égale à 0. 6.2 Variance et écart-type 6.2.1 Définition et propriétés Lemme 6.7 Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω telle que E(X 2 ) < +. Alors X est intégrable. Démonstration: On va montrer que E X < +. On va découper suivant que X 1 ou X > 1, et utiliser le fait que l espérance est positive: E X E( X (1 X 1 + 1 X >1 )) E( X 1 X 1 ) + E( X 1 X >1 ) E(1.1 X 1 ) + E( X 2 1 X >1 ) P( X 1) + E(X 2 ) < +. Définition 6.8 Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω. On dit que X admet un moment d ordre 2 si et seulement si E(X 2 ) < +. Dans ce cas, on définit la variance varx et l écart-type σ X par: varx E((X EX) 2 ) et σ X varx. emarque: La variance est donc une moyenne de l écart entre X et sa moyenne au carré. Elle caractérise la dispersion de X par rapport à sa moyenne. Pour des raisons d homogénéité, on lui préfère souvant dans les applications pratiques l écart-type. Noter aussi que le lemme précédent assure que si E(X 2 ) < +, la variance est bien définie. Proposition 6.9 1. Pour le calcul, on utilise souvent: varx E(X 2 ) (EX) 2. 2. varx 0. 3. varx 0 X est constante (presque-sûrement). 4. var(ax + b) a 2 varx Démonstration: 1. Posons m EX. varx E((X EX) 2 ) E((X m) 2 ) E(X 2 2mX + m 2 ) E(X 2 ) 2mE(X) + m 2 E(X 2 ) m 2. 2. Ceci découle de la positivité de l espérance. 3. Notons m EX. L égalité varx E((X m) 2 ) 0 peut être vu comme: l espérance de la variable aléatoire positive (X m) 2 est nulle, donc par le résultat de l exercice du paragraphe précédent, P((X m) 2 0) 1 P(X m 0) 1 P(X m) 1. 52

Donc (presque-sûrement) X est égale à sa moyenne. 4. Exercice: Laissée en exercice. Attention! En général var(x + Y ) varx + vary. egarder le cas X Y. Exercice: 1. Soit X une variable aléatoire de loi uniforme sur [0, 1]. Calculer varx. 2. On pose Y ax + b. Déterminer la loi de Y (on pourra utiliser sa fonction de répartition) et calculer EY et vary. 3. Soit Z une variable aléatoire de loi uniforme sur [c, d]. A l aide des questions précédentes, calculer EZ et varz. Exercice: Soit X une variable aléatoire gaussienne de paramètre m et σ 2. Calculer EX et varx. 6.2.2 Inégalité de Tchebitcheff Proposition 6.10 Soit X une variable aléatoire réelle telle que E(X 2 ) < +. Alors ε > 0, P( X EX ε) varx ε 2. Démonstration: Notons que P( X EX ε) P((X EX) 2 ε 2 ). On applique alors l inégalité de Markov à la variable aléatoire positive (X EX) 2 : P((X EX) 2 ε 2 ) E((X EX)2 ) ε 2 varx ε 2. Exercice: Montrer que si varx 0 alors X est presque sûrement constante. 6.3 Calculs pour les lois usuelles Loi de Bernoulli de paramètre p X(Ω) {0, 1}, P(X 1) p et P(X 0) 1 p. EX p.1 + (1 p).0 p. E(X 2 ) p.1 2 + (1 p).0 2 p. varx E(X 2 ) (EX) 2 p p 2 p(1 p). Loi uniforme sur {0,..., n} X(Ω) {0,...,n}, k {0,...,n}, P(X k) 1/(n + 1). appel: n k n(n + 1) 2 et n k 2 n(n + 1)(2n + 1). 6 EX E(X 2 ) n n k n + 1 n 2. k 2 n + 1 n(2n + 1). 6 varx E(X 2 ) (EX) 2 n(n + 2). 12 53

Loi binômiale de paramètres (n, p) X(Ω) {0,...,n}, k {0,...,n}, P(X k) ( k n) p k (1 p) n k. ( ) ( ) n n 1 appel: n 1, k {1,..., n}, k n ( ) k k ( 1 ) n n 2 n 2, k {2,..., n}, k(k 1) n(n 1). k k 2 EX n ( ) n n ( n k p k (1 p) n k k k k k1 n ( ) n 1 n n p k (1 p) (n 1) (k 1) np k 1 k1 ) p k (1 p) n k pn(p + (1 p) n 1 np. n ( ) n n ( n E(X(X 1)) k(k 1) p k (1 p) n k k(k 1) k k k2 n ( ) n 2 n n(n 1) p k (1 p) (n 2) (k 2) n(n 1)p 2 k 2 varx k2 n(n 1)p 2 (p + (1 p) n 1 n(n 1)p 2. k1 ( ) n 1 p k 1 (1 p) (n 1) (k 1) k 1 ) p k (1 p) n k k2 ( ) n 2 p k 2 (1 p) (n 2) (k 2) k 2 E(X 2 ) (EX) 2 E(X(X 1)) + EX (EX) 2 n(n 1)p 2 + np n 2 p 2 np(1 p). Loi de Poisson de paramètre λ X(Ω) N et k N, P(X k) exp( λ) λk k!. Intégrabilité? EX E(X(X 1)) + k exp( λ) λk + k! k exp( λ) λk k! λexp( λ) + + k1 k1 λ k 1 λexp( λ)exp(λ) λ. (k 1)! k(k 1)exp( λ) λk + k! k(k 1)exp( λ) λk k! λ 2 exp( λ) Loi géométrique de paramètre p + k2 k2 λ k 2 (k 2)! λ2 exp( λ)exp(λ) λ 2. varx E(X 2 ) (EX) 2 E(X(X 1)) + EX (EX) 2 λ 2 + λ λ 2 λ. X(Ω) N et k N, P(X k) p(1 p) k 1. Intégrabilité? Proposition 6.11 Soit X une variable aléatoire à valeurs dans N. Alors De plus, dans ce cas, EX X est intégrable si et seulement si la série de terme général (P(X > n)) n N converge. + kp(x k) + n0 P(X > n). 54

Soit n N, P(X > n) + kn+1 P(X k) + kn+1 p(1 p) k 1 p(1 p) n 1 1 (1 p) (1 p)n. EX + n0 P(X > n) + n0 (1 p) n 1 1 (1 p) 1 p. Pour la variance, on verra plus tard. Loi uniforme sur [a, b] Loi exponentielle de paramètre λ Lois gaussiennes 55