5 ème COURS Chimie Chapitre 4 MESURER LES VOLUMES ET LES MASSES CORRECTION DES EXERCICES. Téléchargé sur http://gwenaelm.free.



Documents pareils
Activités de mesures sur la masse à l aide d unités de mesure conventionnelles. L unité de mesure la plus appropriée

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES

CORRECTION EVALUATION FORMATIVE TEST DE NIVEAU Date : PROMOTION :

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

Livret de formules. Calcul Professionnel Boulangère-Pâtissière-Confiseuse AFP Boulanger-Pâtissier-Confiseur AFP

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

CODEX ŒNOLOGIQUE INTERNATIONAL. SUCRE DE RAISIN (MOUTS DE RAISIN CONCENTRES RECTIFIES) (Oeno 47/2000, Oeno 419A-2011, Oeno 419B-2012)

Matériel de laboratoire

ÉVALUATION EN FIN DE CM1. Année scolaire LIVRET DE L'ÉLÈVE MATHÉMATIQUES

Mesure du volume d'un gaz, à pression atmosphérique, en fonction de la température. Détermination expérimentale du zéro absolu.

FICHE 1 Fiche à destination des enseignants

259 VOLUMETRIE ET TITRATION DOSAGE DU NaOH DANS LE DESTOP

Mesures et incertitudes

Comment créer votre propre lampes LED

TP n 1: Initiation au laboratoire

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

PHYSIQUE-CHIMIE DANS LA CUISINE Chapitre 3 : Chimie et lavage

1 sur 5 26/12/ :02

Masse volumique et densité relative à 20 C

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

SECTEUR 4 - Métiers de la santé et de l hygiène

Fine dosing Opti-feeder FD- SPA

Synthèse et propriétés des savons.

VOITURE A REACTION. Kart à réaction réalisé par un bricoleur «fou» (Bruce Simpson)

modélisation solide et dessin technique

Ménage au naturel. Les recettes!

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution

Sommaire de la séquence 12

Chapitre 7 Les solutions colorées

2 ) Appareillage :L'appareil utilisé est un banc d'essai portatif CEV dont la photo et le schéma de principe indiqués ci-dessous ( figures 1 et 2 )

Le choix professionnel pour les applications analytiques!

édition des nouveautés

Rincez à l'eau froide. Ensuite, lavez immédiatement avec une lessive.

La fonte des glaces fait-elle monter le niveau de la mer?

Eliminateur d'électricité statique interne

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

TPG 12 - Spectrophotométrie

Mars 2009 Guide Mercedes-Benz du témoin de remise à zéro du service

RÈGLES D'INTÉRÊT. Capital. - Intérêt. -Taux. - Temps.

THERMODYNAMIQUE: LIQUEFACTION D UN GAZ

Vous devez tout d abord réaliser l esquisse (le dessin de la pièce en 2 dimensions) avant de mettre cette pièce en volume.

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

TP 3 diffusion à travers une membrane

UN TOURNOI A GAGNER ENSEMBLE

GUIDE D INSTRUCTION. Montage Entretien

Diviser un nombre décimal par 10 ; 100 ; 1 000

SUITES DONNÉES AUX DEMANDES DE DÉROGATIONS AUX NORMES ET MÉTHODES D ESSAIS DANS LE CADRE DE L AGRÉMENT LABOROUTE.

Bleu comme un Schtroumpf Démarche d investigation

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable

Applicable à partir de l année d assurance 2014 Assurance récolte Apiculture Section 13,2 - Admissibilité

MALLETTE DU SERRURIER MADELIN

Mesures calorimétriques

SANTOS espresso n 75. N 75 (Modèle Noir)

I GENERALITES SUR LES MESURES

MANUEL D'UTILISATION

Introduction : Cadkey

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

EVALUATIONS FIN CM1. Mathématiques. Livret élève

L eau liquide a des propriétés

Chapitre 10 : Mécanique des fluides

Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes

Comment utiliser les graines de soja à la cuisine

Produits ménagers bio

Communauté française de Belgique ENSEIGNEMENT À DISTANCE. Cours 219 Série 9 PHYSIQUE C2D. Synthèse

COMPOSANTS DE LA MACHINE

Instructions d Installation & Maintenance KAPTIV PURGEUR DE CONDENSAT SANS PERTE D AIR 07/09

eedd LA PLANETE N EST PAS UNE POUBELLE 1/7

LE SPECTRE D ABSORPTION DES PIGMENTS CHLOROPHYLLIENS

Définition : On appelle : rapport de deux nombres, "a" et "b" le quotient exact (résultat de la division) de ces deux nombres :

GUIDE DE L ENSEIGNANT

LYMAN MANUEL D'UTILISATION. Gen5 Système de dosage automatique de poudre.

Indications pour une progression au CM1 et au CM2

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

Priorités de calcul :

C2 - DOSAGE ACIDE FAIBLE - BASE FORTE

Le poids et la taille des fichiers

EXAMEN : CAP ADAL SESSION 2011 N du sujet : SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

A B C Eau Eau savonneuse Eau + détergent

MAQUETTE DE MAISON EN BOIS ET EN BRIQUES

Kenwood Limited, New Lane, Havant, Hampshire PO9 2NH, UK /2

TRAVAUX PRATIQUESDE BIOCHIMIE L1

LE CONSEIL GÉNÉRAL DU BAS-RHIN AU DE VOS VIES LIVRET DE RECETTES POUR LES ENFANTS DE 18 MOIS À 4 ANS BON POUR MON ENFANT, BON POUR MON BUDGET

Date : Note /20 : EVALUATION Nom : Prénom : Classe : Traitement sur mots

Etudier le diagramme température-pression, en particulier le point triple de l azote.

ENT Espace de stockage

Moisture Analyzers. Dessicateur.

Sommaire Table des matières

Typ REA 120 Lit REA 200 Lit REA 300 Lit Capacité 120 l 200 l 300 l Dimensions Cuve (HxBxT)

CHALLENGE FORMULA CLASSIC

TP 7 : oscillateur de torsion

Manomètre pour pression différentielle avec contacts électriques Exécution soudée Types DPGS43.1x0, version acier inox

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer ( ) et Johann Heinrich Lambert ( )

Le Régime Alimentaire. LR Health & Beauty Systems

Chapitre 7: Dynamique des fluides

Le test de dépistage qui a été pratiqué à la

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Barry Callebaut et Bevanar. Martin Diez

LA QUALITE DES CROQUANTES OU NOUGATINES:

Epreuve écrite d admissibilité du Mercredi 15 Janvier 2014 DOSSIER REPONSE

Guide pratique : l entretien d un canapé cuir

Transcription:

Téléchargé sur http://gwenaelm.free.fr/2008-9 5 ème COURS Chimie Chapitre 4 MESURER LES VOLUMES ET LES MASSES CORRECTION DES EXERCICES

Correction : Exercice 2 p 43 1 L = 100 cl 33 cl = 0,33 dm 3 1,31 dm 3 = 1 310 000 mm 3 0,29 ml = 0,29 cm 3 12 ml = 0,12 dl 1,5 L = 0,0015 m 3 321 mm 3 = 0,000 000 321 m 3 7,22 dal = 72,2 dm 3 Exercice 3 p 43 a)la bonne position de l'œil pour avoir une mesure précise est la troisième. Il faut en effet que l'œil regarde horizontalement le bas du ménisque. b)sur le premier schéma, on compte 10 divisions pour représenter le volume entre 10 et 20 ml, soit 10 divisions pour 10 ml. La valeur d'une division est donc de 10/10 = 1 ml. Sur le deuxième schéma, on compte 5 divisions pour représenter le volume entre 10 et 11 ml, soit 5 divisions pour 1 ml. La valeur d'une division est donc de 1/5 = 0,2 ml. Sur le troisième schéma, on compte 5 divisions pour représenter le volume entre 100 et 200 ml, soit 5 divisions pour 100 ml. La valeur d'une division est donc de 100/5 = 20 ml. Exercice 4 p 43 Sur le premier schéma, on compte 10 divisions pour représenter le volume entre 60 et 80 ml, soit 10 divisions pour 20 ml. La valeur d'une division est donc de 20/10 = 2 ml. Le bas du ménisque arrive à la 6 ème division au dessus de 60 ml, le volume est donc : 60 6 2 = 72mL Sur le deuxième schéma, on compte 2 divisions pour représenter le volume entre 50 et 100 ml, soit 2 divisions pour 50 ml. La valeur d'une division est donc de 50/2 = 25 ml. Le bas du ménisque arrive à la 1 ère division au dessus de 50 ml, le volume est donc : 50 1 25 = 75 ml Exercice 5 p 43 a) C'est parce que le solide occupé de l'espace (on dit qu'il a un volume), que le volume du contenu de l'éprouvette augmente. Sur la première photo, on mesure l'espace occupé par l'eau (le volume de l'eau) ; sur la deuxième photo, on mesure l'espace occupé par l'eau et le tournevis (le volume de l'eau + le volume du tournevis). Le volume du solide immergé dans l'eau est donc égale à la différence (on effectue la soustraction) de V 2 et V 1. V solide = V 2 V 1 = 216 cm 3 180cm 3 = 36 cm 3 b) Non, on ne peut pas utiliser cette méthode pour mesurer le volume d'un bouchon en liège car celui-ci est moins dense que l'eau et flottera. N'étant pas complètement immergé, le volume lu ne correspondra pas à la somme du volume de l'eau et du volume du bouchon. Exercice 11 p 44 Voir schéma ci-contre. Exercice 12 p 44 a) Dans le bécher, le volume de liquide recueilli est celui qui a été enlevé de la burette. Le ménisque arrivait au départ à la graduation 0 ml et une fois versées les 64 gouttes, il arrive à la graduation 5 ml. 5 0 = 5 ml ont donc été recueilli dans le bécher. b) Puisque ces 5 ml correspondent au volume de 64 gouttes de liquide, le volume d'une goutte est 64 fois plus petit. Il suffit donc pour le déterminer de diviser 5 par 64. On obtient 5 64 = 0,078 ml = 78 mm3. Exercice 19 p 45 Utilisons la formule permettant de calculer le volume d'un parallélépipède rectangle en fonction de ses dimensions et appliquons-la à la briquette : V = L l h = 11,9cm 4,8cm 3,6cm = 205cm 3 = 0,205 dm 3 = 0,205L ce qui est proche des 20 cl annoncés. Utilisons la formule permettant de calculer le volume d'un cylindres en fonction de ses dimensions et appliquons-la à la canette : V = r 2 h = 3,14159cm 3,25 2 cm 10,5cm = 348 cm 3 = 0,348dm 3 = 0,348 L ce qui est proche des 33 cl annoncés. Exercice 17 p 45 a) Cette méthode est intéressante mais n'est pas très précise. Selon cet élève, puisque 50 billes occupent 20 ml, une bille aurait comme volume 50 fois moins soit 20/50 = 0,4 ml. b) Lorsque l'autre élève verse 30 ml d'eau dans l'éprouvette contenant les billes, le volume indiqué par les graduations de l'éprouvette est de 44 ml. Le volume des 50 billes n'est donc que de 44 30 = 14 ml et le volume d'une bille de 100 80 60 40 20

14/50 = 0,28 ml. c) Le résultat le plus juste est le deuxième car dans la première expérience, on considère que les billes remplissent complètement l'espace disponible dans l'éprouvette ce qui n'est pas le cas puisqu'elles sont sphériques et qu'il reste donc de l'espace entre elles. Exercice 6 p 43 350 g = 0,35 kg 800 dg = 0,8 hg 3,2 cg = 0,032 g 2,3 t = 2300 kg 2,7 g = 2700 mg 86 dag = 8600 dg Exercice 16 p 45 a) Avec ce type de balance, on mesure la masse d'une personne. C'est un pèse-personne. b) Oui, une personnne de 75 kg peut utiliser cette balance pour se peser puisqu'elle a une portée maximale de 150kg (elle supportera jusqu'à 150 kg). c) Puisque la balance a une précision de 100 g, la personne qui mesurera sa masse la connaîtra à 100 g près. d) 74,9 m 75 Exercice 8 p 44 a) On sait que la masse d'un litre d'eau est de 1 kg ; 1,5 L d'eau aura donc une masse de 1,5 kg. Comme la bouteille vide a une masse de 37 g = 0,037 kg, la bouteille contenant 1,5 L d'eau aura pour masse : 1,5 kg + 0,037 kg = 1,537 kg. b) Quand elle est pleine, la petite bouteille contient 50 cl = 0,5 L d'eau dont la masse est de 0,5 kg = 500 g. Puisque la masse de la bouteille pleine est de 521 g, la masse de la bouteille vide est 521 500 = 21 g. Exercice 9 p 44 J'ai utilisé un paquet de farine de 1 kg. J'ai mesuré à l'aide d'un verre doseur un volume de 400 ml et je l'ai versé dans un saladier de 2 dm 3. J'ai ensuite ajouté ½ L d'eau soit 500 g. Exercice 14 p 45 a) Les unités utilisées dans cette recette sont le gramme, le litre, la pincée et la cuillerée à soupe. b) Ces unités ne sont pas les unités S.I.. Le gramme est un sous-multiple du kg (unité S.I. de masse), le litre est une unité de capacité équivalente au dm 3 mais c'est le m 3 qui est l'unité S.I. de volume. Elles sont utilisées au même titre que la pincée et la cuillerée à soupe car ce sont des unités pratiques dans la vie de tous les jours. On se voit mal en effet manipuler le m 3 régulièrement... c) Pour peser la farine sans la verser directement sur le plateau de la balance, il faut poser auparavant sur ce plateau un récipient et utiliser la fonction Tare de la balance (voir livre p 41). Elle remet l'affichage de la balance à zéro et permet de ne peser que la masse de la farine. d) Si on ne dispose que d'une balance pour déterminer la quantité d'eau, il faut se souvenir que la masse de 1 litre d'eau est de 1 kg. Ainsi, il nous faut dans cette recette introduire ¼ de litre d'eau soit 0,250 L de masse 0,250 kg. Exercice 15 p 45 a) Puisqu'on a utilisé la fonction Tare avant de verser l'huile dans la fiole jaugée, l'affichage sur le cadran de la balance correspond à la masse du seul contenu, c'est-à-dire que la masse de 100 ml d'huile est de 90 g. b) Ces unités ne sont pas les unités S.I.. Le gramme est un sous-multiple du kg (unité S.I. de masse), le litre est une unité de capacité équivalente au dm 3 mais c'est le m 3 qui est l'unité S.I. de volume. Elles sont utilisées au même titre que la pincée et la cuillerée à soupe car ce sont des unités pratiques dans la vie de tous les jours. On se voit mal en effet manipuler le m 3 régulièrement... c) 1 litre d'huile étant un volume 10 fois supérieur à 100 ml, la masse d'un litre d'huile sera donc m 1L d' huile = 10 90 = 900 g. d) Puisque la masse de 1 L d'eau est de 1 kg, m 1L d' huile m 1 L d' eau. C'est ce qui explique que l'huile surnage dans l'eau.

Correction : Exercice 2 p 43 1 L = 100 cl 33 cl = 0,33 dm 3 1,31 dm 3 = 1 310 000 mm 3 0,29 ml = 0,29 cm 3 12 ml = 0,12 dl 1,5 L = 0,0015 m 3 321 mm 3 = 0,000 000 321 m 3 7,22 dal = 72,2 dm 3 Exercice 3 p 43 a)la bonne position de l'œil pour avoir une mesure précise est la troisième. Il faut en effet que l'œil regarde horizontalement le bas du ménisque. b)sur le premier schéma, on compte 10 divisions pour représenter le volume entre 10 et 20 ml, soit 10 divisions pour 10 ml. La valeur d'une division est donc de 10/10 = 1 ml. Sur le deuxième schéma, on compte 5 divisions pour représenter le volume entre 10 et 11 ml, soit 5 divisions pour 1 ml. La valeur d'une division est donc de 1/5 = 0,2 ml. Sur le troisième schéma, on compte 5 divisions pour représenter le volume entre 100 et 200 ml, soit 5 divisions pour 100 ml. La valeur d'une division est donc de 100/5 = 20 ml. Exercice 4 p 43 Sur le premier schéma, on compte 10 divisions pour représenter le volume entre 60 et 80 ml, soit 10 divisions pour 20 ml. La valeur d'une division est donc de 20/10 = 2 ml. Le bas du ménisque arrive à la 6 ème division au dessus de 60 ml, le volume est donc : 60 6 2 = 72 ml Sur le deuxième schéma, on compte 2 divisions pour représenter le volume entre 50 et 100 ml, soit 2 divisions pour 50 ml. La valeur d'une division est donc de 50/2 = 25 ml. Le bas du ménisque arrive à la 1 ère division au dessus de 50 ml, le volume est donc : 50 1 25 = 75 ml Exercice 5 p 43

a) C'est parce que le solide occupé de l'espace (on dit qu'il a un volume), que le volume du contenu de l'éprouvette augmente. Sur la première photo, on mesure l'espace occupé par l'eau (le volume de l'eau) ; sur la deuxième photo, on mesure l'espace occupé par l'eau et le tournevis (le volume de l'eau + le volume du tournevis). Le volume du solide immergé dans l'eau est donc égale à la différence (on effectue la soustraction) de V2 et V1. V solide = V 2 V 1 = 216 cm 3 180 cm 3 = 36 cm 3 b) Non, on ne peut pas utiliser cette méthode pour mesurer le volume d'un bouchon en liège car celui-ci est moins dense que l'eau et flottera. N'étant pas complètement immergé, le volume lu ne correspondra 100 pas à la somme du volume de l'eau et du volume du bouchon. 80 Exercice 11 p 44 Voir schéma ci-contre. 60 40 Exercice 12 p 44 a) Dans le bécher, le volume de liquide recueilli est celui qui a été enlevé de la burette. Le ménisque arrivait au départ à la graduation 0 ml et une fois versées les 64 gouttes, il arrive à la graduation 5 ml. 5 0 = 5 ml ont donc été recueilli dans le bécher. b) Puisque ces 5 ml correspondent au volume de 64 gouttes de liquide, le volume d'une goutte est 64 fois plus petit. Il suffit donc pour le déterminer de diviser 5 par 64. On obtient 5 = 0,078 ml = 78 mm3 64 Exercice 19 p 45 Utilisons la formule permettant de calculer le volume d'un parallélépipède rectangle en fonction de ses dimensions et appliquons-la à la briquette : V = L l h=11,9 cm 4,8cm 3,6 cm=205cm 3 =0,205 dm 3 =0,205 L ce qui est proche des 20 cl annoncés. Utilisons la formule permettant de calculer le volume d'un cylindres en 20

fonction de ses dimensions et appliquons-la à la canette : V = r 2 h=3,14159 3,25 2 cm 2 10,5cm=348 cm 3 =0,348 dm 3 =0,348 L ce qui est proche des 33 cl annoncés. Exercice 17 p 45 a) Cette méthode est intéressante mais n'est pas très précise. Selon cet élève, puisque 50 billes occupent 20 ml, une bille aurait comme volume 50 fois moins soit 20/50 = 0,4 ml. b) Lorsque l'autre élève verse 30 ml d'eau dans l'éprouvette contenant les billes, le volume indiqué par les graduations de l'éprouvette est de 44 ml. Le volume des 50 billes n'est donc que de 44 30 = 14 ml et le volume d'une bille de 14/50 = 0,28 ml. c) Le résultat le plus juste est le deuxième car dans la première expérience, on considère que les billes remplissent complètement l'espace disponible dans l'éprouvette ce qui n'est pas le cas puisqu'elles sont sphériques et qu'il reste donc de l'espace entre elles. Exercice 6 p 43 350 g = 0,35 kg 800 dg = 0,8 hg 3,2 cg = 0,032 g 2,3 t = 2300 kg 2,7 g = 2700 mg 86 dag = 8600 dg Exercice 16 p 45 a) Avec ce type de balance, on mesure la masse d'une personne. C'est un pèse-personne. b) Oui, une personnne de 75 kg peut utiliser cette balance pour se peser puisqu'elle a une portée maximale de 150kg (elle supportera jusqu'à 150 kg). c) Puisque la balance a une précision de 100 g, la personne qui mesurera sa masse la connaîtra à 100 g près. d) 74,9 m 75 Exercice 8 p 44 a) On sait que la masse d'un litre d'eau est de 1 kg ; 1,5 L d'eau aura donc une masse de 1,5 kg. Comme la bouteille vide a une masse de 37 g = 0,037 kg, la bouteille contenant 1,5 L d'eau aura pour masse : 1,5 kg +

0,037 kg = 1,537 kg. b) Quand elle est pleine, la petite bouteille contient 50 cl = 0,5 L d'eau dont la masse est de 0,5 kg = 500 g. Puisque la masse de la bouteille pleine est de 521 g, la masse de la bouteille vide est 521 500 = 21 g. Exercice 9 p 44 J'ai utilisé un paquet de farine de 1 kg. J'ai mesuré à l'aide d'un verre doseur un volume de 400 ml et je l'ai versé dans un saladier de 2 dm 3. J'ai ensuite ajouté ½ L d'eau soit 500 g. Exercice 14 p 45 a) Les unités utilisées dans cette recette sont le gramme, le litre, la pincée et la cuillerée à soupe. b) Ces unités ne sont pas les unités S.I.. Le gramme est un sous-multiple du kg (unité S.I. de masse), le litre est une unité de capacité équivalente au dm 3 mais c'est le m 3 qui est l'unité S.I. de volume. Elles sont utilisées au même titre que la pincée et la cuillerée à soupe car ce sont des unités pratiques dans la vie de tous les jours. On se voit mal en effet manipuler le m 3 régulièrement... c) Pour peser la farine sans la verser directement sur le plateau de la balance, il faut poser auparavant sur ce plateau un récipient et utiliser la fonction Tare de la balance (voir livre p 41). Elle remet l'affichage de la balance à zéro et permet de ne peser que la masse de la farine. d) Si on ne dispose que d'une balance pour déterminer la quantité d'eau, il faut se souvenir que la masse de 1 litre d'eau est de 1 kg. Ainsi, il nous faut dans cette recette introduire ¼ de litre d'eau soit 0,250 L de masse 0,250 kg. Exercice 15 p 45 a) Puisqu'on a utilisé la fonction Tare avant de verser l'huile dans la fiole jaugée, l'affichage sur le cadran de la balance correspond à la masse du seul contenu, c'est-à-dire que la masse de 100 ml d'huile est de 90 g. b) Ces unités ne sont pas les unités S.I.. Le gramme est un sous-multiple du kg (unité S.I. de masse), le litre est une unité de capacité équivalente au dm 3 mais c'est le m 3 qui est l'unité S.I. de volume. Elles sont utilisées au même titre que la pincée et la cuillerée à soupe car ce sont des unités

pratiques dans la vie de tous les jours. On se voit mal en effet manipuler le m 3 régulièrement... c) 1 litre d'huile étant un volume 10 fois supérieur à 100 ml, la masse d'un litre d'huile sera donc m 1Ld 'huile = 10 90 = 900 g. d) Puisque la masse de 1 L d'eau est de 1 kg, m 1 Ld 'huile m 1 L d 'eau. C'est ce qui explique que l'huile surnage dans l'eau.