Système Hybride (Eolien, Solaire) pour l Alimentation Electrique d une Charge à usage Domestique



Documents pareils
ETUDE TECHNICO- ECONOMIQUE D UN SYSTEME HYBRIDE (EOLIEN PHOTOVOLTAÏQUE-DIESEL) DE PRODUCTION D ELECTRICITE SANS INTERRUPTION

Production d électricité sans interruption moyennant un système hybride (éolien photovoltaïque diesel)

Efficacité énergétique des logements à haute performance énergétique, HPE : Application au site de Béchar

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS

En recherche, simuler des expériences : Trop coûteuses Trop dangereuses Trop longues Impossibles

ETUDE DES PERFORMANCES D UN SYSTEME EOLIEN. APPLICATION POUR DES SITES ALGERIENS

Carte des Vents de l Algérie - Résultats Préliminaires -

Unités de mesure de l énergie Septembre 2009

Étude d un système solaire thermique : Effet de l orientation des panneaux solaires

Performances énergétiques de capteurs solaires hybrides PV-T pour la production d eau chaude sanitaire.

Monitoring continu et gestion optimale des performances énergétiques des bâtiments

Notions de base sur l énergie solaire photovoltaïque

Panneau solaire ALDEN

Écologique et autonome

L équilibre offre-demande d électricité en France pour l été 2015

D 4.5 : MONITORING AND EVALUATION REPORT FOR MOUNTEE PILOTS

Information Technique Derating en température du Sunny Boy et du Sunny Tripower

GSE AIR SYSTEM V3.0 L indépendance énergétique à portée de mains

1. INTRODUCTION. H. Tebibel *, B. Mahmah et W. Bendaïkha

Manuel d'utilisation de la maquette

Etude expérimentale d un cuiseur solaire de type boîte à trois réflecteurs plans et une surface d ouverture inclinée

Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes

GOL-MPPT- 24V-10A GOL-MPPT- 12V-15A

Optimisation de dimensionnement des installations photovoltaïques autonomes - Exemples d applications, éclairage et pompage au fil du soleil

V112-3,0 MW. Un monde, une éolienne. vestas.com

H E L I O S - S T E N H Y

Apports thermiques avec collecteurs solaires pour de l eau chaude sanitaire dans la Maison de retraite Korian Pontlieue

Le Soleil. Structure, données astronomiques, insolation.

Panneaux solaires. cette page ne traite pas la partie mécanique (portique, orientation,...) mais uniquement la partie électrique

1 Problème 1 : L avion solaire autonome (durée 1h)

Solutions logicielles de gestion énergétique coopérante smart building in smart grid : Exemple CANOPEA. Xavier Brunotte info@vesta-system.

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

L offre DualSun pour l eau chaude et le chauffage (SSC)

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance.

SOLAIRE BALLERUP LA VILLE CONTEXTE. (Danemark) Ballerup

Des systèmes de chauffage avec pompe à chaleur et accumulateur de chaleur pour les construction dans les zones de montagne.

Influence des données aérauliques sur le comportement d un bâtiment pourvu d une façade double-peau.

Système d énergie solaire et de gain énergétique

ONDULEUR SMART-GRID AUTO-CONSOMMATION NOUVELLE GÉNÉRATION

Synthèse des convertisseurs statiques DC/AC pour les systèmes photovoltaïques

MODÉLISATION NUMÉRIQUE DANS LE BÂTIMENT

solutions sun2live TM

Systèmes de pompage à énergie solaire

Energies. D ambiance REFERENCES : ACTIONS MENEES : CONTACT : DESCRIPTION TECHNIQUE DES ACTIONS ENGAGEES : GAINS OU BENEFICES DEGAGES : renouvelables

Classification des actions d efficacité énergétique

Datacentre : concilier faisabilité, performance et éco-responsabilité

L opération étudiée : le SDEF

Solutions logicielles de gestion énergétique coopérante smart building in smart grid

L électricité hors-réseau

Domosol : Système solaire combiné (SSC) de production d eau chaude et chauffage

Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air Edition mai 2003

Etude et réalisation d un système intelligent d alimentation en énergie électrique d une habitation en milieu urbain avec injection dans le réseau

Influence de la géométrie du conducteur sur la température dans un poste sous enveloppe métallique

DESCRIPTION DES DOCUMENTS TECHNIQUES REQUIS

40 ECO-CONSEILS 7 fiches pour une consommation annuelle d énergie plus légère.

RAPPORT COMPLET D'ETUDE DUALSYS

Énergies renouvelables efficaces économiques durables

THE GLOBAL PV EXPERTS. KRANNICH TRINITY

Electrification Rurale au Mali. Technologies et financement

Retours d expériences: le suivi de bureaux. Christophe Schmauch Pierrick Nussbaumer CETE de l Est

PROJET D ELECTRIFICATION PAR CENTRALE HYBRIDE SOLAIRE-DIESEL A DJENNE TERMES DE REFERENCE

ATTESTATION D ACCREDITATION ACCREDITATION CERTIFICATE. N rév. 2

be tween Un design épuré pour une colonne LED polyvalente et raffinée Caractéristiques - luminaire options

véhicule hybride (première

Le nouvel immeuble du groupe BEI : Climat interne et environnement

TPE : La voiture solaire. Présentation de Matthys Frédéric, Soraya Himour et Sandra Thorez.

J O U R N E E S G EOT H E R M I E EN R E G I O N C E N T R E

ALFÉA HYBRID DUO FIOUL BAS NOX

Commande et gestion décentralisées de l énergie d un parc éolien à base d aérogénérateurs asynchrones à double alimentation

SARM: Simulation of Absorption Refrigeration Machine

Économie d énergie dans les centrales frigorifiques : La haute pression flottante

Production électrique : la place de l énergie éolienne

ACTIV HOME. Confort et bien-être, naturellement, tout simplement, toute l année. LAMES ORIENTABLES ACTIV HOME /LAMES ORIENTABLES

Premier principe de la thermodynamique - conservation de l énergie

«L apport des réseaux électriques intelligents»

CHAUFFAGE. choisissez intelligemment votre confort POURQUOI PAS DES ÉCONOMIES D ÉNERGIE? Avec le soutien de la Région de Bruxelles-Capitale

Pompe solaire Lorentz immergée Unité de pompage à centrifuge

MATHÉMATIQUES FINANCIÈRES I

ACTIV HOME. Confort et bien-être, naturellement, tout simplement, toute l année. LAMES ORIENTABLES ACTIV HOME /LAMES ORIENTABLES

PRÉAMBULE CRÉONS ENSEMBLE. L entreprise du bâtiment au centre de l acte de construire

2.0 MegaWattBlock pour parcs solaires

Études et Réalisation Génie Électrique

Assises Européennes du Bâtiment Basse Consommations. Frédéric ric FRUSTA. Président Directeur Général. ENERGIVIE 25 Juin 2010

Emerson montre aux centres de données comment réduire ses coûts énergétiques

L efficience énergétique...

La gestion opérationnelle de la météosensibilité. La prévision météorologique et hydrologique au cœur de l Économie et de la Société

Société d ingénierie spécialisée dans la vente de projets clés en main

Variantes du cycle à compression de vapeur

possibilités et limites des logiciels existants

Programme-cadre et détail du programme des examens relatifs aux modules des cours de technologie, théorie professionnelle

Autoconsommation en photovoltaïque Principe et intérêt

NOTIONS FONDAMENTALES SUR LES ENERGIES

Le logiciel d aide à la conception des bâtiments bioclimatiques dès l esquisse

NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine

Exemple de réalisation dans le cas de projets pilotes Smart Grids. sociétaux» 13 juin, Laas-CNRS Toulouse Jean Wild

Estimation de potentiel éolien

Aide à l'application Chauffage et production d'eau chaude sanitaire Edition décembre 2007

-Identifier les éléments qui déterminent le coût d un objet technique.

boilers pompe à chaleur L eau chaude ne vous aura jamais paru aussi agréable

la comparaison des ampoules

Transcription:

Rev. Energ. Ren.: Zones Arides(22) 1-8 Système Hybride (Eolien, Solaire) pour l Alimentation Electrique d une Charge à usage Domestique D. Koussa, M. Alem et M. Belhamel Centre de développement des énergies renouvelables, BP.62, Bouzaréah, Alger Résumé L exploitation des potentiels énergétiques (solaire et éolien ) pour la production de l électricité s avèrent être rentable dans les régions isolées là où l extension du réseau électrique conventionnel serait une contrainte financière. A cet effet, ce système serait destiné à alimenter une charge à usage domestique et pouvoir satisfaire aux besoins avec une certaine garantie en matière d autonomie. Ainsi le travail proposé consiste en un dimensionnement d un système hybride (solaire et éolien) de production continue de l énergie électrique. Dans ce travail nous allons mettre en évidence que la gestion de ce système dépend essentiellement de la consommation demandée ce qui nous permettrait de prévoir des systèmes de stockage appropriés pour assurer une meilleure autonomie. Par ailleurs, la simulation en temps réels du fonctionnement des différentes parties du système nous permettra de définir le meilleur apport énergétique entre le générateur éolien et le générateur photovoltaïque. Abstract The exploitation of the energetic potential (solar and wind) for the production of electricity proves to be an adequate solution in isolated regions where the extension of the grid network would be a financial constraint. So the proposed work consists in the sizing of a hybrid system (solar and wind) with continuous production of electrical energy. This being based on meteorological and radiometric data measured on site, this survey allowed us to put into evidence that the management of this system depends essentially, on the one hand on the available renewable Energies and on the other hand on the needed consumption. This drove us to plan for some suitable storage systems to insure a better autonomy. Furthermore, the simulation in real time of the working of different parts of the system, allowed us to define the best energetic contribution between the wind generator and the photovoltaic generator. Mots-clés : Eolien - Photovoltaïque - Hybride - Electricité - Charge 1. INTRODUCTION Le problème d électrification des locaux dans les sites isolés de notre pays représente un lourd fardeau financier. Installer des lignes électriques sur des centaines de kilomètres ne pourra pas résoudre ce problème. Ceci est par le faite de la présence des contraintes dues aux intempéries dont le vent de sable, les gradients de température entre les différentes saisons et celle entre la nuit et le jour pour la saison hivernale. A cet effet, nous avons penser de contourner le problème par une autre solution à savoir l exploitation des potentiels énergétiques renouvelables. L exploitation des énergies solaire et éolienne pour la production de l électricité représente un intérêt non négligeable pour les pays sous développé dont l Algérie. Ce dans les régions isolées. Ainsi dans notre travail nous avons choisi une maison d une petite famille. Cette maison est implantée sur le site de Ghardaia. Pour son alimentation nous proposons d utiliser un systèmes hybride constitué d un champ de panneau photovoltaïque et d aérogénérateurs. Le dimensionnement de ce système dépend d une part des potentiels énergétiques disponibles sur le site et de la charge électrique de la maison. Ainsi nous avons calculé cette charge dont nous avons considéré qu elle dépend bien sur de la consommation électrique de chaque appareil, et de la variation saisonnière du nombre d heure de consommation. Par ailleurs, nous avons déterminer les performances des deux systèmes moyennant les modèles [1] et [2]. Un dimensionnement du système a été fait à savoir la détermination du nombre de panneaux photovoltaïque, du nombre d éoliennes et du nombre de batteries nécessaires pour chaque mois. 2. ASPECT THEORIQUE DE LA MODELISATION 2.1. Le générateur photovoltaïque Le modèle que nous avons utilisé pour la détermination de l énerg ie délivrée par un module photovoltaïque est celui de Singer et al [1]. Dans ce modèle, une méthodologie simple a été développée pour la détermination des caractéristiques d une cellule ou d un panneau photovoltaïque. Le courant et la tension de fonctionnement optimal sont données par les relations (1) et (2) : 1

2 D.Koussa et al. V 1 I I V 1 + ln sc R I oc 2.7 I s s sc = (1) -9 2.7 I = Isc 1-1 exp IRs Voc ( V + ) (2) P I m m 1 Isc I m = Voc 1 + ln RsIm (3) 2.7 Isc I I 1 Im Isc I m 2Pm 1 + ln 2.7 + (4) Isc Im I sc Voc m = sc V ( Q,T) oc st = I Q(1 + α T) (5) sc st (Q, T) = V (1 γ T)ln( 1+ β Q) (6) oc Dans ces relation V,Voc,Voc st et Voc(Q,T) sont respectivement la tension aux bornes de la cellule/du module ou champ photovoltaïque, la tension du circuit ouvert, la tension du circuit ouvert aux conditions standards de température T st et de l éclairement Q st et la tension du circuit ouvert aux conditions réelles de fonctionnement du système T,Q. I et Im sont respectivement le courant de fonctionnement et le courant maximal délivrée par la cellule /le module ou le champ photovoltaïque. Isc, Isc st et Isc(Q,T) sont respectivement les courants de court circuit délivrés par la cellule /le module ou le champ photovoltaïque aux conditions optimales, standards T st, Q st et normales T,Q.Pm et P st sont respectivement la puissances optimale et la puissance aux conditions standards délivrées par la cellule /le module ou le champ photovoltaïque. DT = T T st DQ = Q Q st Rs est la résistance série. Les valeurs standards de température et de l éclairement sont T st =25 C et Q st = 1W/m 2 ; α =.25 : Coefficient caractérisant la variation du courant / température (A/ C) ; β =.51 :Coefficient caractérisant la variation de l éclairement (1/ 1W) ; γ=.288 Coefficient caractérisant la variation de la tension (V/ C) et DT=T-T st, DQ=Q-Q st, Les caractéristiques de fonctionnement d un panneau photovoltaïque sont déterminées comme suit : Connaissant la température ambiante T du milieu d implantation ainsi que l éclairement global Q incident sur le champ photovoltaïque et connaissant ces caractéristiques dans les conditions standard ( Courant de court circuit Isc st,tension en court circuit Voc st et la puissance maximale Pm st, à partir des relations (5), (6) et (7) nous calculons respectivement le courant de court circuit Isc(Q,T), la tension en circuit ouvert Voc(Q,T) et la puissance maxima le Pm(Q,T). La détermination du courant au point de fonctionnement maximal est déterminé par la résolution numérique de l équation (4). Par ailleurs la résistance série Rs du panneau photovoltaïque est calculée par la relation (3). Ainsi connaissant ces paramètres, nous déterminons les caractéristiques principales (I,V). Nous donnons sur la figure (1) les caractéristiques électriques (I,V) et (P,V) relatives à un panneau photovoltaïque dont les caractéristiques électrique et géométriques sont données comme suit :

CRSTRA: Système Hybride (Eolien, Solaire) pour l Alimentation Electrique 3 Caractéristiques électriques Caractéristiques géométriques Im Courant optimum Tension optimale 2.9 A 17.5 V Surface totale du module Surface active 426 m2.378 m2 Pm st puissance maximale 51 W Facteur de remplissage.887 Voc st Tension de circuit ouvert Isc st courant de court circuit 21.8 V 3.2 A Nombre de cellules Dimension de la Cellule 36 1x1 mm2 Rendement de conversion.3 % Puissance en W et courant (A) 35 3 25 2 15 1 5 Tension -courant*5 VOCST=2.21V IQSCT=3.22A Puissance PQst=46.73 W temp= C Gi=94 W ss=7.2h 5 1 15 2 25 Fig. 1: Caractéristique du panneau photovoltaïque UDTS 2.2. Le générateur éolien Le modèle analytique utilisée dans notre travail pour déterminer la puissance délivrée par un aérogénérateur est celui développé par B.F.Bell et al [2]. Cette puissance dépend fondamentalement des caractéristiques mécaniques de l aérogénérateur, des limites de fonctionnement du système et du potentiel éolien disponible au niveau du site considéré. Elle est données par les relations suivantes : P(V) = CpmPr P(v) = CprVR VR P(v) = PR. V pour V Vci P(V) = pour V > Vco [ V 3( 1 A + B) + V 2 Vm( 2A 3B) + VVm( 3B A) V 3 m B] 523 pour VR V Tension en Volt Vco pour i V VR (7) Ainsi Connaissant les caractéristiques d un aéorogénérateur à savoir la puissance de sortie du rotor Ps, le coefficient de puissance maximale Cpm, le diamètre du rotor D, la vitesse de démarrage Vci, la vitesse de la mise en drapeau Vco, la vitesse synchronique du rotor 3 Cp(Vci) Vm Vm = 1 A 1 B (9) Cpm Vci Vci Cpr Cpm 2 3 Vm Vm = A 1 B (1) Vr Vr Cela permettra de calculer les coefficient A et B à partir du système d équation suivant le fonctionnement d une éolienne est défini par sa courbe de puissance. Cette courbe permet de quantifier la puissance que peut fournir un générateur éolien pour chaque vitesse du vent. Nous donnons dans la figure (2) la courbe de puissance (P,V) d un aéro-générateur du type Darius VAWT dont les caracteristiques Sont: Ps=3kW, Pr=353W,

4 D.Koussa et al. As=27.8m2,ςs=1.2(rd/s), D=6.5m, VCI=4m/s, VR=27m/s, VCO=35.m/s..Les rendements respectives du multiplicateur de vitesse et de la génératrice sont de 85% et 8%. 4 35 3 puissance sur l arbre eolien puissance de sortie du multiplisateur puissance sortie generateur Puissance (W) 25 2 15 1 5 5 1 15 2 25 3 35 4 45 Vitesse du Vent (m/s) Fig. 2 : Caractéristique de l aérogénérateur 3. CALCUL DES CHARGES 3.1. Le site d implantation Le site que nous avons choisi est le site de Ghardaia (Latitude =32.4N Longitude=3.8 E Altitude = 468.5 m. Nous avons choisi ce site pour des raisons de disponibilité des données météorologiques et d information concernant les charges thermiques de maisons types [5]. L évolution annuelle des caractéristiques climatiques du site est donnée sur la figure (3). Données météorologiques 4 35 3 25 2 15 1 5 irradiation Solaire/2 Température moyenne C Vitesse du vent m/s durée d insilation en h 2 4 6 8 1 12 Numéro du mois Fig. 3 : Caractéristiques climatiques du site de Ghardia 3.2. Répertoires des équipements La maison que nous avons considérée dans ce travail est une maison relative à une petite famille. elle est constituée par deux chambres, un salon, une cuisine, une salle de bain, un couloir. Pour l éclairage de l ensemble des chambres de cette maison nous nous proposons d utiliser des réglettes à fluorescence de W. Ceci pour leur faible consommation et leur grande luminosité. Comme électroménager, nous considérons que dans la maison n existent que quelques appareils de base à savoir, un téléviseur couleur, un ventilateur, un magnétophone et un réfrigérateur.[4].

CRSTRA: Système Hybride (Eolien, Solaire) pour l Alimentation Electrique 5 Tabl eau 1 : Répartition des équipements et leur consommation Charges électriques Chambre d adultes Chambre d enfants Salon Couloir Cuisine Salle de bain WC Téléviseur Magnétophone Ventilateur Réfrigérateur Puissance nominale(w) 22 22 385 6 75 36 3.3. Détermination de la consommation énergétique La valeur du nombre d heures de consommation est déterminée en fonction de l heure du lever et du coucher du soleil. Cette consommation varie d une saison a une autre. Ainsi, le nombre d heure d éclairage dépend des heures du lever et du coucher des membres de la famille. pour les électroménagers, dont le réfrigérateur, le nombre d heures de fonctionnement du compresseur dépend de la température du milieu environnante. Pour cette raison nous supposons que durant la période hivernale (Octobre-Avril) le compresseur ne fonctionne que 8h/24h et durant la période estivale celui-ci fonctionne 12h/24h. Quant au ventilateur, il n est solicité que durant la période chaude (Mai Septembre ), ainsi nous supposons qu il sera fonctionnel 2 fois le nombre d heure de consommation pendant la période estivale. Par ailleurs, nous supposons que le lever et le coucher respectif des occupants de cette maison s effectuent en moyenne à 7h du matin et a 23h le soir. Sur la figure (4) nous présentons les diagrammes relatifs au lever et au coucher du soleil en heure locale. Sur ce diagramme nous constatons que ces paramètres varie d une saison à l autre. Ainsi connaissant les heures de lever et du coucher de la famille, nous pouvons déterminer facilement le nombre d heures de consommation relatif à l éclairage d une maison quelconque sur le lieu considéré. Il est à noter que le passage respectif des heures du lever et du coucher théoriques en heures locales, se fait moyennant plusieurs corrections dont, Correction dû au décalage horaire par rapport au temps universel, Correction dû au décalage du faisceau de longitude du lieu ( 3 minutes par degrés) et Correction dû à la variation saisonnière de l équation du temps. Temps en (h) 24 22 2 18 16 14 NUIT JOUR Coucher de la famille HLC 12 1 8 6 Lever de la famille 4 NUIT 2 4 6 8 1 12 Numéro du mois Fig. 4 : Digramme de calcul du nombre d heure de consommation Concernant la climatisation un travail relatif au site de Ghardaia a été développé en ce sens par Hans Rosenlund [5]. La consommation moyenne par jours pour assurer la climatisation d une maison moderne HLL

6 D.Koussa et al. implantée sur le site de Ghardaia avec une isolation de la toiture et avec une régulation de température de 18-24 degrès revient à 18 Kwh/jours pour le mois de juillet, et de Wh/jours pour le mois de Janvier. Ceci peut être confirmé par la figure (3). Dans cette figure nous constatons que la température extérieure moyenne est comprise entre et 16 C pour la période hivernale, de 21 à 25.5 C pour les périodes d automne et de printemps. Ainsi avec une bonne isolation thermique de la maison, nous pourrons maintenir facilement la températures intérieure dans la plage exigées par la régulation. Par contre pour la période estivale, la température extérieure est comprise entre 25.5 et 33 C. Ainsi celle ci nous conduit à prévoir une climatisation ou au moins une ventilation de la maison pour assurer le confort des occupants de cette maison. Nous présentons respectivement sur les figures (5) et (6) l évolution de la consommation sans tenir compte de la climatisation et en tenant compte de cette dernière. Puissance en (Wc) 2 1.5 1.5 2.5 x 14 puissane delivrée par 2 eoliennes consommation sans climatisation puissance de 5 pan ph 2 4 6 8 1 12 Numéro du mois Fig. 5 : Distribution de la charge et des puissances produites (Sans climatisation) Puissance en (W) 6 5 4 3 7 x 14 puissane delivrée par 5 eoliennes consommation avec climatisation puissance de 2 pan ph 2 1 2 4 6 8 1 12 Numéro du mois Fig. 6: Distribution de la charge et des puissances produites (avec climatisation) 4. DIMENSIONNEMENT DU SYSTEME Pour le calcul des besoins d électricité nous avons utilisé la méthode développée par Michel Rodot et al [6]. Dans notre travail nous avons pris comme caractéristiques :

CRSTRA: Système Hybride (Eolien, Solaire) pour l Alimentation Electrique 7 Rendement des accumulateurs =85% ; Tension nominale des accumulateurs = 12V ; Décharge maximale des accumulateurs =5% ; Nombre de jours de stockage =3 jours ; Le rendement du générateur photovoltaïque =.3%. Ainsi nous donnons respectivement sur le tableau 2 les prévisions des dimensions des capacités de stockage et de la charge qui nous permettra de dimensionner notre système de stockage, du nombre de panneau photovoltaïque et du nombre d aérogénérateur nécessaires sans et avec climatisation. Tableau 2 : Dimensionnement du système avec et sans climatisation Numéro du mois 1 2 3 4 5 6 7 8 9 1 12 Nombre de batteries 3 29 29 29 4 4 41 4 4 29 29 29 Nombre de panneaux Sans climatisation 36 29 29 28 45 45 48 57 58 55 56 78 Nombre de batterie 3 29 29 29 125 125 125 124 124 29 29 29 Nombre de panneaux avec climatisation 36 29 29 29 138 147 174 2 55 56 78 5. DISCUSSION DES RESULTATS Les résultats obtenus sont présentés sur la figure (5) dont la moyenne par jours de la charge de notre maison, les puissances électriques moyennes par jour délivrées par 2 éoliennes et par 5 panneaux photovoltaïques pour la couverture de cette charge. Sur cette figure nous constatons que la charge présente une évolution quasi - stable avec présence de quelques faibles fluctuations. Ces dernières sont dues à notre sens à la variations saisonnières du nombre d heures de consommation. les deux piques présentés sur ce diagramme sont relatif à la période chaude là où nous avons prévu une ventilation. Dans cet intervalle le tronçon de la courbe de la charge présente une légère diminution suivie d une légère augmentation. Ceci est lié toujours à notre sens à la variation du nombre d heure de consommation qui suit quant à lui la même évolution. Concernant la couverture éolienne, nous constatons que la puissance délivré par l aérogénérateur est nulle pour la période Septembre Février. Et ceci par le faite que la vitesse du vent est inférieure à la vitesse de son démarrage (Voir figure (3)). Pour le reste elle permet de couvrir facilement les besoins. Par contre, la puissance délivrée par le champ photovoltaïque, permet de couvrir la totalité des besoins durant la période Janvier Juillet. Mais elle présente un faible déficit durant les mois restants. Ceci s explique à notre sens par le fait que durant la période Juillet Septembre la température ambiante est élevée ce qui influe considérablement sur le rendement du champ photovoltaïque [1]. Pour la période Octobre Décembre l irradiation globale incidente sur le champ photovoltaïque est relativement faible. Ceci a des conséquences directes sur la puissance délivrée par le champ photovoltaïque. En tenant compte de la climatisation à part que l ordre de grandeur des valeurs est plus important, les mêmes remarques restent valables pour le cas des évolutions de la moyenne mensuelle par jour de la charge et des énergies fournies par les dites installations. 6. CONCLUSION Ce travail nous a permis d examiner la possibilité d alimenter une maison moyenne par un générateur hybride (solaire, éolien). Ainsi à partir des résultats aux quels nous avons abouti nous pouvons conclure que le jumelage des deux systèmes n est pas nécessaire car les deux systèmes permettent de couvrir les besoins durant les mêmes période et présentent les mêmes déficits. Ce qui est lié directement aux potentiels énergétique solaire et éolien et aux caractéristiques climatiques du site de Ghardaia dont la température qui influe considérablement sur les performances du Système. Par ailleurs, vu le prix de revient des installations et le prix de maintenance et de la régulation que présente les aérogénérateurs nous proposons d utiliser simplement un champ de 6 panneaux photovoltaïques ( Panneaux UDTS ) avec 4 batteries de stockages (Batterie ENEPEL de tension optimale de 12V et de capacité d accumulation de 15 Ah). Ce qui permet au système d avoir une autonomie de 3 Jours. Si nous prévoyons la climatisation, notre installation nécessite au moins 22 panneaux photovoltaïques et au moins 125 batterie d une capacité de stockage de 15 Ah. Ce qui constitue un investissement fastidieux.

8 D.Koussa et al. ainsi pour assurer le confort des occupants de cette maison, il est préférable de maintenir la ventilation et de prévoir un système d humidification ce qui pourra résoudre ce problème sans avoir recours au climatiseur conventionnel. Enfin nous considérons que ce travail est un travail d ébauche et nous souhaiterons que dans l avenir nous pourrons apporter plus d affinité à ce travail. Ainsi nous souhaiterons de faire le bilan thermique de la maison ainsi que de déterminer avec plus de précision les besoins électriques d une telle maison. NOMENCLATURE Im : Courant optimum Q : éclairement global incident sur le champ photovoltaïque Pm* : puissance maximale Ps: puissance de sortie du rotor Voc* : tension de court circuit Cpm: coefficient de puissance maximale Isc* : courant de court circuit D: diamètre du rotor Rs : résistance série Vci : vitesse de démarrage T: température ambiante Vco : vitesse de la mise en drapeau Vr : vitesse de fonctionnement Ωs : vitesse synchronique du rotor β : coefficient caractérisant la variation de l éclairement α : coefficient caractérisant la variation du courant / à la température γ : coefficient caractérisant la variation de la tension / à la température REFERENCES [1] S. singer, B.Rozenshtein and S. Surazi, Characterization of PV. Array Output Using a Small Number of Measured Parameters., Solar Energy Vol.32, N 5, PP.63-67,1984. [2] Benjamin F. Bell and Jon G. Mccowan An Analytical Study of Hybrid Wind Passive Solar System, Solar Energy, Vol.32, N 3,PP. 45-415,1984 [3] S. Diaf, Expérimentation d un Système de Pompage Photovoltaïque sur un Site Saharien, CDER Rapport Interne Novembre 1994. [4] M. Rodot et A. Benallou, Electricité Solaire au Service du Développement Rural., Edition et diffusion Quadrichromie, Décembre 1987. [5] H. Rosenlund, Desert Buildings. A parametric Study on Passive Climatisation, Thesis 3, Department of Architecture and Development Studies, Lund University, Sweden, 1993. [6] M.Boumehrat et A.Gourdin, Méthodes Numériques Appliquées,.OPU, Alger N 81/OF/83/, 1993 [7] T. Hamek et M. Chikh Etude d un Système Hybride Eolien Photovoltaïque, Mémoire de fin d étude, Université de Blida, Juin 1991.