Al g ori thmi q u e N u méri q u e

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Al g ori thmi q u e N u méri q u e"

Transcription

1 Al g ori thmi q u e N u méri q u e Rapport de TP "Gauss et compagnie" Ce rapport présente deux algorithmes de produit matriciel (méthode "Classique" et de Strassen) ainsi que deux algorithmes de résolution de systèmes linéaires. Le pivot de Gauss pour triangulariser la matrice et la méthode de Gauss-Jordan qui diagonalise. La dernière partie porte sur le calcul du déterminant d'une matrice avec deux algorithmes : celui de Jordan-Bareiss qui concerne le cas particulier des matrices à cofficients entiers et celui du pivot de Gauss. 1. Le produit matriciel a. Méthode classique La méthode la plus simple pour calculer un produit matriciel est de trouver les coefficients un à un avec la formule ci-contre. implémentation python avec numpy Exemples >>> E1 = matrix( ( 2) ) >>> E2 = matrix( ( 3) ) >>> calc_num. prod_mat_classique( E1 E2) array( [ [ 6. ] ] ) >>> E1 = matrix( ( ) ). reshape( 3 3) >>> E2 = matrix( ( ) ). reshape( 3 3) >>> calc_num. prod_mat_classique( E1 E2) array( [ [ ] [ ] [ ] ] ) 1 /8

2 b. L'algorithme de Strassen L'algorithme de Strassen permet de calculer un produit matriciel en effectuant moins de multiplications car la méthode "classique" n'est pas optimale. Cet algorithme ne s'applique que sur les matrices dont la taille est une puissance de 2. Ce n'est pas vraiment une limitation car n'importe quelle matrice peut devenir de cette forme en completant les lignes et les colonnes par des L'algorithme de Strassen est récursif : à chaque étape la matrice est divisée en quatres sous-matrices l'amélioration consistant à effectuer des opérations plus simples entre celles-ci par rapport à la méthode dite classique. Le cas d'arrêt de la récusivité est celui où les matrices sont de taille 1x1. Comparatif entre les opérations des 2 méthodes la méthode de Strassen n'utilise que 7 multiplications mais bien plus d'additions. méthode de Strassen méthode classique récursive

3 3 /8

4 Comparaison des méthodes classique et Strassen La complexité du produit classique est grande en O(n3). L'algorithme de Strassen en économisant une multiplication coûteuse permet de réduire cette complexité à O(n28) au prix d'un plus grand nombre d'opérations d'additions. La différence ne doit apparaitre que sur de grandes matrices. Le temps d'exécution a été obtenu avec le module python timeit et la commande suivante dans une console : pour la méthode classique python - m timeit " import random; from numpy import *; import calc_num; a = random. random( ( 4 4) ) ; b = random. random( ( 4 4) ) ; calc_num. prod_mat_classique( a b) " pour la méthode de Strassen python - m timeit " import random; from numpy import *; import calc_num; a = random. random( ( 4 4) ) ; b = random. random( ( 4 4) ) ; calc_num. prod_mat_strassen( a b) " pour la fonction intégrée de numpy (dot) python - m timeit " import random; from numpy import *; a = random. random( ( 4 4) ) ; b = random. random( ( 4 4) ) ; dot( a b) " Remarque : Les tests ont été fait sur un ordinateur équipé d'un Athlon XP à 13 GHz. matrice 4x4 classique 758 usec matrice 8x8 327 msec matrice 32x msec matrice 16x16 matrice 64x64 matrice 512x512 Strassen 289 msec 19 msec 22 msec 131 msec 143 sec 613 sec 880 msec dot (numpy) 349 usec 362 usec 415 usec 622 usec 19 msec 238 sec Contrairement à ce qui avait été imaginé l'algorithme de Strassen ne prend pas le dessus sur la méthode classique. Plusieurs explications sont possibles : La récursivité rend l'algorithme de Strassen moins performant par rapport à celui de la méthode classique. L'implémentation dans un langage interprété comme python ralentit les 2 algorithmes et repousse le moment où l'algorithme de Strassen prend l'avantage. On remarque que la fonction interne de numpy est clairement plus performante elle est probablement compilée. Une version en C de l'algorithme de Strassen a été implementée pour tester avec des matrices plus grandes mais le résultat était le même. 4/8

5 2. Résolution de systèmes linéaires a. Méthode du pivot de Gauss La méthode du pivot de Gauss propose de résoudre un système d'équations en triangonalisant la matrice contenant les inconnues des équations. La dernière équation devient une simple égalité et on remonte chaque ligne de la matrice en trouvant le résultat d'une nouvelle inconnue. Exemple avec le système d'équation : La matrice correspondante est la suivante : >>> M matrix( [ [ ] [ ] [ ] ] ) >>> pivot_gauss( M) matrix( [ [ ] [ ] [ ] ] ) Une fois la matrice triangonalisée la solution est rapide à trouver : Remarque : L'algorithme du pivot de Gauss ci-dessus ne gère pas le cas où le pivot serait égal à 0 (ce qui conduirai à une divison par zéro). La solution est de chercher un pivot non nul en échangeant les lignes de la matrice. Cette solution a été implementée dans la méthode suivante et aurai pu l'être aussi ici. b. Méthode Gauss-Jordan La méthode Gauss-Jordan est une variante du pivot de Gauss plus pratique en algorithmie. La matrice des équations est diagonalisée au lieu d'être triangonalisée la solution du système d'équation est alors immédiate. Sur l'exemple précedent : >>> E5 matrix( [ [ ] [ ] [ ] ] ) >>> gauss_j ordan( E5) matrix( [ [ ] [ ] [ 1. 5] ] ) 5 /8

6 Le problème des très petites valeurs Lorsque l'équation contient une très petite valeur il faut éviter de l'utiliser comme pivot. Dans l'exemple ci-contre le coefficent de x est très petit par rapport aux autres valeurs. >>> E6 matrix( [ [ e e e+00] [ e e e+00] ] ) >>> gauss_j ordan( E6) matrix( [ [ ] [ ] ] ) >>> set_printoptions( precision=12 suppress=false) >>> gauss_j ordan( E6) matrix( [ [ ] [ ] ] ) Résolution "à la main" : Le calcul de x se fait avec des nombres très petits et très grands : >>> ( 2-10e12) /( 1-10e12) La différence entre 2 et 1 se trouve "poussée" très loin après la virgule et lorsque l'on multiplie... >>> ( 2-10e12) /( 1-10e12) *10e Il y a perte d'une précision significative >>> 10e12 - ( 2-10e12) /( 1-10e12) *10e ( la fraction a été " simplifiée" ) Le résultat final est moins précis. Afin de minimiser c'est perte de précision il faut éviter de prendre des pivots très petits. 6/8

7 Algorithme modifié Dans cet algorithme le plus grand pivot est selectionné par permutation. Sur l'exemple précédent la nouvelle méthode de selection du pivot change le résultat : >>> E6 matrix( [ [ e- 11 [ e+00 >>> gauss_j ordan( E6) matrix( [ [ 1. [ e e+00 La valeur de x a changé e+00] e+00] ] ) ] ] ] ) L'effet papillon De petites variations sur les coefficients du système d'équations peuvent provoquer de grandes différences sur la résolution. Dans l'exemple qui suit le vecteur résultat change très peu et pourtant la résolution est différente. >>> E7 matrix( [ [ 1 7. [ [ [ >>> gauss_j ordan( E7) matrix( [ [ 1. [ 1. [ [ ] 23. ] 33. ] 31. ] ] ) 09] 2. 55] 55] 1. 27] ] ) >>> E8 matrix( [ [ 1 7. [ [ [ >>> gauss_j ordan( E8) matrix( [ [ 1. [ 1. [ [ ] 22. 9] 33. 1] 3 9] ] ) 1. 84] 1. 62] 32] 1. 41] ] ) 7 /8

8 3. Calcul de déterminants a. En utilisant le pivot de Gauss Dans le cas d'une matrice triangulaire le calcul du determinant se simplifie en étant égal au produit des coefficients diagonaux. L'utilisation de l'algorithme du pivot de Gauss précédent permet d'aboutir facilement à un algorithme de calcul du déterminant. Exemple : >>> E10 matrix( [ [ ] [ ] [ ] ] ) >>> det_gauss( E10) Calcul du déterminant avec la fonction intégrée de numpy : >>> from numpy. linalg import * >>> det( E10) b. Algorithme de Jordan-Bareiss Dans le cas particulier des matrices à coefficients entiers l'algorithme de Jordan-Bareiss permet de calculer le déterminant sans passer par les flottants. Cet algorithme permet d'obtenir un résultat plus précis que la méthode précédente du pivot de Gauss. Exemple : >>> E11 matrix( [ [ 1 2 3] [ 4 5 6] [ 7 8 1] ] ) >>> from numpy. linalg import * >>> det( E11) Cet exemple ne montre pas l'amélioration car les erreurs d'arrondis de la méthode du pivot de Gauss ont joués dans le "bon sens". La seule amélioration est que le résultat est de type entier (le déterminant d'une matrice à coefficents entiers est entier). >>> det_bareiss( E11) 24 8/8

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

Équations et inéquations du 1 er degré

Équations et inéquations du 1 er degré Équations et inéquations du 1 er degré I. Équation 1/ Vocabulaire (rappels) Un équation se présente sous la forme d'une égalité constituée de nombres, de lettres et de symboles mathématiques. Par exemple

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Résolution de systèmes linéaires creux par des méthodes directes

Résolution de systèmes linéaires creux par des méthodes directes Résolution de systèmes linéaires creux par des méthodes directes J. Erhel Janvier 2014 1 Stockage des matrices creuses Dans de nombreuses simulations numériques, la discrétisation du problème aboutit à

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE LES ÉTAPES DE L ALGORITHME DU SIMPLEXE Sommaire 1. Introduction... 1 2. Variables d écart et d excédent... 2 3. Variables de base et variables hors base... 2 4. Solutions admissibles... 3 5. Résolution

Plus en détail

D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S

D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S b.delap@wanadoo.fr Utiliser un graphique pour résoudre des inéquations à une seule inconnue. 1 er cas : les valeurs sont toutes positives : Sur

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

CH.1 COMPLEXITÉ. 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples

CH.1 COMPLEXITÉ. 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples CH.1 COMPLEXITÉ 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples L2-2 ch1 1 1.1 Les ordres de grandeur Chaque problème peut être résolu de différentes manières par des algorithmes

Plus en détail

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES Sommaire 1 Méthodes de résolution... 3 1.1. Méthode de Substitution... 3 1.2. Méthode des combinaisons linéaires... 6 La rubrique d'aide qui suit s'attardera aux

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

Hadoop / Big Data. Benjamin Renaut <renaut.benjamin@tokidev.fr> MBDS 2014-2015

Hadoop / Big Data. Benjamin Renaut <renaut.benjamin@tokidev.fr> MBDS 2014-2015 Hadoop / Big Data Benjamin Renaut MBDS 2014-2015 TP 1 - Correction Méthodologie Map/Reduce - programmation Hadoop. Rappel 1 La première partie du TP consistait à mettre en

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Cours de mathématiques fondamentales 1 année, DUT GEA. Mourad Abouzaïd

Cours de mathématiques fondamentales 1 année, DUT GEA. Mourad Abouzaïd Cours de mathématiques fondamentales 1 année, DUT GEA Mourad Abouzaïd 9 décembre 2008 2 Table des matières Introduction 7 0 Rappels d algèbre élémentaire 9 0.1 Calcul algébrique................................

Plus en détail

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques

6.11 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Chapitre 6 Méthodes de Krylov 611 Bases de Lanczos bi-orthogonales pour des matrices non symétriques Dans le cas où la matrice A n est pas symétrique, comment peut-on retrouver une matrice de corrélation

Plus en détail

A. Déterminant d une matrice carrée

A. Déterminant d une matrice carrée IUT ORSAY Mesures Physiques Déterminants Initiation à la diagonalisation de matrice Cours du ème Semestre A Déterminant d une matrice carrée A-I Définitions élémentaires Si A est la matrice ( a ) on appelle

Plus en détail

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Exercice 1 : Exécutez un algorithme Considérez l algorithme suivant. Variables A, B, C en Entier; Début Lire A; Lire B; TantQue B 0 C A; TantQue

Plus en détail

M0SE 1003 TP d algèbre sur Scilab : Matrices, test "if-then-else" TP 2

M0SE 1003 TP d algèbre sur Scilab : Matrices, test if-then-else TP 2 M0SE 1003 TP d algèbre sur Scilab : Matrices, test "if-then-else" TP 2 Essayez les commandes, observez les réponses de Scilab, répondez aux questions, puis effectuer les exercices. Création de matrices

Plus en détail

Programmation dynamique

Programmation dynamique A. Principe général B. Application Triangle de Pascal Série mondiale Multiplication chaînée de matrices Les plus courts chemins Principe général Souvent, pour résoudre un problème de taille n, on s'aperçoit

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT Table analytique des matières 1. La structure d'espace vectoriel 1. Espaces

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Révisions : numpy, matplotlib. PC/PC* - Lycée Thiers

Révisions : numpy, matplotlib. PC/PC* - Lycée Thiers Révisions : numpy, matplotlib Modules scientifiques de python Tableaux bi-dimensionnels avec array() Le sous-module linalg La classe matrix() Polynomes avec la classe poly1d() Syntaxe de plot() Exemples

Plus en détail

Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés

Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés Hélène Toussaint, juillet 2014 Sommaire 1. Efficacité du std::sort... 1 1.1. Conditions expérimentales... 1 1.2. Tableaux de

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

I) Le temps des matrices. A- A propos des matrices. Quang-Thai NGO Ch 01. Difficulté ** Importance **** Objectifs

I) Le temps des matrices. A- A propos des matrices. Quang-Thai NGO Ch 01. Difficulté ** Importance **** Objectifs Ch01 : Matrice Les matrices ont été introduites récemment au programme des lycées. Il s agit d outils puissants au service de la résolution de problèmes spécifiques à nos classes, en particulier les problèmes

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Cours Info Résolution d un système d équations algébriques linéaires. D.Malka MPSI D.Malka Cours Info - 16 MPSI / 29

Cours Info Résolution d un système d équations algébriques linéaires. D.Malka MPSI D.Malka Cours Info - 16 MPSI / 29 Cours Info - 16 Résolution d un système d équations algébriques linéaires D.Malka MPSI 2015-2016 D.Malka Cours Info - 16 MPSI 2015-2016 1 / 29 Sommaire Sommaire 1 Rappel : système linéaire 2 Résolution

Plus en détail

108y= 1 où x et y sont des entiers

108y= 1 où x et y sont des entiers Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble

Plus en détail

Introduction Tableaux / Vecteurs Listes chaînées Un principe général Quelques algorithmes de tri À faire pour lundi prochain. Tableaux VS Listes

Introduction Tableaux / Vecteurs Listes chaînées Un principe général Quelques algorithmes de tri À faire pour lundi prochain. Tableaux VS Listes Tableaux VS Listes Tableaux VS Listes Petit chapitre. Plan Introduction Tableaux / Vecteurs Définition abstraite Qu a-t-on fait avec des vecteurs? Que peut-on faire avec des vecteurs? Listes chaînées Définition

Plus en détail

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan Exo7 Systèmes linéaires Vidéo partie 1. Introduction aux systèmes d'équations linéaires Vidéo partie 2. Théorie des systèmes linéaires Vidéo partie 3. Résolution par la méthode du pivot de Gauss 1. Introduction

Plus en détail

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Cours Info - 12 Représentation des nombres en machine D.Malka MPSI 2014-2015 D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Sommaire Sommaire 1 Bases de numération par position 2 Représentation des entiers

Plus en détail

Algèbre linéaire. 1 Espaces vectoriels R n. Jean-Paul Davalan. 1.1 Les ensembles R n. 1.2 Addition dans R n. (R n, +) désigne R n muni de l addition.

Algèbre linéaire. 1 Espaces vectoriels R n. Jean-Paul Davalan. 1.1 Les ensembles R n. 1.2 Addition dans R n. (R n, +) désigne R n muni de l addition. Algèbre linéaire. Jean-Paul Davalan 2001 1 Espaces vectoriels R n. 1.1 Les ensembles R n. Définition 1.1 R 2 est l ensemble des couples (x, y) de deux nombres réels x et y. D une manière générale, un entier

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

NumPy. Python pour le calcul scientifique. Pierre Navaro. IRMA Strasbourg. IMFS le 28 juin 2011

NumPy. Python pour le calcul scientifique. Pierre Navaro. IRMA Strasbourg. IMFS le 28 juin 2011 NumPy Python pour le calcul scientifique Pierre Navaro IRMA Strasbourg IMFS le 28 juin 2011 Pierre Navaro (IRMA Strasbourg) NumPy IMFS le 28 juin 2011 1 / 18 NumPy Le module incontournable du calcul scientifique

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes.

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes. Chapitre : Calcul matriciel Spé Maths - Matrices carrées, matrices-colonnes : opérations. - Matrice inverse d une matrice carrée. - Exemples de calcul de la puissance n-ième d une matrice carrée d ordre

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Langage VBA - Présentation du cours

Langage VBA - Présentation du cours Langage VBA - Présentation du cours Intérêt de l'enseignement de VBA : pourquoi VBA? Pré-Requis Buts du cours Première découverte Organisation de l'enseignement 1 Pourquoi enseigner VBA? Non pas le meilleur

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

Al g ori th m i q u e N u m éri q u e

Al g ori th m i q u e N u m éri q u e Al g ori th m i q u e N u m éri q u e Rapport de TP "Éléments propres des matrices" Ce TP présente un certain nombre de méthodes afin d' approximer les valeurs et vecteurs propres d' une matrice. L' utilité

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001)

Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001) Architecture des ordinateurs : Codage binaire et hexadécimal Arithmétique des processeurs (J1IN4001) F. Pellegrini Université Bordeaux 1 Ce document est copiable et distribuable librement et gratuitement

Plus en détail

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3 MTH1504 2011-2012 CALCUL SCIENTIFIQUE Table des matières 1 Erreur absolue et erreur relative 2 2 Représentation des nombres sur ordinateur 3 3 Arithmétique flottante 4 3.1 Absorption........................................

Plus en détail

Mathématiques appliquées, 12 e année

Mathématiques appliquées, 12 e année Mathématiques appliquées 12 e année Mathématiques, 9 e à la 12 e année, Programme français Résultats d apprentissage et indicateurs de réalisation 63 [C] Communication [V] Visualisation [L] Liens [CE]

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

1 Grad Info Soir Langage C - Juin 2006

1 Grad Info Soir Langage C - Juin 2006 1 Grad Info Soir Langage C - Juin 2006 1. Explications L'examen comprend 3 parties - un programme à réaliser à domicile - une partie écrite qui comprend un certain nombre de petits paragraphes de code

Plus en détail

II. Conversions. I. Initialisation. III. Méthode point. TD Python Traitement d images MP*

II. Conversions. I. Initialisation. III. Méthode point. TD Python Traitement d images MP* Le but de ce TD est d utiliser les procédures et fonctions Python pour traiter des fichiers images. II. Conversions I. Initialisation Importer le module numpy sous l appellation np. On utilise le module

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

LA COMPRESSION DES IMAGES JPEG

LA COMPRESSION DES IMAGES JPEG Fête de la Science LA COMPRESSION DES IMAGES JPEG Laboratoire de Mathématiques et Physique Théorique C.N.R.S UMR 6083 Une image numérique Une image numérique est constituée de points élémentaires (pixels)

Plus en détail

Série 2 Premiers programmes

Série 2 Premiers programmes Licence pro. GTSBD 2013-2014 Structures de données, langage Python Série 2 Premiers programmes Programmes avec des affectations, des lectures et des écritures Exo 2.1 Le problème de la machine qui rend

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Équations - Inéquations - Systèmes

Équations - Inéquations - Systèmes Équations - Inéquations - Systèmes I Premier degré Propriétés Soit f définie sur IR par f(x = ax + b avec a 0. f est une fonction affine, elle est représentée graphiquement par une droite. a est le coefficient

Plus en détail

CH.2 CODES CORRECTEURS

CH.2 CODES CORRECTEURS CH.2 CODES CORRECTEURS 2.1 Le canal bruité 2.2 La distance de Hamming 2.3 Les codes linéaires 2.4 Les codes de Reed-Muller 2.5 Les codes circulaires 2.6 Le câblage des codes circulaires 2.7 Les performances

Plus en détail

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013»

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» I Objectifs Niveau fondamental : «on se fixe pour objectif la

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

OPÉRATIONS SUR LES FRACTIONS

OPÉRATIONS SUR LES FRACTIONS OPÉRATIONS SUR LES FRACTIONS Sommaire 1. Composantes d'une fraction... 1. Fractions équivalentes... 1. Simplification d'une fraction... 4. Règle d'addition et soustraction de fractions... 5. Règle de multiplication

Plus en détail

PCSI - informatique commune Vendredi 6 juin 2014 : DS 3. Whatever works!

PCSI - informatique commune Vendredi 6 juin 2014 : DS 3. Whatever works! PCSI - informatique commune Vendredi 6 juin 2014 : DS 3 Avertissements : Whatever works! Vous avez droit à tout document : papier, web... Allumez l ordinateur, loguez vous, lancez Python. En cas de problème,

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

Introduction au Logiciel GAMS (General Algebraic Modeling System)

Introduction au Logiciel GAMS (General Algebraic Modeling System) Introduction au Logiciel GAMS (General Algebraic Modeling System) J.-M. Reneaume SOMMAIRE A. INTRODUCTION... 1 B. DESCRIPTION DU MODELE... 3 1. Structure générale du modèle... 3 a) Structure du fichier

Plus en détail

Cours 7 : Utilisation de modules sous python

Cours 7 : Utilisation de modules sous python Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est

Plus en détail

X Analyse spectrale numérique

X Analyse spectrale numérique X Analyse spectrale numérique Objectifs : Après avoir utilisé la FFT dans le TP4 d analyse spectrale, on va maintenant s intéresser aux différents paramètres d une acquisition numérique afin de respecter

Plus en détail

Cours de mathématiques M22 Algèbre linéaire

Cours de mathématiques M22 Algèbre linéaire Cours de mathématiques M22 Algèbre linéaire λ u u + v u v u Exo7 Sommaire Systèmes linéaires 3 Introduction aux systèmes d équations linéaires 3 2 Théorie des systèmes linéaires 7 3 Résolution par la méthode

Plus en détail

Solutions optimales multiples. 3D.1 Unicité de la solution optimale du modèle (FRB)

Solutions optimales multiples. 3D.1 Unicité de la solution optimale du modèle (FRB) 3D Solutions optimales multiples 3D.1 Unicité de la solution optimale du modèle (FRB) Le modèle (FRB) admet une solution optimale unique. En effet (voir page 182), l'algorithme du simplexe se termine par

Plus en détail

Congruences et théorème chinois des restes

Congruences et théorème chinois des restes Congruences et théorème chinois des restes Michel Van Caneghem Février 2003 Turing : des codes secrets aux machines universelles #2 c 2003 MVC Les congruences Développé au début du 19ème siècle par Carl

Plus en détail

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce Année 2007-2008 Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce B. Monsuez Projet informatique «Voyageur de commerce» Résolution

Plus en détail

SNAKE. Programmation du jeu SNAKE sur la console Windows en C sous l IDE Devcpp. Copie d écran du jeu

SNAKE. Programmation du jeu SNAKE sur la console Windows en C sous l IDE Devcpp. Copie d écran du jeu SNAKE Programmation du jeu SNAKE sur la console Windows en C sous l IDE Devcpp Copie d écran du jeu Principe de fonctionnement du jeu : le serpent avance automatiquement, le joueur ne peut agir que sur

Plus en détail

Équation de Poisson : programme Python

Équation de Poisson : programme Python Frédéric Legrand Licence Creative Commons 1 Équation de Poisson : programme Python 1. Introduction Ce document présente une interface Python pour le programme C présenté dans Équation de Poisson : programme

Plus en détail

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques

ANNEXE 1 BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques ANNEXE BTS AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL Programme de mathématiques L'enseignement des mathématiques dans les sections de techniciens supérieurs Agencement de l'environnement architectural

Plus en détail

Quand et pourquoi utiliser une base de données NoSQL?

Quand et pourquoi utiliser une base de données NoSQL? Quand et pourquoi utiliser une base de données NoSQL? Introduction Les bases de données NoSQL sont devenues un sujet très à la mode dans le milieu du développement web. Il n est pas rare de tomber sur

Plus en détail

Complément C7 Infodauphine.com

Complément C7 Infodauphine.com Complément C7 Infodauphine.com Pourquoi se soucier des performances? L'utilisateur n'aime pas attendre Le timing peut-être critique Trading VBA est un outil de productivité La notion de temps d'exécution

Plus en détail

1 Un programme pour le produit de matrices

1 Un programme pour le produit de matrices Chapitre 14 : algorithmes de calcul matriciel Motivation : Les algorithmes de résolutions de systèmes linéaires et de calcul sur les matrices seront implémentés par vous-mêmes en T.P. Le but de ces notes

Plus en détail

b) Est-il possible d avoir un trajet partant et arrivant du même lieu et passant une fois et une seule par toutes les rues?

b) Est-il possible d avoir un trajet partant et arrivant du même lieu et passant une fois et une seule par toutes les rues? T ES DEVOIR SURVEILLE 6 - SPE 23 MAI 2014 Durée : 1h Calculatrice autorisée Exercice 1-7 points - Dans la ville de GRAPHE, on s intéresse aux principales rues permettant de relier différents lieux ouverts

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

Bases mathématiques pour l économie et la gestion

Bases mathématiques pour l économie et la gestion Bases mathématiques pour l économie et la gestion Bases mathématiques Pour l économie et la gestion - Table des matières PREMIERE PARTIE : QUELQUES OUTILS Chapitre : Traitement de systèmes d'équations..

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION

LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION Licence STS Université Claude Bernard Lyon I LIF1 : ALGORITHMIQUE ET PROGRAMMATION IMPÉRATIVE, INITIATION 1 COURS 5 : Les Tableaux PLAN DE LA SÉANCE Comprendre l utilité des tableaux Apprendre à manipuler

Plus en détail

Python - introduction à la programmation et calcul scientifique

Python - introduction à la programmation et calcul scientifique Université de Strasbourg Environnements Informatique Python - introduction à la programmation et calcul scientifique Feuille de TP 1 Avant de commencer Le but de ce TP est de vous montrer les bases de

Plus en détail

Correction langage Java

Correction langage Java MINISTÈRE DE L ÉCOLOGIE, DU DÉVELOPPEMENT DURABLE, DES TRANSPORTS ET DU LOGEMENT EXAMEN PROFESSIONNEL DE VÉRIFICATION D APTIDUDE AUX FONCTIONS DE PROGRAMMEUR Session 2010 Correction langage Java Langage:

Plus en détail

Factorisation des matrices creuses

Factorisation des matrices creuses Chapitre 5 Factorisation des matrices creuses 5.1 Matrices creuses La plupart des codes de simulation numérique en mécanique des fluides ou des structures et en électromagnétisme utilisent des discrétisations

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Chapitre N o 4 : Le pivot de Gauss

Chapitre N o 4 : Le pivot de Gauss POIRET Aurélien Ingénierie Numérique MPSI Chapitre N o 4 : Le pivot de Gauss Dans ce chapitre, on présente divers algorithmes de calcul matriciel et on évalue leurs complexités 1 Le type «matriciel» sous

Plus en détail

MULTIPLICATION RAPIDE : KARATSUBA ET FFT

MULTIPLICATION RAPIDE : KARATSUBA ET FFT MULTIPLICATION RAPIDE : KARATSUBA ET FFT 1. Introduction La multiplication est une opération élémentaire qu on utilise évidemment très souvent, et la rapidité des nombreux algorithmes qui l utilisent dépend

Plus en détail