Techniques de synchronisatio. communications numériques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Techniques de synchronisatio. communications numériques"

Transcription

1 n pour les communications numériques ENST-Bretagne Département Signal et Communication 1/13

2 Sommaire La synchronisation dans les communications numériques Présentation du contexte Hypothèses sur les perturbations présentes à l entrée du récepteur numérique Impact sur les performances du récepteur Critère du maximum de vraisemblance (MV) et récepteur optimal Classification des algorithmes découlant du critère MV Estimateurs de type directs Estimateurs de type bouclés Conclusions 2/13

3 Présentation du contexte - Emetteur : f : fréquence porteuse h(t) : filtre en raçine de Nyquist α[k] : données binaires d[k] : symboles de modulation complexe i.i.d Signal émis : { e(t) = R e j2πf t k } d[k]h(t kt ) 3/13

4 Présentation du contexte - Canal et Récepteur : B(t) : bruit blanc additif gaussien T : durée symbole φ[n] : erreur sur la phase τ[n] : erreur sur le rythme r[n] = e jφ[n] d[k]g ( (n k)t τ[n] ) +w[n] k } {{ } = s[n,λ] avec : w[n] = B(t) h ( t) t=nt et : g[n] = h(t) h ( t) t=nt 4/13

5 Perturbations présentes à l entrée du récepteur numérique λ[n] = {φ[n], τ[n]}, avec : φ[n] = φ + 2π f nt + w φ [n] avec w φ [n] N(, σ 2 φ ) τ[n] = τ + τ n + w τ [n] avec w τ [n] N(, σ 2 τ ) Où on suppose : φ, τ : Erreur de phase et de rythme constante. f nt, τ n : Rampe sur la phase et le rythme provenant d un décalage en fréquence entre les oscillateurs locaux de l émetteur et du récepteur. σφ 2, σ2 τ σ2 w : Présence d une gigue sur la phase et le rythme issue du bruit B(t). 5/13

6 Impact d une mauvaise synchronisation sur les performances du re cepteur : Erreur sur la phase Taux d erreur binaire en présence de différentes perturbations sur la phase 1 Constellation obtenue en présence d une erreur de phase constante 1.5 Axe des imaginaires 1 Modulation QPSK Eb/No = 2 db Erreur de phase φ = π/8 Modulation QPSK Canal Gaussien Axe des réels Constellation obtenue en présence d une gigue sur la phase TEB axe des imaginaires 1 φ = ft = σ2 = (Courbe théorique) φ.5 φ = π/8 ; ft = σ2 = φ Modulation QPSK Eb/No = 2 db Gigue de phase σ2 = 1,8σ2 φ σ2 =.5σ2 ; φ = ft = φ 4 w 1.5 w 2 ft = 1 3 ; σφ = φ = axe des réels Eb/N Une perturbation sur la phase entraı ne une rotation de la constellation Possibilite de compenser cette rotation 6/13

7 Impact d une mauvaise synchronisation sur les performances du récepteur : Erreur sur le rythme Constellation obtenue en présence d un décalage sur le rythme constant 1.5 Modulation QPSK Transmission non bruitée 1 Taux d erreur binaire en présence d une perturbation sur le rythme Modulation QPSK Canal Gaussien ; f T = φ = Facteur de suréchantillonnage M =16 Facteur de roll off α Axe des imaginaires Coefficient de roll off α =.9 Décalagage constant de τ = T/4 σ 2 τ = τ = Axe des réels TEB τ = τ = σ 2 = (Courbe théorique) τ σ 2 τ =.7σ2 w, α =.5, τ = σ 2 τ =.7σ2 w, α =.9, τ = τ = T/4, α =.5, σ 2 τ = τ = T/4, α =.9, σ 2 τ = E b /N Une erreur sur l instant d échantillonnage provoque de l interférence entre symbole : la synchronisation rythme et l estimation du canal sont étroitement liées 7/13

8 Estimation suivant le maximum de vraisemblance Soit le vecteur de paramètres à estimer λ = {φ, τ}, supposé invariant sur une durée [, L ]. On veut choisir le vecteur ˆλ = { ˆφ, ˆτ} le plus probable à partir de la connaissance du vecteur de données reçues r = [ r[],...r[l ] ]. { } ˆλ = argmax λ p( λ = λ) r Soit λ = { φ, τ} un des vecteurs possibles, et s = [ s[],..., s[l ] ] le signal reconstruit à partir de λ. ˆλ le plus vraisemblable parmi les { λ} est tel que s et r sont les plus proches : ˆλ = argmin λ L k= r[k] s[k] 2 8/13

9 Classification des algorithmes découlant du critère MV Différentes hypothèses sur les données d[n] donnent différents types d algorithmes de synchronisation : Supervisés : on connaît les données au niveau du recepteur Pilotés par décision : on se base sur les données décidées ˆd[n] pour estimer les paramètres de synchronisation Aveugles : on ne fait aucune hypothèse préalable sur les données reçues L estimation conjointe de tous les paramètres de synchronisation correspond à la solution optimale. Si les paramètres de synchronisation sont indépendants entre eux, l estimation séparée des différents paramètres de synchronisation reste optimale. 9/13

10 Estimateur de type direct, en mode supervisé et dérivé du critère MV XL Estimateur du rythme : ˆτ = max τ r(kt + τ)d [k] k= n X L o Estimateur de la phase : ˆφ = arg r(kt + ˆτ)d [k] k= Nécessite la transmission de données connues. Pas de phase de convergence. 1/13

11 Estimateur bouclé de la phase, piloté par décision et dérivé du critère MV Comparateur obtenu à partir de la dérivation de la fonction de vraisemblance : e φ [k] = I{e j ˆφ[k] r[k]ˆd [k]} et ˆφ[k] = ˆφ[k 1] + µe φ [k]. L estimation bouclée nécessite une phase de convergence, mais elle est capable de suivre les variations du canal. 11/13

12 Boucle à verrouillage de phase du 1er ordre : stabilité, temps de convergence et variance du signal d erreur Limites de stabilité : µ 2 Temps de convergence : Pour µ petit : (1 1/q) ˆφ[k] φ Variance du signal d erreur : Pour µ petit : σ 2 e = 1 2 µ σ2 w ln(q) (1 + 1/q) k = µ φ = π/8 E b /N = 15 db µ =.1 Signal eφ[k] et ˆφ[k] variance σ 2 e obtenue pour différentes valeur de σ2 w σ 2 e obtenu σ 2 e attendu Comparaison entre le temps de convergence prévu en théorie et celui donné en pratique φ = π/8 E b /N = 3 db µ = σ 2 e différence φ = π/8 µ =.1 temps symbole k théorique k obtenu en pratique.2.3 e φ [k] Symboles φ[k] 1 différence σ Techniques w de synchronisatio q 12/13

13 Conclusions La synchronisation est un élement crucial pour le bon fonctionnement d un système de transmission. On a présenté ici certaines notions de base concernant la synchronisation. Problématique : récupération des paramètres de synchro en SIMO et en MIMO. 13/13

Ch. 2 : Emetteur en Bande de Base

Ch. 2 : Emetteur en Bande de Base Ch. 2 : Emetteur en Bande de Base 1 1) Les codes en ligne 1-1) Principe des codes en ligne Codes en ligne binaire On suppose que le message numérique est constitué d une suite d éléments binaires α k,

Plus en détail

Synchronisation trame et estimation de phase aveugles pour les systèmes codés

Synchronisation trame et estimation de phase aveugles pour les systèmes codés Synchronisation trame et estimation de phase aveugles pour les systèmes codés Département Signal et Communications Encadrants: Sébastien Houcke Catherine Douillard Directeur de thèse: Ramesh Pyndiah Introduction

Plus en détail

Communications numériques

Communications numériques Communications numériques 1. Modulation numérique (a) message numérique/signal numérique (b) transmission binaire/m-aire en bande de base (c) modulation sur fréquence porteuse (d) paramètres, limite fondamentale

Plus en détail

Modélisation AR et prédiction

Modélisation AR et prédiction T.P. 7 Modélisation AR et prédiction 1 Introduction au traitement de la parole 1.1 Généralités Un premier point concerne le choix de la fréquence d échantillonnage. Dans le domaine de la téléphonie cela

Plus en détail

Partie 0: Rappel de communications numériques

Partie 0: Rappel de communications numériques Partie 0: Rappel de communications numériques Philippe Ciblat Télécom ParisTech, France Introduction (I) Sauf la radio, communications actuelles en numérique - GSM, 3G, TNT, Wifi - ADSL, - MP3, DVD Types

Plus en détail

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7. Statistique Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.fr Cours Statistique, 2010 p. 1/52 Plan du cours Chapitre 1 : Estimation

Plus en détail

ENSIL Troisième Année ELT

ENSIL Troisième Année ELT IFORMATIQUE APPLIQUEE TD1 Dans le cadre de ces TD, nous procédons à la simulation d'un système de télécommunication numérique. Cette opération va nous permettre d'étudier la performance du système sous

Plus en détail

Modulations numériques 1

Modulations numériques 1 ENSA ECOLE NATIONALE DES SCIENCES APPLIQUEES D EL JADIDA DEPARTEMENT DE TELECOMMUNICATIONS Cours: T5 Communications numériques Présenté par Prof. Dr. A. Berraissoul Cycle Ingénieur 2012/2013 2 Cours: T

Plus en détail

Reconnaissance de Forme Statistique

Reconnaissance de Forme Statistique Reconnaissance de Forme Statistique James L. Crowley Deuxième Année ENSIAG Deuxième semestre 2002/2003 Séance 7 7 avril et 26 mars 2003 PCA et la discriminante linéaire de Fisher Plan de la séance : L'analyse

Plus en détail

EXERCICES SUR LE COURS DE TRANSMISSIONS NUMERIQUES

EXERCICES SUR LE COURS DE TRANSMISSIONS NUMERIQUES EXERCICES SUR LE COURS DE TRANSMISSIONS NUMERIQUES Première année télécommunications et réseaux 204 205 I. EXERCICE : SIGNAL BIPHASE On veut générer un signal de type biphase dans lequel les bits à seront

Plus en détail

COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET

COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET COURS DE LICENCE 2 SCIENCES ECONOMIQUES COURS D ANNIE CLARET MATHEMATIQUES 3 PRISE DE NOTE PAR : PLASMAN SYLVAIN SERIE 7 ANNEE 2010-2011 1 Sommaire et accès aux chapitres/sous-chapitres Cliquez sur le

Plus en détail

TD de Physique n o 10 : Interférences et cohérences

TD de Physique n o 10 : Interférences et cohérences E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence

Plus en détail

3) modulations numériques.

3) modulations numériques. Chapitre 2 : communications numériques. 3) modulations numériques. A) Rappels sur les modulations analogiques : Signal modulant analogique s(t) Modulateur porteuse analogique p(t) = P. cos(ω0.t) Signal

Plus en détail

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Introduction aux modèles graphiques 2010/2011 Cours 2 6 octobre Enseignant: Francis Bach Scribe: Nicolas Cheifetz, Issam El Alaoui 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Soit

Plus en détail

Théorie de l information et codage pour les canaux de Rayleigh MIMO

Théorie de l information et codage pour les canaux de Rayleigh MIMO Théorie de l information et codage pour les canaux de Rayleigh MIMO Philippe Ciblat École Nationale Supérieure des Télécommunications, Paris, France Plan 1 Canal de Rayleigh Modèle Diversité Système MIMO

Plus en détail

Régression logistique

Régression logistique Régression logistique Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Régression logistique p. 1 Introduction Objectifs Le classifieur de Bayes est basé sur la comparaison des probabilités

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 91192 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

OPTION MAC - TP 1 Prise en main du VSA - Etude de l émetteur WIFI

OPTION MAC - TP 1 Prise en main du VSA - Etude de l émetteur WIFI OPTION MAC - TP 1 Prise en main du VSA - Etude de l émetteur WIFI Introduction L objectif de ce TP est de revoir les principes de fonctionnement des émetteurs WIFI, ainsi que l effet du canal de propagation

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

Plan de la présentation

Plan de la présentation Thomas Quang Khoi TA Équipe ETSN, Supélec, campus de Rennes Mitsubishi -TCL, Rennes 08 décembre 2003 1 Plan de la présentation 1- Codes produits, 2- Décodage itératif des codes produits : turbo codes en

Plus en détail

Validation numérique de l homogénéisation pour un modèle simplifié de stockage avec sources aléatoires

Validation numérique de l homogénéisation pour un modèle simplifié de stockage avec sources aléatoires Validation numérique de l homogénéisation pour un modèle simplifié de stockage avec sources aléatoires Introduction Modélisation de la migration de radionucléide Vers un modèle probabiliste Calcul des

Plus en détail

choisir H 1 quand H 0 est vraie - fausse alarme

choisir H 1 quand H 0 est vraie - fausse alarme étection et Estimation GEL-64943 Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts

Plus en détail

III.1 Quelques rappels théoriques sur les interférences à 2 ondes.

III.1 Quelques rappels théoriques sur les interférences à 2 ondes. III TP 3 : Intérférences à deux ondes dans le domaine hyperfréquence. 22 Introduction Le but de ce TP est d étudier le phénomène d interférences dans le domaine des ondes hyperfréquences 2. Il s agit donc

Plus en détail

Calcul Stochastique et Applications Financières

Calcul Stochastique et Applications Financières 0 Calcul Stochastique et Applications Financières Aurélia Istratii Luis Macavilca Taylan Kunal M I.E.F. SOMMAIRE I. MODELE DE COX-ROSS-RUBINSTEIN II. III. INTRODUCTION AUX METHODES DE MONTE CARLO EQUATION

Plus en détail

Détection statistique d anomalies en présence de paramètres de nuisance

Détection statistique d anomalies en présence de paramètres de nuisance Détection statistique d anomalies en présence de paramètres de nuisance Lionel Fillatre ENST Bretagne, département Signal & Communication Lionel Fillatre (département SC) Détection d anomalies 1 / 29 Structure

Plus en détail

Techniques de transmission et traitement du signal: Simulation d une chaîne de transmission numérique avec Matlab

Techniques de transmission et traitement du signal: Simulation d une chaîne de transmission numérique avec Matlab Techniques de transmission et traitement du signal: Simulation d une chaîne de transmission numérique avec Matlab Thierry Sartenaer Février 203 Introduction Dans le cadre de cet exercice, on considère

Plus en détail

LE BRUIT COMPOSANTS ELECTRONIQUES

LE BRUIT COMPOSANTS ELECTRONIQUES LE BRUIT DANS LES COMPOSANTS ELECTRONIQUES Richard HERMEL LAPP Ecole d électronique INP3 : Du détecteur à la numérisation Cargèse Mars 004 Sommaire Introduction Sources physique du bruit Influence des

Plus en détail

EMB7000 Introduction au systèmes embarqués. Les convertisseurs A/N et N/A

EMB7000 Introduction au systèmes embarqués. Les convertisseurs A/N et N/A EMB7000 Introduction au systèmes embarqués Les convertisseurs A/N et N/A Objectifs d apprentissage Étudier différents types de convertisseurs analogiquesnumériques et numériques analogiques Décrire les

Plus en détail

Eléments de correction des exercices de BTS

Eléments de correction des exercices de BTS Eléments de correction des exercices de BTS 1 Echantillonnage Maurice Charbit Exercice 1 Comme 300 > F e /2 = 250, il y a du repliement et le signal reconstruit contient 3 raies : 50, 100 et 200 Exercice

Plus en détail

Modélisation et Simulation

Modélisation et Simulation Cours de modélisation et simulation p. 1/77 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation

Plus en détail

Deuxième partie II. Cours 4 à 6 : Construction d estimateurs, Modèle linéaire, Tests et intervalles de confiance

Deuxième partie II. Cours 4 à 6 : Construction d estimateurs, Modèle linéaire, Tests et intervalles de confiance Deuxième partie II Cours 4 à 6 : Construction d estimateurs, Modèle linéaire, Tests et intervalles de confiance (version corrigée, 4 avril 27) Construction d estimateurs 4 Construction d estimateurs Estimateur

Plus en détail

Bases du traitement des images. Détection de contours

Bases du traitement des images. Détection de contours Détection de contours Dominique.Bereziat@lip6.fr Contributions: N. Thome, D. Béréziat, S. Dubuisson Octobre 2015 1 / 76 Introduction Rôle primordial de la détection de contours en vision 1 Réduction d

Plus en détail

L impact de deux strategies de compression dans le

L impact de deux strategies de compression dans le L impact de deux strategies de compression dans le problème stéréo Réunion scientifique, Imagerie stéréo et 3D GdR ISIS, 2011 G. Blanchet, A. Buades, B. Coll (Univ. Illes Balears), J.M. Morel, B. Rougé

Plus en détail

Master 2 IMOI - Mathématiques Financières

Master 2 IMOI - Mathématiques Financières Master 2 IMOI - Mathématiques Financières Exercices - Liste 1 1 Comportement d un investisseur face au risque Exercice 1 Soit K la matrice définie par 1 2 [ 3 1 1 3 1.1 Montrer que K est la matrice de

Plus en détail

Systèmes MIMO OSTBCB pour le standard IEEE802.16 Doctorante: Patricia ARMANDO

Systèmes MIMO OSTBCB pour le standard IEEE802.16 Doctorante: Patricia ARMANDO Systèmes MIMO OSTBCB pour le standard IEEE802.16 Doctorante: Patricia ARMANDO 04/11/08 Sommaire Présentation du standard IEEE802.16 Option MIMO Présentation du code OSTBCB Modulations : OFDM SC Détection

Plus en détail

Communications Numériques et Théorie de l Information Contrôle de Connaissances avec documents Mardi 24 juin - 13h30 à 15h00

Communications Numériques et Théorie de l Information Contrôle de Connaissances avec documents Mardi 24 juin - 13h30 à 15h00 Communications Numériques et Théorie de l Information Contrôle de Connaissances avec documents Mardi 4 juin - 13h30 à 15h00 Système de télérelevage par satellite On se propose d étudier le fonctionnement

Plus en détail

Approche décentralisée pour la détection et la localisation de défauts dans une ferme photovoltaïque

Approche décentralisée pour la détection et la localisation de défauts dans une ferme photovoltaïque Approche décentralisée pour la détection et la localisation de défauts dans une ferme photovoltaïque Samir Hachour Dirigé par : Alain Kibangou (UJF) et Federica Garin (INRIA) Maître de stage : Pierre Ambs

Plus en détail

1 Réflexion et réfraction

1 Réflexion et réfraction 1 Réflexion et réfraction 1.1 Rappel sur la propagation dans les milieux linéaires isotropes Equations de Maxwell dans les milieux Dans un milieu diélectrique sans charges libres (ni courants libres) les

Plus en détail

ÉCOLE POLYTECHNIQUE Promotion 2009. CONTRÔLE DU COURS DE PHYSIQUE PHY311 Lundi 12 juillet 2010, durée : 2 heures

ÉCOLE POLYTECHNIQUE Promotion 2009. CONTRÔLE DU COURS DE PHYSIQUE PHY311 Lundi 12 juillet 2010, durée : 2 heures ÉCOE POYTECHNIQUE Promotion 2009 CONTRÔE DU COURS DE PHYSIQUE PHY311 undi 12 juillet 2010, durée : 2 heures Documents autorisés : cours, recueil de problèmes, copies des diapositives, notes de PC Indiquer

Plus en détail

Algorithmes de descente par blocs pour l apprentissage creux

Algorithmes de descente par blocs pour l apprentissage creux Algorithmes de descente par blocs pour l apprentissage creux Mehdi Meghzifene 11//211 1 Table des matières 1 Introduction 3 1.1 Principe......................................... 3 2 Résolution 4 2.1 Minimisation

Plus en détail

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008)

Rapport de Recherche. 1 Estimation fonctionnelle en temps continu. 1.1 Vitesses de convergence pour l estimateur à noyau. (D. Blanke - Mars 2008) Rapport de Recherche (D. Blanke - Mars 2008) L essentiel de mes activités de recherche porte sur l estimation fonctionnelle ou paramétrique pour des processus. L ensemble de ces travaux peut se diviser

Plus en détail

Sommaire. Communications numériques AIR 2 Quelques systèmes de communications. Sommaire. Multiplexage. Laurent Oudre laurent.oudre@univ-paris13.

Sommaire. Communications numériques AIR 2 Quelques systèmes de communications. Sommaire. Multiplexage. Laurent Oudre laurent.oudre@univ-paris13. Communications numériques AIR 2 Quelques systèmes de communications Laurent Oudre laurent.oudre@univ-paris13.fr Université Paris 13, Institut Galilée Ecole d ingénieurs Sup Galilée Parcours Informatique

Plus en détail

Dynamique des lasers. Lasers en impulsion

Dynamique des lasers. Lasers en impulsion Dynamique des lasers. Lasers en impulsion A. Evolutions couplées atomesphotons Rappel: gain laser en régime stationnaire Equations couplées atomes-rayonnement Facteur * Elimination adiabatique de l inversion

Plus en détail

Reconnaissance des formes

Reconnaissance des formes Reconnaissance des formes Discrimination A. Belaïd LORIA - Nancy Discrimination linéaire Notion d hyperplan Discrimination linéaire Principe Une forme x R d (vecteur forme) Rôle de la Trouver D : R d x

Plus en détail

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE Université Joseph Fourier L3 Physique Julia Meyer julia.meyer@ujf-grenoble.fr L3 Mathématique pour la physique Examen final 4 janvier 20 : CORRIGE Modalités : Notes de cours et TDs permis. NOTE IMPORTANTE

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Modélisation stochastique, Processus stochastiques

Modélisation stochastique, Processus stochastiques Modélisation stochastique, 6 octobre 2009 1 / 54 Modélisation stochastique, 1 2 3 2 / 54 Modélisation stochastique, Rappel : Variables aléatoires Exemple : Pièce de monnaie soit jetée trois fois. X(ω)

Plus en détail

Chapitre 2 : communications numériques.

Chapitre 2 : communications numériques. Chapitre 2 : communications numériques. 1) généralités sur les communications numériques. A) production d'un signal numérique : transformation d'un signal analogique en une suite d'éléments binaires notés

Plus en détail

Performances de détection et de localisation des terminaux SAR dans le contexte de transition MEOSAR

Performances de détection et de localisation des terminaux SAR dans le contexte de transition MEOSAR Performances de détection et de localisation des terminaux SAR dans le contexte de transition MEOSAR Victor Bissoli Nicolau Jean-Yves Tourneret - Martial Coulon - INP-ENSEEIHT/IRIT Yoan Grégoire - Michel

Plus en détail

Analyse des données 1: erreurs expérimentales et courbe normale

Analyse des données 1: erreurs expérimentales et courbe normale Analyse des données 1: erreurs expérimentales et courbe normale 1 Incertitude vs. erreur Une mesure expérimentale comporte toujours deux parties: la valeur vraie de la grandeur mesurée et l'erreur sur

Plus en détail

Modélisation de la demande de transport

Modélisation de la demande de transport Modélisation de la demande de transport Fabien Leurent ENPC / LVMT Introduction Approche empirique Fonctions de répartition Position microéconomique : préférences et rationalité Distribution des décideurs,

Plus en détail

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme Distance et classification Cours 4: Traitement du signal et reconnaissance de forme Plan Introduction Pré-traitement Segmentation d images Morphologie mathématique Extraction de caractéristiques Classification

Plus en détail

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM TD TECHNIQUES DE CODAGE ET DE COMPRESSION. LANGAGE / CODAGE / VALENCE.. Rappels Toute fraction intelligible d un message est constituée de symboles. Le langage est l ensemble de ces symboles. Un codage

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

Introduction générale au codage de canal

Introduction générale au codage de canal Codage de canal et turbo-codes 15/9/2 1/7 Introduction générale au codage de canal Table des matières Table des matières... 1 Table des figures... 1 1. Introduction... 2 2. Notion de message numérique...

Plus en détail

Analyse en composantes principales

Analyse en composantes principales Analyse en composantes principales Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Analyse en composantes principales p. 1/18 Introduction Objectifs Soit {x i } i=1,,l

Plus en détail

Systèmes de transmission

Systèmes de transmission Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un

Plus en détail

Synchronisation en Communications Numériques

Synchronisation en Communications Numériques Synchronisation en Communications Numériques 2005 1/82 Plan 1. Généralités : synchronisation en communications numériques 2. Exemple élémentaire : estimation de la phase d une porteuse pure 3. L outil

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

Statistiques - Notes de cours - M1. Elisabeth Gassiat

Statistiques - Notes de cours - M1. Elisabeth Gassiat Statistiques - Notes de cours - M1 Elisabeth Gassiat Table des matières 1 Introduction 5 1.1 Estimation et régions de confiance...................... 5 1.2 Tests.......................................

Plus en détail

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE Pierre-Louis Gonzalez 1 I INTRODUCTION 1 variable qualitative. Tri à plat. Représentations graphiques. Modélisation : loi binomiale loi multinomiale

Plus en détail

Devoir Surveillé n 2

Devoir Surveillé n 2 Devoir Surveillé n 2 Les candidat(e)s veilleront à exposer leurs réponses avec clarté et rigueur, rédiger avec soin dans un français correct et reporter dans la marge les numéros des questions traitées.

Plus en détail

Détection, Estimation, Information.

Détection, Estimation, Information. Christian JUTTEN Détection, Estimation, Information. Notions de base et exercices Université Joseph Fourier - Polytech Grenoble Cours de troisième année du département 3i Options Images et Signaux et Automatique

Plus en détail

TP Modulation Démodulation BPSK

TP Modulation Démodulation BPSK I- INTRODUCTION : TP Modulation Démodulation BPSK La modulation BPSK est une modulation de phase (Phase Shift Keying = saut discret de phase) par signal numérique binaire (Binary). La phase d une porteuse

Plus en détail

Le modèle d innovation en traitement du signal

Le modèle d innovation en traitement du signal Le modèle d innovation en traitement du signal Julien Fageot A partir d un stage réalisé au sein du Biomedical Imaging Group de l EPFL, coencadré par M. Unser et P. Tafti. 1 Introduction Le traitement

Plus en détail

Eléments de statistique Leçons 3 et 4 - Estimation

Eléments de statistique Leçons 3 et 4 - Estimation Eléments de statistique Leçons 3 et 4 - Estimation Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-1 : 3BacIng, 3BacInf

Plus en détail

Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005. Leçons d Algèbre et de Géométrie

Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005. Leçons d Algèbre et de Géométrie http://perso.wanadoo.fr/gilles.costantini/agreg.htm Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005 Légende : En italique : leçons dont le libellé a changé ou évolué par rapport

Plus en détail

Équations différentielles en physique

Équations différentielles en physique Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des

Plus en détail

Détection Multi-Utilisateurs

Détection Multi-Utilisateurs Détection Multi-Utilisateurs 3 ème année Télécom-Réseaux année 007-008 Martial COULON INP-ENSEEIHT Position du Problème Obectif : concevoir et analyser la démodulation numérique en présence d interférences

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

Fibres et télécommunications. La dispersion chromatique.

Fibres et télécommunications. La dispersion chromatique. TP A 1 Fibres et télécommunications. La dispersion chromatique. Version du 2 juillet 2013 Les questions P1 à P5 doivent être préparées avant la séance. Sommaire 1 Préparation de la séance de Travaux Pratiques........

Plus en détail

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Julien JACQUES Polytech Lille - Université Lille 1 Julien JACQUES (Polytech Lille) Statistiques de base 1 / 48 Plan 1 Tests

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Interception des signaux issus de communications MIMO

Interception des signaux issus de communications MIMO Interception des signaux issus de communications MIMO par Vincent Choqueuse Laboratoire E 3 I 2, EA 3876, ENSIETA Laboratoire LabSTICC, UMR CNRS 3192, UBO 26 novembre 2008 Interception des signaux issus

Plus en détail

Allocation de portefeuille: comparaison de l analyse technique et des méthodes mathématiques

Allocation de portefeuille: comparaison de l analyse technique et des méthodes mathématiques 1/43 : comparaison de l analyse technique et des méthodes mathématiques Université Montesquieu Bordeaux IV GREΘA et IMB CHRISTOPHETTE BLANCHET (Université de Nice) RAJNA GIBSON (Université de Zurich) ETIENNE

Plus en détail

1.1 Nombre d inconnues, nombre d équations

1.1 Nombre d inconnues, nombre d équations MÉTHODES ANALYTIQUES 1 Bilan 1.1 Nombre d inconnues, nombre d équations En élasticité linéaire, et dans l hypothèse des petites perturbations, le nombre d inconnues dans un problème de mécanique des milieux

Plus en détail

Voici le fruit d une collaboration avec Vivien Mallet (INRIA), publiée par Journal of Geophysical Research.

Voici le fruit d une collaboration avec Vivien Mallet (INRIA), publiée par Journal of Geophysical Research. Voici le fruit d une collaboration avec Vivien Mallet (INRIA), publiée par Journal of Geophysical Research. On veut prédire, jour après jour, les hauteurs des pics d ozone du lendemain (ou les concentrations

Plus en détail

Modélisation des codes de calcul dans. le cadre des processus gaussiens

Modélisation des codes de calcul dans. le cadre des processus gaussiens Modélisation des codes de calcul dans le cadre des processus gaussiens Amandine Marrel Laboratoire de Modélisation des Transferts dans l Environnement CEA Cadarache Introduction (1) Fiabilité et calcul

Plus en détail

SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES. Mention Alarme Sécurité Incendie. E1 : Épreuve scientifique à caractère professionnel Sous-épreuve E11

SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES. Mention Alarme Sécurité Incendie. E1 : Épreuve scientifique à caractère professionnel Sous-épreuve E11 Lycée Professionnel Henri Becquerel BACCALAURÉAT PROFESSIONNEL Session 2007 2008 SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES Mention Alarme Sécurité Incendie E1 : Épreuve scientifique à caractère professionnel Sous-épreuve

Plus en détail

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :

Plus en détail

Rapport de Projet de fin d études. Conception et Implémentation des Fonctionnalités de Synchronisation dans un Récepteur DVB-H

Rapport de Projet de fin d études. Conception et Implémentation des Fonctionnalités de Synchronisation dans un Récepteur DVB-H Cycle de formation des ingénieurs en Télécommunications Option : Réseaux et Services Mobiles Rapport de Projet de fin d études Thème : Conception et Implémentation des Fonctionnalités de Synchronisation

Plus en détail

Vision Par Ordinateur. Techniques Statistiques de la Reconnaissance de Forme. Segmentation...2. Variables Aléatoires...7

Vision Par Ordinateur. Techniques Statistiques de la Reconnaissance de Forme. Segmentation...2. Variables Aléatoires...7 Vision Par Ordinateur James L. Crowley DEA IVR Premier Bimestre 1999/00 Séance 4 26 octobre 1999 Plan de la séance : Techniques Statistiques de la Reconnaissance de Forme Segmentation...2 La Distribution

Plus en détail

Statistique (MATH-F-315, Cours #3)

Statistique (MATH-F-315, Cours #3) Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

ETUDE DES E VI V B I RATIO I N O S

ETUDE DES E VI V B I RATIO I N O S ETUDE DES VIBRATIONS 1 Chapitre I - Présentation et définitions 2 Les objectifs à atteindre: 1) Savoir décrire le modèle de l'oscillateur harmonique et savoir l'appliquer à l'étude des systèmes physiques

Plus en détail

Optique Ondulatoire. UE 32 - Module 3202. Yannick Dumeige

Optique Ondulatoire. UE 32 - Module 3202. Yannick Dumeige Département Mesures Physiques 2 nde année S3 2015-2016 Optique Ondulatoire UE 32 - Module 3202 Yannick Dumeige Volume horaire : 10 h de CM / 15 h de TD yannick.dumeige@univ-rennes1.fr 1/27 Optique Ondulatoire

Plus en détail

TD1, sur la Régression Logistique (STA 2211)

TD1, sur la Régression Logistique (STA 2211) TD, sur la Régression Logistique STA 22) Exercice : Un sondage international cité dans un article de presse le 4 décembre 2004) rapportait le faible taux d approbation de la politique du Président des

Plus en détail

Les Jeux. Plan. Introduction. Le minimax. Le minimax α / β. Bilan

Les Jeux. Plan. Introduction. Le minimax. Le minimax α / β. Bilan Les Jeux Plan Introduction Qu est-ce qu un jeu? Pourquoi les jeux et quels jeux? Aperçu historique Informatisation Complexité Le minimax Création d un arbre ET / OU Fonction d évaluation Version simplifiée

Plus en détail

La commande par mode glissant

La commande par mode glissant 1. Introduction Les lois de commande classiques du type PID sont très efficaces dans le cas des systèmes linéaires à paramètres constants. Pour des systèmes non linéaires ou ayant des paramètres non constants,

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Chapitre I Théorie de la ruine

Chapitre I Théorie de la ruine Chapitre I Théorie de la ruine Olivier Wintenberger ISUP 2, Université Paris VI (slides Olivier Lopez) Année universitaire 2013-2014 1 Risque collectif 2 Modélisation des coûts de sinistres 3 Probabilité

Plus en détail

Apprentissage Automatique Numérique

Apprentissage Automatique Numérique Apprentissage Automatique Numérique Loïc BARRAULT Laboratoire d Informatique de l Université du Maine (LIUM) loic.barrault@lium.univ-lemans.fr 16 septembre 2015 1/42 Problème classique Automatique Autre

Plus en détail

Analyse et synthèse robustes des systèmes linéaires Cours 2 Norme de systèmes et analyse fréquentielle multivariable

Analyse et synthèse robustes des systèmes linéaires Cours 2 Norme de systèmes et analyse fréquentielle multivariable Analyse et synthèse robustes des systèmes linéaires Cours 2 Norme de systèmes et analyse fréquentielle multivariable Les normes spatiales et temporelles 2 Motivation : afin d évaluer à l aide d un nombre

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

Simulation du problème à trois corps : Jupiter Io Europe

Simulation du problème à trois corps : Jupiter Io Europe Simulation du à trois corps : Jupiter Io Europe École Normale Supérieure de Lyon 3 janvier 2 Restriction de l étude Objectif du point Étude en 2D Obtenir numériquement la trajectoire de deux satellites

Plus en détail

Numérisation du Signal Conversion Analogique / Numérique (CAN)

Numérisation du Signal Conversion Analogique / Numérique (CAN) Audio-vidéo Numérisation du Signal Conversion Analogique / Numérique (CAN) Objectif Cette présentation reprend les notions de base : Signal analogique Caractéristiques des signaux analogiques Échantillonnage

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

Estimation indirecte en sciences humaines : une méthode bayésienne

Estimation indirecte en sciences humaines : une méthode bayésienne Estimation indirecte en sciences humaines : une méthode bayésienne Henri Caussinus, Institut de Mathématiques de Toulouse, en collaboration avec Daniel Courgeau, INED Isabelle Séguy, INED Luc Buchet, CNRS

Plus en détail

Inférence via distribution asymptotique Objective : Construction des intervalles de confiance (approximatifs) c 2 µ 2 m (2) σ 2

Inférence via distribution asymptotique Objective : Construction des intervalles de confiance (approximatifs) c 2 µ 2 m (2) σ 2 Inférence via distribution asymptotique Objective : Construction des intervalles de confiance (approximatifs) Soit h = c n 1/5. Donc, par conséquent d un TCL, pour n : Estimateur localement linéaire :

Plus en détail

Chapitre 5. Chapitre 5: Prévision 115. Slide 186

Chapitre 5. Chapitre 5: Prévision 115. Slide 186 Chapitre 5: Prévision 115 Slide 186 Chapitre 5 Prévision Dans ce chapitre, nous aordons les prolèmes de prévision de la demande, qui sont très importantes à moyen terme pour l étlissement du plan agrégé,

Plus en détail